THE TERM RANK OF A MATRIX

H. J. RYSER

1. Introduction. This paper continues a study appearing in (5) of the combinatorial properties of a matrix A of m rows and n columns, all of whose entries are 0 's and 1 's. Let the sum of row i of A be denoted by r_{i} and let the sum of column i of A be noted by s_{i}. We call $R=\left(r_{1}, \ldots, r_{m}\right)$ the row sum vector and $S=\left(s_{1}, \ldots, s_{n}\right)$ the column sum vector of A. The vectors R and S determine a class \mathfrak{U} consisting of all $(0,1)$-matrices of m rows and n columns, with row sum vector R and column sum vector S. Simple arithmetic properties of R and S are necessary and sufficient for the existence of a class $\mathfrak{A}(\mathbf{1} ; \mathbf{5})$.

Let $\delta_{i}=(1, \ldots, 1,0, \ldots, 0)$ be a vector of n components, with 1 's in the first r_{i} positions, and 0 's elsewhere. A matrix of the form

$$
\bar{A}=\left[\begin{array}{c}
\delta_{1} \\
\vdots \\
\delta_{m}
\end{array}\right]
$$

is called maximal, and \bar{A} is called the maximal form of A. Note that \bar{A} is formed from A by a rearrangement of the 1 's in the rows of A. It is clear that for \bar{A} maximal, the class \mathfrak{A} contains the single entry \bar{A}.

Consider the 2 by 2 submatrices of A of the types

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

An interchange is a transformation of the elements of A that changes a minor of type A_{1} into type A_{2}, or vice versa, and leaves all other elements of A unaltered. The interchange theorem (5) asserts that if A and A^{*} are arbitrary in \mathfrak{N}, then A is transformable into A^{*} by a finite sequence of interchanges.

The term rank ρ of A is the order of the greatest minor of A with a non-zero term in its determinant expansion (4). This integer is also equal to the minimal number of rows and columns that collectively contain all the non-zero elements of A (3). Let $\tilde{\rho}$ be the minimal and $\bar{\rho}$ the maximal term rank for the matrices in \mathfrak{A}. The interchange theorem (5) implies the existence of an A in \mathfrak{A} of term rank ρ, an arbitrary integer in the interval $\tilde{\rho} \leqslant \rho \leqslant \bar{\rho}$. In what follows we derive a simple formula for $\bar{\rho}$ and study further combinatorial consequences of the term rank concept.
2. The maximal term rank. Let \mathfrak{A} be the class of all $(0,1)$-matrices A of m rows and n columns, with row sum vector R and column sum vector S.

Received March 8, 1957. This work was sponsored in part by the Office of Ordnance Research.

We suppose throughout that the components of the row sum vector R and column sum vector S of A are positive. This is no genuine restriction on A in the study of term rank. We proceed to evaluate $\bar{\rho}$, the maximal term rank for the matrices in \mathfrak{N}.

For this purpose, let $R^{\prime}=\left(r_{1}-1, \ldots, r_{m}-1\right)$, where $r_{i}-1 \geqslant 0$. Let \bar{A}^{\prime} be the maximal matrix of m rows and n columns having row sum vector R^{\prime}, and let the column sum vector of \bar{A}^{\prime} equal

$$
\bar{S}^{\prime}=\left(\bar{s}_{1}^{\prime}, \ldots, \bar{s}_{n}^{\prime}\right)
$$

Note that if \bar{A} is the maximal form of A and if the column sum vector of \bar{A} is $\left(\bar{s}_{1}, \ldots, \bar{s}_{n}\right)$, then $\bar{s}_{i}{ }^{\prime}=\bar{s}_{i+1}(i=1, \ldots, n-1)$ and $\bar{s}_{n}{ }^{\prime}=0$. Renumber the subscripts of the column sum vector $S=\left(s_{1}, \ldots, s_{n}\right)$ of A so that

$$
s_{1} \geqslant \ldots \geqslant s_{n}
$$

and define the integers $s_{i}{ }^{\prime} \geqslant 0$ by

$$
s_{i}^{\prime}=s_{i}-1 \quad(i=1, \ldots, n)
$$

Finally, let

$$
\bar{s}_{o}{ }^{\prime}=s_{o}{ }^{\prime}=0 .
$$

Theorem 2.1. Let $\bar{\rho}$ equal the maximal term rank for the matrices in \mathfrak{N}. Let M equal the largest integer in the set

$$
\sum_{i=0}^{k}\left(s_{i}{ }^{\prime}-\bar{s}_{i}{ }^{\prime}\right) \quad(k=0,1, \ldots, n)
$$

Then

$$
\bar{\rho}=m-M .
$$

Let $A_{\bar{\rho}}$ be the m by n matrix with maximal term rank $\bar{\rho}$. Without loss of generality, we may assume that the row sum vector $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and column sum vector $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of $A_{\bar{\rho}}$ satisfy $r_{1} \geqslant \ldots \geqslant r_{m}$ and $s_{1} \geqslant \ldots \geqslant s_{n}$. We select a specified set of $\bar{\rho} 1^{\prime}$'s of $A_{\bar{\rho}}$ accounting for the maximal term rank and call them the essential 1's of $A_{\bar{\rho}}$. All other 1 's of $A_{\bar{\rho}}$ are then referred to as unessential.

We derive two Lemmas.
Lemma 1. For $0 \leqslant k \leqslant n$,

$$
\sum_{i=0}^{k}\left(s_{i}^{\prime}-\bar{s}_{i}^{\prime}\right) \leqslant m-\bar{\rho} .
$$

Let B be formed from $A_{\bar{\rho}}$ by replacing the $\bar{\rho}$ essential 1's of $A_{\bar{\rho}}^{-}$by 0 's. We agree to write $A_{\bar{\rho}}$ so that

$$
s_{1} \geqslant \ldots \geqslant s_{n} ; \quad b_{1} \geqslant \ldots \geqslant b_{n} ; \quad b_{i}=s_{i}+\epsilon_{i}-1
$$

Here s_{i} and b_{i} denote the sums of column i of $A_{\bar{\rho}}$ and B, respectively, and
column i of $A_{\bar{\rho}}$ contains an essential 1 if and only if $\epsilon_{i}=0$. Note $\epsilon_{i}=+1$ for exactly $n-\bar{\rho}$ values of i.

Let \bar{B} be the maximal form of B, with column sums $\bar{b}_{1} \geqslant \ldots \geqslant \bar{b}_{n}$. Then for each $k, 0 \leqslant k \leqslant n$,

$$
\sum_{i=0}^{k} s_{i}{ }^{\prime} \leqslant \sum_{i=0}^{k} b_{i} \leqslant \sum_{i=0}^{k} \bar{b}_{i} .
$$

From the definitions of the $\bar{s}_{i}{ }^{\prime}$ and the \bar{b}_{i},

$$
\sum_{i=0}^{k} \bar{s}_{i}{ }^{\prime}+(m-\bar{\rho}) \geqslant \sum_{i=0}^{k} \bar{b}_{i},
$$

whence

$$
\sum_{i=0}^{k} s_{i}^{\prime} \leqslant \sum_{i=0}^{k} \bar{s}_{i}^{\prime}+(m-\bar{\rho})
$$

Lemma 2. Let f be such that $0<f<n$ and

$$
\sum_{i=0}^{f}\left(s_{i}^{\prime}-\bar{s}_{i}^{\prime}\right)=m-\bar{\rho}
$$

Then the matrix $A_{\bar{\rho}}^{-}$of maximal term rank $\bar{\rho}$ may upon permutations of rows and columns be written in the form

$$
A_{\bar{\rho}}=\left[\begin{array}{cccc}
S & E_{1} & * & * \\
E_{2} & 0 & 0 & 0 \\
* & 0 & I & 0 \\
* & 0 & 0 & 0
\end{array}\right]
$$

Here S is a matrix entirely of 1's of size e by f. The matrices E_{1} and E_{2} are square of orders e and f, respectively, I is an identity matrix of order g, with $\bar{\rho}=e+f+g$, and the 0 's denote zero blocks. The $\bar{\rho}$ essential 1's of $A_{\bar{\rho}}^{-}$appear on the main diagonals of E_{1}, E_{2}, and I. The degenerate cases $e=0$ and $g=0$ are not excluded.

Reading the inequalities of Lemma 1 as equalities, we obtain

$$
\sum_{i=0}^{f} s_{i}^{\prime}=\sum_{i=0}^{f} b_{i}=\sum_{i=0}^{f} \bar{b}_{i}=\sum_{i=0}^{f} \bar{s}_{i}^{\prime}+(m-\bar{\rho})
$$

This tells us that the matrix B may be written in the form

$$
B=\left[\begin{array}{cc}
S & X \\
Y & 0
\end{array}\right],
$$

where S is the e by f matrix of 1's, and where the matrix X has at least one 1 in each row. Now

$$
\sum_{i=0}^{f} s_{i}^{\prime}=\sum_{i=0}^{f} s_{i}-f=\sum_{i=0}^{f} b_{i}
$$

implies that essential 1 's occur in the first f columns of $A_{\bar{\rho}}$, and they may be placed on the main diagonal of E_{2}.

The equation

$$
\sum_{i=0}^{f} s_{i}=\sum_{i=0}^{f} \bar{s}_{i}^{\prime}+m-\bar{\rho}+f
$$

implies that there are $m-\bar{\rho}+f$ rows of A_{ρ}^{-}in which 0 's occur in each of the columns $f+1, \ldots, n$. Let $e^{\prime} \leqslant e$ essential 1's of A_{ρ}^{-}occur in rows $1, \ldots, e$ of $A_{\bar{\rho}}$, and let g essential 1's occur in rows $e+f+1, \ldots, m$ of $A_{\bar{\rho}}$. Then $e^{\prime}+f+g=\bar{\rho}$ and $m-\bar{\rho}+f+g=m-e$, whence $e^{\prime}=e$. Hence essential l's occur in the first e rows of $A_{\bar{\rho}}$, and these may be placed on the main diagonal of E_{1}.

To prove Theorem 2.1 it suffices to establish the existence of a $k=f$ for which equality holds in Lemma 1 . The theorem is valid for m by 1 and 1 by n matrices. The induction hypothesis asserts the statement of the theorem for all matrices of size $m-1$ by n^{\prime}, with $1 \leqslant n^{\prime} \leqslant n$, and we shall prove the theorem for matrices of size m by n. Moreover, if $\bar{\rho}=m$, then

$$
s_{o}{ }^{\prime}-\bar{s}_{o}{ }^{\prime}=m-\bar{\rho}=0
$$

Also, if $\bar{\rho}=n$, then

$$
\sum_{i=0}^{n}\left(s_{i}^{\prime}-\bar{s}_{i}^{\prime}\right)=\sum_{i=0}^{n} s_{i}-n-\left(\sum_{i=0}^{n} s_{i}-m\right)=m-\bar{\rho}
$$

Since the theorem is valid in each of these cases, we may assume that $\bar{\rho}<m$ and $\bar{\rho}<n$.

In $A_{\bar{\rho}}$ suppose that $s_{i}>s_{j}$. Then we may normalize the first row of $A_{\bar{\rho}}^{-}$in one of two ways. Either $a_{1 i}=1$ or, in the other case, $a_{1 i}=0$ and $a_{1 j}=0$ or 1 , with $a_{1 j}=1$ an essential 1 of $A_{\bar{\rho}}$. For otherwise we must have $a_{1 i}=0$ and $a_{1 j}=1$, an unessential 1 of $A_{\bar{\rho}}$. But then there exists an unessential 1 of $A_{\bar{\rho}}$ such that $a_{u i}=1$ and $a_{u j}=0$. We may then perform an interchange that does not affect the term rank and obtain $a_{1 i}=1$ and $a_{1 j}=0$. We agree to normalize the first row of A_{ρ}^{-}to fulfill this requirement.

Now delete row 1 from the normalized $A_{\bar{\rho}}$ of maximal term rank $\bar{\rho}$. Also delete any zero columns from the resulting ($m-1$)-rowed matrix. We then obtain a matrix C of $m-1$ rows and n^{\prime} columns, $1 \leqslant n^{\prime} \leqslant n$. Let C belong to the class \mathfrak{C}. The maximal term rank for the matrices in \mathfrak{C} equals $\bar{\rho}$ or $\bar{\rho}-1$.

Suppose there exists a C^{\prime} of term rank $\bar{\rho}$ in $\mathbb{C}^{\text {C. To }} C^{\prime}$ we may adjoin $n-n^{\prime}$ columns of 0 's and the first row of $A_{\bar{\rho}}^{-}$, and thereby obtain a matrix $A^{\prime}=\left[a_{r s}{ }^{\prime}\right]$ in the class \mathfrak{N}. Now if $a_{1 i}{ }^{\prime}=1$, where column i does not contain an essential 1 of C^{\prime}, then this contradicts the maximality of $\bar{\rho}$ in \mathfrak{A}. Suppose then that $a_{1 i}{ }^{\prime}=0$ for each column i that does not contain an essential 1 of C^{\prime}. Since $r_{1} \geqslant r_{j}$, we may perform an interchange involving row 1 and some other row of A^{\prime} to obtain $a_{1 i}^{\prime}=1$ for some column i not containing an essential 1 of C^{\prime}. This again contradicts the maximality of $\bar{\rho}$ in \mathfrak{N}. Hence we conclude that $\bar{\rho}-1$
is the maximal term rank for the matrices in ©. This term rank is attained by C. The $\bar{\rho}-1$ essential 1's of C plus one essential 1 from the first row of $A_{\bar{\rho}}$ comprise the $\bar{\rho}$ essential 1 's of $A_{\bar{\rho}}$.

We permute the columns of C so that $c_{1} \geqslant c_{2} \geqslant \ldots \geqslant c_{n^{\prime}}$ and apply the induction hypothesis to C. Then there exists an $f, 0 \leqslant f \leqslant n^{\prime}$, such that

$$
\sum_{i=0}^{f} c_{i}^{\prime}=\sum_{i=0}^{f} \bar{c}_{i}^{\prime}+(m-\bar{\rho}) .
$$

We may suppose that $0<f<n^{\prime}$. For if $f=0$, then $\bar{\rho}=m$ and the theorem is valid. Also if $f=n^{\prime}$, then $\bar{\rho}=n^{\prime}+1$. This implies that $n^{\prime}<n$. If $n^{\prime}=n-1$, then $\bar{\rho}=n$ and the theorem is valid. Thus if $f=n^{\prime}$, we may suppose that $n^{\prime} \leqslant n-2$. But in this case the last $n-n^{\prime} \geqslant 2$ columns of $A_{\bar{\rho}}$ must have 1 's in the first row, and only one of them can be essential. By the normalization process applied to $A_{\bar{\rho}}^{-}$, every column of $A_{\bar{\rho}}^{-}$headed by 0 's must have column sum equal to 1 and these columns occupy the last of the first n^{\prime} positions in $A_{\bar{\rho}}^{-}$. If such columns exist we may take a smaller value of f in C. If all of the columns of $A_{\bar{\rho}}^{-}$are headed by 1 's, the theorem is valid for A_{ρ}^{-}with $f=n^{\prime}$.

Thus we may suppose that $0<f<n^{\prime}$, and upon permutations of rows and columns, we may write the matrix C in the form given by Lemma 2:

$$
C=\left[\begin{array}{llll}
S & D_{1} & * & * \\
D_{2} & 0 & 0 & 0 \\
* & 0 & I & 0 \\
* & 0 & 0 & 0
\end{array}\right]
$$

Here S is the matrix of 1's of size e by f, and the orders of D_{1}, D_{2}, and I total $\bar{\rho}-1$. The $\bar{\rho}-1$ essential 1's of C appear on the main diagonals of D_{1}, D_{2}, and I. The matrix I need not appear, but we may assume that $e \neq 0$. For if $e=0$, we again obtain $\bar{\rho}-1=n^{\prime}$.

We restore now to C the $n-n^{\prime}$ zero columns, and finally a row of $r_{1} 1$'s and $n-r_{1} 0$'s. We thereby obtain \widetilde{A}, where $\widetilde{A}=\left[\tilde{a}_{r s}\right]$ is the same as $A_{\bar{\rho}}$ apart from possible row and column permutations. Suppose that $\tilde{a}_{1 i}=1$ $(i=1, \ldots, f)$. Then

$$
\sum_{i=0}^{f}\left(s_{i}^{\prime}-\bar{s}_{i}^{\prime}\right)=m-\bar{\rho}
$$

and the theorem follows.
Suppose that on the other hand some $\widetilde{a}_{1 j}=0$, where $1 \leqslant j \leqslant f$. If we permute the first f columns of \tilde{A}, then we may assume that $\widetilde{a}_{1 i}=1(i=1, \ldots, h)$ and that $\tilde{a}_{1 j}=0(j=h+1, \ldots, f)$. The case $h=0$ is not to be excluded. If $h=0$, then $\tilde{a}_{1 j}=0(j=1, \ldots, f)$. Now there must exist an essential 1 of the form $\tilde{a}_{1 u}=1$ for some u, where u satisfies $e+f+1 \leqslant u \leqslant n$. If there does not exist an unessential 1 of the form $\tilde{a}_{1 v}=1$, where v satisfies $f+1 \leqslant v \leqslant n$, then

$$
\sum_{i=0}^{f}\left(s_{i}^{\prime}-\bar{s}_{i}^{\prime}\right)=m-\bar{\rho}
$$

and the theorem is valid. Suppose then that one or more unessential 1's exist of the form $\tilde{a}_{1 v}=1$, where v satisfies $f+1 \leqslant v \leqslant n$. We assert that then an unessential 1 cannot occur in the intersection of rows $e+2, \ldots, m$ and columns $h+1, \ldots, f$ of \widetilde{A}. For suppose that an unessential 1 appears in this position. Then by our normalization process, for each v associated with the unessential 1 's of the form $\tilde{a}_{1 v}=1, f+1 \leqslant v \leqslant n$, we must have $\tilde{a}_{j v}=1(j=1, \ldots$, $e+1)$. Furthermore, there must exist in each of these columns an essential 1 of the form $\tilde{a}_{t v}=1$, for some t satisfying $e+f+2 \leqslant t \leqslant m$. All of the remaining entries of these columns must be 0 . But consider now row 1 and row 2 of \tilde{A}. A 1 in row 1 may appear directly above a 0 in row 2 only in the column of the essential 1 of the form $\widetilde{a}_{1 u}=1$. However, a 0 in row 1 must appear directly above a 1 in row 2 in at least two columns. But this contradicts the fact that the number of 1 's in row 1 of \widetilde{A} is greater than or equal to the number of 1 's in row 2 of \widetilde{A}. Thus an unessential 1 cannot occur in the intersection of rows $e+2, \ldots, m$ and columns $h+1, \ldots, f$ of \tilde{A}. Hence it follows that

$$
\sum_{i=0}^{h} s_{i}^{\prime}-\sum_{i=0}^{h} \bar{s}_{i}^{\prime}=m-\bar{\rho} .
$$

Note that the degenerate case $h=0$ gives $\bar{\rho}=m$. This completes the proof.
3. Applications. In the following applications we continue to require positive components for the vectors R and S that determine the class \mathfrak{N}. A (0,1)-matrix $A=\left[a_{r s}\right]$ may be regarded as an incidence matrix distributing n elements x_{1}, \ldots, x_{n} into m sets S_{1}, \ldots, S_{m}. Here $a_{i j}=1$ or 0 according as x_{j} is or is not in S_{i}. From this approach the term rank of a matrix generalizes the concept of a system of distinct representatives for subsets S_{1}, \ldots, S_{m} of a finite set (2). The subsets S_{1}, \ldots, S_{m} possess a system of distinct representatives if and only if the term rank of the associated incidence matrix satisfies $\rho=m$. In this case we say A possesses a system of distinct representatives.

Theorem 3.1. There exists an A in \mathfrak{A} possessing a system of distinct representatives if and only if

$$
\sum_{i=0}^{k}\left(s_{i}{ }^{\prime}-\bar{s}_{i}{ }^{\prime}\right) \leqslant 0 \quad(k=0,1, \ldots, n)
$$

This is the special case of Theorem 2.1 with $\bar{\rho}=m$.
For a (0,1)-matrix A, let $N_{0}(A)$ denote the number of 0 's in A and let $N_{1}(A)$ denote the number of 1 's in A.

Theorem 3.2. Let A be in \mathfrak{A} and let $\bar{\rho}<m$, Then upon permutations of rows and columns, A may be reduced to the form

$$
A=\left[\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right]
$$

Here W is of size e byf $(0<e<m, 0<f<n)$ and $N_{0}(W)+N_{1}(Z)=\bar{\rho}-(e+f)$. For $A_{\bar{\rho}}$, we have $N_{0}(W)=0$ and $N_{1}(Z)=\bar{\rho}-(e+f)$.

In the equation

$$
\sum_{i=0}^{f}\left(s_{i}^{\prime}-\bar{s}_{i}{ }^{\prime}\right)=m-\bar{\rho},
$$

we have $0<f<n$, for otherwise $\bar{\rho}=m$ or $\bar{\rho}=n$. Also for the matrix $A_{\bar{\rho}}$ of Lemma 2, $0<e<m$ and

$$
\sum_{i=0}^{e} r_{i}+\sum_{i=0}^{f} s_{i}+\bar{\rho}-(e+f)-e f=N_{1}\left(A_{\bar{\rho}}\right)
$$

But

$$
\sum_{i=0}^{e} r_{i}+\sum_{i=0}^{f} s_{i}=N_{1}(X)+N_{1}(Y)+2 N_{1}(W)
$$

and

$$
N_{1}(W)+N_{1}(X)+N_{1}(Y)+N_{1}(Z)=N_{1}\left(A_{\bar{\rho}}^{-}\right)
$$

Hence

$$
e f-N_{1}(W)+N_{1}(Z)=\bar{\rho}-(e+f)
$$

and

$$
N_{0}(W)+N_{1}(Z)=\bar{\rho}-(e+f) .
$$

Let $A=\left[a_{r s}\right]$ be in \mathfrak{N}. Suppose an element $a_{u v}=1$ of A is such that no sequence of interchanges applied to A replaces $a_{u v}=1$ by 0 . Then $a_{u v}=1$ is called an invariant 1 of A. An analogous definition holds for an invariant 0 .

Theorem 3.3. Let $a_{u v}$ be an invariant 1 of A. If $A^{\prime}=\left[a_{r s}{ }^{\prime}\right]$ is in \mathfrak{A}, then $a_{u{ }^{\prime}}{ }^{\prime}$ is an invariant 1 of A^{\prime}.

For if for some $A^{*}=\left[a_{r s}{ }^{*}\right]$ in $\mathfrak{Q}, a_{u v}{ }^{*}=0$, then transforming A into A^{*} by interchanges contradicts the hypothesis that $a_{u v}=1$ is an invariant 1 of A. Thus all or none of the matrices in \mathfrak{U} contains an invariant 1 , and we refer to \mathfrak{H} as being with or without an invariant 1 .

Theorem 3.4. Let A contain an invariant 1. Then by permutations of rows and columns, A may be reduced to the form

$$
\left[\begin{array}{cc}
S & X \\
Y & 0
\end{array}\right]
$$

Here S is the matrix of 1's and contains the invariant 1 of A.
For by permutations of rows and columns we may reduce A to the following form:

$$
A^{*}=\left[\begin{array}{cc|c|c|ccc}
1 & 1 & \cdots & 1 & 0 & \ldots & 0 \\
1 & S & S^{*} & C_{0} & & R_{1} & \\
\hline \cdot & \bar{S} & * & M & & \\
\cdot & & & & \\
1 & R_{3} & N & 0 & & \\
\hline 0 & & & & \\
\cdot & & & 0 & \\
\cdot & C_{1} & & 0 & & \\
\cdot & & & & &
\end{array}\right]
$$

Here the 1 in the $(1,1)$ position of A^{*} is the invariant 1 . The block in the lower right hand corner is then composed entirely of 0 's. We permute rows so that R_{1} contains at least one 1 in each row, and then permute columns so that C_{1} contains at least one 1 in each column. The intersection of the rows of A^{*} containing R_{1} and the columns of A^{*} containing C_{1} is S, a matrix of 1 's. We now permute columns so that S^{*} is a matrix of 1 's and C_{0} contains at least one 0 in each column. Next we permute rows so that \bar{S} is a matrix of 1 's and R_{0} contains at least one 0 in each row. The intersection of the columns of A^{*} containing C_{0} and the rows of A^{*} containing R_{0} is a zero matrix. If one or more of $S^{*}, C_{0}, \bar{S}, R_{0}$ do not appear, the theorem follows. If all appear, we replace M by a matrix of the form

$$
\left[\begin{array}{c}
R_{1}^{*} \\
0
\end{array}\right]
$$

and N by a matrix of the form [$C_{1}{ }^{*} 0$], where $R_{1}{ }^{*}$ has at least one 1 in each row and $C_{1}{ }^{*}$ has at least one 1 in each column, and then continue as before. This procedure must terminate, and upon termination we obtain the matrix of the theorem.

Note that X and Y may contain further invariant 1's and the normalizing procedure may be applied to each of these blocks separately. Also, if A, X, and Y are of term ranks ρ, ρ_{x}, and ρ_{y}, respectively, and if S has size e^{\prime} by f^{\prime}, then

$$
\rho=\rho_{x}+\rho_{y}+\min \left(e^{\prime}-\rho_{x}, f^{\prime}-\rho_{y}\right),
$$

whence

$$
\rho=\min \left(e^{\prime}+\rho_{y}, f^{\prime}+\rho_{x}\right)
$$

Theorem 3.5. If \mathfrak{A} is without an invariant 1 and if $\bar{\rho}<m$, n, then the minimal term rank $\tilde{\rho}$ for the matrices in \mathfrak{A} must satisfy $\tilde{\rho}<\bar{\rho}$.

In the matrix $A_{\bar{\rho}}$ of Theorem 3.2 , the 1 in the $(1,1)$ position is not invariant. But by Theorem 3.2, $N_{0}(W)+N_{1}(Z)=\bar{\rho}-(e+f)$. This means that there are matrices in \mathfrak{A} with fewer than $\bar{\rho}-(e+f) 1$'s in Z. Hence $\tilde{\rho}<\bar{\rho}$.

Note that Theorem 3.5 is not necessarily valid for $\bar{\rho}=m$. For we may let $m=n$, and let \mathfrak{A} be the class of all $(0,1)$-matrices with exactly $k 1$'s in each row and column, $1 \leqslant k<m$. Then \mathfrak{A} is without an invariant 1 , but $\tilde{\rho}=\bar{\rho}=m$ (3). Also Theorem 3.5 need not hold for a class \mathfrak{A} with an invariant 1 . For example, let A be maximal. Then A is the only matrix in \mathfrak{A}, and we must have $\tilde{\rho}=\bar{\rho}$.

In conclusion, a deeper insight into the structure of $\tilde{\rho}$ would be of considerable interest. An arithmetic formula for $\tilde{\rho}$ analogous to the formula for $\bar{\rho}$ given in $\$ 2$ would be especially desirable.

References

1. David Gale, A theorem on flows in networks, Pacific J. Math., 7 (1957), 1073-1082.
2. P. Hall, On representatives of subsets, J. Lond. Math. Soc., 10 (1935), 26-30.
3. Dénes König, Theorie der endlichen und unendlichen Graphen (New York, 1950).
4. Oystein Ore, Graphs and matching theorems, Duke Math. J., $2 \mathscr{2}$ (1955), 625-639.
5. H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math., 9 (1957), 371-377.

Ohio State University

