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Abstract

Let M be a bounded domain of R
d with a smooth boundary. We relate the Cheeger

constant ofM and the conductance of a neighborhood graph defined on a random sample
from M . By restricting the minimization defining the latter over a particular class of
subsets, we obtain consistency (after normalization) as the sample size increases, and
show that any minimizing sequence of subsets has a subsequence converging to a Cheeger
set of M .
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1. Introduction and main results

The Cheeger isoperimetric constant may be defined for a Euclidean domain as well as for a
graph. In either case it quantifies how well the set can be bisected or ‘cut’ into two pieces that
are as little connected as possible. Motivated by recent developments in spectral clustering and
computational geometry, we relate the Cheeger constant of a neighborhood graph defined on a
sample from a domain and the Cheeger constant of the domain itself.

Given a graph G with weights {δij }, the normalized cut of a subset S ⊂ G is defined as

h(S;G) = σ(S)

min{δ(S), δ(Sc)} , (1)

where Sc denotes the complement of S in G, and

δ(S) =
∑
i∈S

∑
j �=i

δij , σ (S) =
∑
i∈S

∑
j∈Sc

δij (2)

are the discrete volume and perimeter of S. The Cheeger constant or conductance of the graph
G is defined as the value of the optimal normalized cut over all nonempty subsets of G, i.e.

H(G) = min{h(S;G) : S ⊂ G, S �= ∅}. (3)

A corresponding quantity can be defined for a domain of a Euclidean space. LetM be a bounded
domain (i.e. an open, connected subset) of R

d with a smooth boundary ∂M of class at least C2.
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For an integer 1 ≤ k ≤ d , let Volk denote the k-dimensional volume (Hausdorff measure)
in R

d .
For an open subset A ⊂ R

d , we denote by PM(A) its de Giorgi perimeter (see [25,
Definition 2.3.1] or [23, Definition 1.6]), which is equal to Vold−1(∂A ∩ M) when A is a
(bounded) open subset of M of class C1 [25, Proposition 2.3.3], and we define its normalized
cut with respect to M by

h(A;M) = PM(A)

min{Vold(A ∩M),Vold(Ac ∩M)} ,

where Ac denotes the complement of A in R
d and with the convention that 0/0 = ∞. So,

when A is a C1 open subset of M , we also have

h(A;M) = Vold−1(∂A ∩M)
min{Vold(A ∩M),Vold(Ac ∩M)} .

The Cheeger (isoperimetric) constant of M is defined as

H(M) = inf{h(A;M) : A ⊂ M}.

Equivalently, the infimum may be restricted to all open subsets A of M such that ∂A ∩M is a
smooth submanifold of codimension 1. This quantity was introduced by Cheeger [15] in order
to bound the eigengap of the spectrum of the Laplacian on a manifold. A Cheeger set is a subset
A ⊂ M such that h(A;M) = H(M); there is always a Cheeger set and it is unique under some
conditions on the domain M [12]. For A ⊂ M , we call ∂A ∩M its relative boundary.

1.1. Consistency of the normalized cut

Suppose that we observe an independent and identically distributed (i.i.d.) random sample
Xn = (X1, . . . , Xn) from the uniform distribution µ on M . For r > 0, let Gn,r be the graph
with nodes the sample points and edge weights δij = 1{‖Xi −Xj‖ ≤ r}, which is an instance
of a random geometric graph [36]. Let ωd denote the d-volume of the unit d-dimensional ball,
and define

γd =
∫

Rd

max(〈u, z〉, 0)1{‖z‖ ≤ 1} dz, (4)

where u is any unit-norm vector of R
d . Actually, γd is the average volume of a spherical cap

when the height is chosen uniformly at random. The volume V (h, d) of a spherical cap of the
d-dimensional unit ball at height 0 ≤ h ≤ 1 is given by

V (h, d) = π(d−1)/2

�((d + 1)/2)

∫ arccos(1−h)

0
sind(t) dt,

which leads to

γd = π(d−1)/2

(d + 1)�((d + 1)/2)
.

We establish the pointwise consistency of the normalized cut, which yields an asymptotic upper
bound on the Cheeger constant of the neighborhood graph based on the Cheeger constant of
the manifold. This is the first result we know of that relates these two quantities.
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Theorem 1. Let A be a fixed subset of M with smooth relative boundary. Fix a sequence
rn → 0 with nrd+1

n / log n → +∞, and let Sn = A ∩Gn,rn . Then, with probability 1,

ωd

γdrn
h(Sn;Gn,rn) → h(A;M),

and, consequently,

lim sup
n→∞

ωd

γdrn
H(Gn,rn) ≤ H(M).

We do not know whether the Cheeger constant of the neighborhood graph, for an appropriate
choice of the connectivity radius and properly normalized, converges to the Cheeger constant
of the domain.

1.2. Consistent estimation of the Cheeger constant and Cheeger sets

We obtain a consistent estimator of the Cheeger constantH(M) by restricting the minimiza-
tion defining the conductance of the neighborhood graph (3) to subsets associated with subsets
of R

d with controlled reach. The reach of a subset S ⊂ R
d [21], denoted by reach(S), is the

supremum over η > 0 such that, for each x within distance η of S, there is a unique point in S
that is closest to x. We assume here that M ⊂ (0, 1)d . When this is not known and/or not the
case, we may always infer a hypercube that containsM—by taking a hypercube containing all
the data points, with some leeway so that the hypercube containsM with high probability when
the sample gets large—and then rescale and translate the points so that M is within the unit
hypercube. So this assumption is really without loss of generality. We also impose a regularity
condition on the boundary of M , namely that ∂M is of class at least C2. In particular, the
differentiability of ∂M implies that the reach of ∂M is strictly positive.

Theorem 2. Assume that M ⊂ (0, 1)d and that rn → 0 such that nr2d+1
n → ∞. Let ρn → 0

slowly so that rn = o(ραn ) and nr2d+1
n ραn → ∞ for all α > 0. Let Rn be a class of open subsets

R ⊂ (0, 1)d such that reach(∂R) ≥ ρn. Define the functional h‡
n over Rn by

h‡
n(R) = ωd

γdrn
h(R ∩ Xn;Gn,rn)

if both R and Rc contain a ball of radius ρn centered at a sample point, and h‡
n(R) = ∞

otherwise.

(i) With probability 1,
min
R∈Rn

h‡
n(R) → H(M) as n → ∞.

(ii) Let {Rn} be a sequence satisfying

Rn ∈ Rn, h‡
n(Rn) = min{h‡

n(R) : R ∈ Rn}. (5)

Then, with probability 1, {Rn ∩M} admits a subsequence converging in the L1-metric.
Moreover, any subsequence of {Rn ∩ M} converging in the L1-metric converges to a
Cheeger set of M .

Note that the infimum defining Rn in (5) is attained in Rn since the function h‡
n takes only

a finite number of values.
Part (ii) of Theorem 2 hints at a consistent estimate of a Cheeger set of M , but Rn ∩ M

depends on M , which is unknown. On the other hand, reconstructing an unknown set from
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a random sample of it is an independent problem for which there exists multiple techniques
and important literature—see, e.g. [6] and the references therein. In the following result we
construct a random discrete measure which does not require the knowledge of M , and prove
that, seen as a sequence of random measures indexed by the sample size n, any accumulation
point is the uniform measure on a Cheeger set of M .

Theorem 3. Let {Rn} be a sequence as in Theorem 2(ii), and let {Rnk } be a subsequence of {Rn}
with Rnk ∩M → A∞ in L1. Define the random discrete measure Qn = (1/n)

∑n
i=1 1Rn(Xi)

δXi and the measure Q = 1A∞(·)µ. Then, that Qn converges weakly to Q is an event which
holds with probability 1.

As an example of an estimate of a Cheeger set of M , one can consider a union of balls of
radius κn centered at the observations falling in Rn. Under appropriate conditions, it is known
that this estimate converges in L1; see [6].

Let us mention that with our result, only the ‘regular’ part of a Cheeger set can be
reconstructed. Indeed, in dimension d ≥ 8, the boundary of a Cheeger set is not necessarily
regular and may contain parts of codimension greater than 1; see, e.g. [9].

1.3. Connections to the literature

Our results relating the respective Cheeger constants of a domain and of a neighborhood
graph defined from a sample from the domain are the first of their kind, as far as we are aware.
The connections to the literature stem from the concept of normalized cut taking a central place
in graph partitioning and related methods in clustering; from a recent trend in computational
geometry (and topology) aiming at estimating geometrical (and topological) attributes of a set
based on a sample; and from the fact that we can use the conductance to bound the mixing time
of a random walk on the neighborhood graph.

1.3.1. Clustering. In spectral graph partitioning, the goal is to partition a graphG into subgraphs
based on the eigenvalues and eigenvectors of the Laplacian [16], [39]. It arises as a convex
relaxation of the combinatorial search of finding an optimal bisection in terms of the normalized
cut. Given a set of points X1, . . . , Xn and a dissimilarity measure (or kernel) φ, spectral
clustering applies spectral graph partitioning to the graph with nodes the data points and edge
weight δij = φ(Xi,Xj ) between Xi and Xj [40]. For instance, if the points are embedded
in a Euclidean space, the kernel φ is often of the form φ(x, y) = ψ(‖x − y‖/σ), where
σ is a tuning parameter, and ψ is, e.g. the Gaussian kernel ψ(t) = exp(−t2) or the simple
kernelψ(t) = 1[0,1](t) [3], [33]. The consistency of spectral methods has been analyzed in this
context [4], [22], [35], [38], [41]. In particular, Narayanan et al. [32] proved a result similar to
our Theorem 1 in that context.

About cuts, Maier et al. [30] also proved a result similar to our Theorem 1 when the separating
surface ∂A is an affine hyperplane. Closer to our Theorem 2, Narayanan and Niyogi [31]
established rates for learning a cut for classification purposes—so the setting there is that of
supervised learning, with each sample point Xi associated with a class label Yi .

1.3.2. Computational geometry (and topology). The Cheeger constant H(M), and Cheeger
sets, are bona fide geometric characteristics of the domain M that we might want to estimate,
following a fast developing line of research around the estimation of some geometric and
topological characteristics of sets from a sample, e.g. the number of connected components [5],
the intrinsic dimensionality [29] and, more generally, the homology [10], [11], [13], [14], [34],
[37], [44]; the Minkowski content [17], as well as the perimeter and area (volume) [8]. In the
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related field of stochastic geometry, Khmaladze and Weil [27] established limit properties of
Poisson point processes in the context of the change-set problem, where the Poisson process
has two homogeneous components, with different intensities inside and outside of an unknown
convex compact subset of R

d . Their proof techniques involve integration over tubular neigh-
borhoods similar to those that we use in the present paper.

1.3.3. Random walks. Random geometric graphs are gaining popularity as models for real-life
networks. Some protocols for passing information between nodes amounts to performing a
random walk and it is important to bound the time it takes for information to spread to the
whole network; see [2] and the references therein. It is well known that, given a graph G, a
lower bound onH(G)may be used to bound the mixing time of the random walk onG. This is
the path taken in [2] and [7] whenM is the unit hypercube and the graph isGrn,n. However, in
both papers the authors reduced the setting to that of a regular grid without rigorous justification,
leaving the problem unresolved (in our opinion) even in this particular case.

1.4. Discussion

From the above discussion, we see that there are only a handful of other papers relating cuts
in neighborhood graphs and cuts in the corresponding domain from which the points making
the neighborhood graph were sampled from. To the best of the authors’ knowledge, our paper
is the first to establish a relationship between the Cheeger constant (optimal normalized cut)
on the neighborhood graph and the Cheeger constant of the domain, and the first to propose a
method that is consistent for the estimation of the latter based on a restricted normalized cut,
and also consistent for the estimation of Cheeger sets. Our results generalize with varying
amounts of effort to other related settings. However, we leave important questions behind.

1.4.1. Generalizations. With some additional work, our results and methodology extend to
settings where the kernel (here the simple kernel) is fast decaying and where the data points
are sampled from a probability distribution on M that has a nonvanishing density with respect
to the uniform distribution. It would also be interesting to consider the setting where M
is a d-dimensional smooth submanifold embedded in some Euclidean ambient space. Our
arguments seem to carry through using a set of charts for the manifold M , as is done in [9,
Lemma 3.4].

1.4.2. Refinements. Though we focused on sufficient conditions for rn to enable a consistent
estimation of the Cheeger constant of the domain, it may also be of interest to find necessary
conditions. Partial work suggests that nrdn → ∞ is necessary, and may be sufficient if the
divergence to infinity is faster than a sufficiently large power of log n. The arguments in
support of this, however, are substantially different than those we use in the paper, which hinge
on Hoeffding’s inequality for U -statistics.

1.4.3. An open problem. An intriguing question is whether along some sequence of neighbor-
hood graphs, the normalized Cheeger constant converges to the Cheeger constant of the domain.
To paraphrase the question we leave open: is there a sequence {rn} such that, with probability 1,

lim
n→∞

ωd

γdrn
H(Gn,rn) = H(M)?

A positive answer would establish the consistency of the normalized cut criterion for graph
partitioning. Also, a lower bound on H(Gn,rn) would provide a lower bound on the eigengap
between the first and second eigenvalues of the Laplacian, which in turn may be used to bound

https://doi.org/10.1239/aap/1354716583 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716583


912 • SGSA E. ARIAS-CASTRO ET AL.

the mixing time of the random walk on Gn,rn , as done in [2] and [7] when M is the unit
hypercube.

1.4.4. Consistent estimation in polynomial time. Our estimation procedures, though theoreti-
cally valid and consistent, are not practical. It would be interesting to know whether there is
a consistent estimator for the Cheeger constant that can be implemented in polynomial time.
Note that computing the Cheeger constant of a graph is NP-hard (which motivates the use of
spectral methods), and even the best polynomial-time approximations we are aware of are not
precise enough to allow for consistency [1].

1.5. Content

The rest of the paper is devoted to the proofs of the three theorems. In Section 2 we establish
the convergence of the discrete volume and perimeter to their continuous counterparts of a fixed
subset of M with smooth relative boundary, using Hoeffding’s inequality for U -statistics [26].
Then, by the lower semicontinuity of the map A → h(A;M), we deduce the supremum-limit
bound of Theorem 1. In Section 3 we prove Theorems 2 and 3 by utilizing results on empirical
U -processes [18] on the one hand, and compactness properties of the L1-metric [25] on the
other hand.

1.6. Notation and background

The uniform measure onM is denoted byµ, so thatµ(A) = Vold(A∩M)/Vold(M); and the
normalized perimeter is denoted by ν(A) = Vold−1(∂A ∩M)/Vold(M). Let τM = Vold(M),
and define the discrete volume and perimeters as

µn(A) = τM

ωdn(n− 1)rdn
δ(A∩ Xn;Gn,rn), νn(A) = τM

γdn(n− 1)rd+1
n

σ (A∩ Xn;Gn,rn),

where δ and σ are given in (2), Xn is the sample, and Gn,rn is the neighborhood graph. Also,
define the discrete ratio

hn(A) = νn(A)

min(µn(A), µn(Ac))
,

and note that
hn(A) = ωd

γdrn
h(A ∩ Xn;Gn,rn),

where h is given in (1). For further reference, we define the volume πd(η) of a spherical cap at
height η by

πd(η) = Vold{x : ‖x‖ ≤ 1 and 〈u, x〉 ≥ η},
where u is any unit-norm vector of R

d . Note that the constant γd defined in (4) may be
expressed as

γd =
∫ 1

0
πd(η) dη.

The reach coincides with the condition number introduced in [34] for submanifolds without
boundary, and the property reach(∂A) ≥ r is equivalent to A and Ac being both r-convex [42],
in the sense that a ball of radius r rolls freely inside A and Ac. (We say that a ball of radius r
rolls freely in A if, for all p ∈ ∂A, there is x ∈ A such that p ∈ ∂B(x, r) and B(x, r) ⊂ A.)
It is well known that the reach bounds the radius of curvature from below [21, Theorem 4.18].
In particular, if reach(∂A) > 0 then ∂A is a smooth submanifold (possibly with boundary).

In the rest of the paper, the generic constantC may vary from line to line, except when stated
explicitly otherwise.

https://doi.org/10.1239/aap/1354716583 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716583


The normalized graph cut and Cheeger constant SGSA • 913

2. Proof of Theorem 1: consistency of the normalized cut

For a subset A of M and a real number r > 0, define the symmetric kernel

φA,r (x, y) = 1
2 {1A(x)+ 1A(y)}1{‖x − y‖ ≤ r}, (6)

so that µn(A) may be expressed as the following U -statistic:

µn(A) = τM

ωdn(n− 1)rdn

∑
i �=j

φA,rn(Xi,Xj ).

Similarly, νn(A) may be written as

νn(A) = τM

γdn(n− 1)rd+1
n

∑
i �=j

φ̄A,rn(Xi,Xj ),

with the symmetric kernel

φ̄A,r (x, y) = 1
2 {1A(x)1Ac(y)+ 1A(y)1Ac(x)}1{‖x − y‖ ≤ r}. (7)

We will need the following Hoeffding inequality for U -statistics [26], which is a special case
of [18, Theorem 4.1.8].

Theorem 4. Let φ be a measurable, bounded kernel on R
d × R

d , and let {Xk : k ∈ N} be i.i.d.
random vectors in R

d . Assume that E[φ(X1, X2)] = 0 and that b := ‖φ‖∞ < ∞, and let
σ 2 = var(φ(X1, X2)). Then, for all t > 0,

P

[
1

n(n− 1)

∑
i �=j

φ(Xi,Xj ) ≥ t

]
≤ exp

(
− nt2

5σ 2 + 3bt

)
.

To prove Theorem 1, we establish the almost-sure convergences of µn(A) to µ(A) and of
νn(A) to ν(A) for a subset A ⊂ M with smooth relative boundary. To this end, we combine
upper bounds on bias terms with exponential inequalities for U -statistics. The bias terms
involve volume bounds which we present next, and integrations over some neighborhoods of
the boundary of a regular set, namely tubular neighborhoods or simply tubes, which comes
after that.

2.1. Volume bounds

For any r > 0, define

Mr = {x ∈ M : dist(x, ∂M) > r}. (8)

The following two lemmas provide bounds on the volume of the intersection of balls with some
subsets of M .

Lemma 1. Let R be a bounded open subset of R
d with reach(∂R) = ρ > 0. Set A = R ∩M .

For any r < min{reach(∂M); ρ}, any 0 ≤ η ≤ 1, and all p in ∂A ∩Mr , we have

|Vold(B(p + ηrep, r) ∩ Ac)− πd(η)r
d | ≤ 2ωd−1r

d+1

ρ
,

where ep denotes the unit normal vector at p pointing inward toward A.
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Proof. For ease of notation, set B = B(p + ηrep, r). Let (ẽ1, . . . , ẽd ) be an orthonormal
frame at p, with ẽd = ep. Denote by x̃1, . . . , x̃d the local coordinates in this frame, such that
p has coordinates 0. Then ∂A ∩M can be expressed locally as the set of points x̃ such that
x̃d = F(x̃1, . . . , x̃d−1) for some function F , and, if we set x̃(d) = (x̃1, . . . , x̃d−1) then

Vold(B ∩ Ac) =
∫
B

1{x̃d < F(x̃(d))} dx̃

=
∫
B

[1{x̃d < F(x̃(d))}1{x̃d < 0} + 1{x̃d < F(x̃(d))}1{x̃d > 0}] dx̃.

Since

πd(η)r
d =

∫
B

1{x̃d < 0} dx̃,

it follows that

| Vold(Bn ∩ Ac)− πd(η)r
d
n |

≤
∫
B

[1{x̃d > F(x̃(d))}1{x̃d < 0} + 1{x̃d < F(x̃(d))}1{x̃d > 0}] dx̃

≤
∫
Bn

1{|x̃d | ≤ |F(x̃(d))|} dx̃

≤ 2
∫

{‖x̃(d)‖≤r}
|F(x̃(d))| dx̃(d).

Expanding F at 0, we have, for all x̃ with ‖x̃‖ ≤ r ,

F(x̃(d)) =
d−1∑
i,j=1

Gij (ξ)x̃
i x̃j

for some ξ := ξ(x̃(d)). Since the reach bounds the principal curvatures by 1/ρ [21], we have
supp∈∂A∩Mr

‖G(p)‖ ≤ 1/ρ. Then, using the change of variable u = rx̃, we deduce that

| Vold(B(p + ηrep, r) ∩ Ac)− πd(η)r
d
n | ≤ 2ωd−1 sup

p∈∂A∩M
‖G(p)‖rd+1

≤ 2ωd−1r
d+1

ρ
.

Lemma 2. There exists some constant C > 0 such that, for all r and α satisfying 0 < 2r ≤
α ≤ reach(∂M), and all x in M ,

Vold(B(x, α) ∩Mr) ≥ Cαd.

Proof. The main argument is to include a ball of radius α/4 inB(x, α)∩Mr . We can proceed
in the following way. First, because ρ := reach(∂M) > 0 for any x ∈ M , there exists y ∈ M
such that x ∈ B(y, ρ) ⊂ M . Second, since dist(y, ∂M) ≥ ρ and ρ ≥ 2r , we have y ∈ Mr and
B(y, ρ − r) ⊂ Mr . Hence,

B(x, α) ∩ B(y, ρ − r) ⊂ B(x, α) ∩Mr.

If y = x, the result is trivial. Otherwise, let z := x + (r + α/4)(y − x)/‖y − x‖ and note that
B(z, α/4) is a ball of radius α/4 included in B(x, α) ∩ B(y, ρ − r).
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2.2. Integration over tubes

We introduce the notion of tubes and some of their properties; see [24] for an extensive
treatment. Let S be a submanifold of R

d . The tubular neighborhood of radius r > 0 about S,
denoted by V(S, r), is the set of points x in R

d for which there exists s ∈ S with ‖x − s‖ < r

and such that the line joining x and s is orthogonal to S at s. When S is without a boundary,
V(S, r) coincides with the set of points x in R

d at a distance no more than r from S. If S
has a boundary then the tube coincides with the set of points at a distance no more than r ,
with the ends removed, corresponding to the points projecting onto ∂S. Assume that S is of
codimension 1, and oriented, and define ep as the (unit) normal vector of S at p ∈ S. When
r < reach(S), V(S, r) admits the following parameterization:

V(S, r) = {x = p + tep : p ∈ S, −r ≤ t ≤ r}.
Denote by IIp the second fundamental form of S at p ∈ S. The infinitesimal change of

volume function is defined on S × (−r; r) by ϑ(p, t) = det(I − tIIp); the dependence of ϑ
on S is omitted. Given an integrable function g on V(S, r), we have∫

V(S,r)
g(x) dx =

∫
S

∫ r

−r
g(p, t)ϑ(p, t) dt vσ (dp),

where vσ is the Riemannian volume measure on S.

Lemma 3. Assume that S is a submanifold of R
d of codimension 1, with ρ := reach(S) > 0.

Then, for all r < ρ,

sup
p∈S

sup
−r≤t≤r

ϑ(p, t) ≤
(

1 + r

ρ

)d−1

and

sup
p∈S

sup
−r≤t≤r

|ϑ ′(p, t)| ≤ (d − 1)(1 + r/ρ)d−1

ρ − r
,

where ϑ ′ is the derivative of ϑ with respect to t .

Proof. By [21, Theorem 4.18], the reach bounds the radius of curvature from below so
that the principal curvatures κ(1), . . . , κ(d−1) (the eigenvalues of the second fundamental form)
are everywhere bounded (in absolute value) from above by 1/ρ. Therefore, for r < ρ and
−r ≤ t ≤ r ,

0 ≤ ϑ(p, t) = det(I − tIIp) =
d−1∏
i=1

(1 − κ(i)p t) ≤
(

1 + r

ρ

)d−1

.

For the derivative of ϑ , we have

ϑ ′(p, t)
ϑ(p, t)

= −
d−1∑
i=1

κ
(i)
p

1 − κ
(i)
p t

.

Hence,

|ϑ ′(p, t)| ≤ ϑ(p, t)(d − 1)
1/ρ

1 − r/ρ
≤ (d − 1)(1 + r/ρ)d−1

ρ − r
.
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The celebrated Weyl’s tube formula [43] provides fine estimates for the volume of a tubular
region around a smooth submanifold of R

d . We only require a rough upper bound of the right
order of magnitude, which we state and prove here.

Lemma 4. For any bounded open subsetR ⊂ R
d with reach(∂R) = ρ > 0 and any 0 < r < ρ,

Vold(V(∂R, r)) ≤ 2d Vold−1(∂R)r.

In particular, Lemma 4 implies that

µ[V(∂M, r)] ≤ Cr for all r < reach(∂M), (9)

where C is a constant depending only on M .

Proof of Lemma 4. Using the uniform bound of the infinitesimal change of volume given in
Lemma 3, we have

Vold(V(∂R, r)) =
∫
∂R

∫ r

−r
ϑ(p, u) duvσ (dp)

≤ Vold−1(∂R)2r

(
1 + r

ρ

)d−1

≤ 2d Vold−1(∂R)r.

2.3. Bounds on bias terms

Recall the definition of Mr in (8).

Lemma 5. Let φA,r be defined as in (6). There exists a constant C depending only onM such
that, for any A ⊂ M and r < reach(∂M),∣∣∣∣ τMωdrd E[φA,r (X1, X2)] − µ(A)

∣∣∣∣ ≤ µ(A ∩Mc
r ).

Proof. Assume without loss of generality that τM = 1. We first note that

E[φA,r (X1, X2)] = E[1A(X1)1{‖X1 −X2‖ ≤ r}].
We partition A into A ∩Mr and A ∩Mc

r . By conditioning on X1, we have

E[1A∩Mr (X1)1{‖X1 −X2‖ ≤ r}] = ωdr
dµ(A ∩Mr) = ωdr

dµ(A)− ωdr
dµ(A ∩Mc

r ),

E[1A∩Mc
r
(X1)1{‖X1 −X2‖ ≤ r}] ≤ ωdr

dµ(A ∩Mc
r ).

This completes the proof.

Lemma 6. Let A = R ∩ M , where R is a bounded domain with smooth boundary and
reach(∂R) = ρ > 0. Let φ̄A,r be defined as in (7).

(i) There exists a constant C depending only on M such that, for any A ⊂ M and r <
min{ρ/2, reach(∂M)},∣∣∣∣ τM

γdrd+1 E[φ̄A,r (X1, X2)]−ν(A)
∣∣∣∣ ≤ C

(
Vold−1(∂R∩V(∂M, r))+Vold−1(∂R∩M) r

ρ

)
.
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(ii) There exists a constant C depending only on M such that, for any A ⊂ M and r <
min{ρ/2, reach(∂M)},

τM

γdrd+1 E[φ̄A,r (X1, X2)] − Vold−1(∂A ∩Mr)

Vold(M)
≥ −Cν(A) r

ρ
.

Proof. Assume without loss of generality that τM = 1. Let S denote ∂R ∩M . Then

E[φ̄A,r (X1, X2)] = E[1A(X1)1Ac(X2)1{‖X1 −X2‖ ≤ r}] =
∫
D

Vold(B(x, r) ∩ Ac)µ(dx),

where
D = {x ∈ A : dist(x, ∂R) ≤ r}.

Since r < ρ, the projection on ∂R is well defined on D, and any x in D can be written as
x = p + tep for p ∈ ∂R, with ep the unit normal vector of ∂R at p pointing inwards.

We partitionD intoD ∩Mr andD ∩Mc
r . Denote by Sr the projection ofD ∩Mr on S. We

have∫
D∩Mr

Vold(B(x, r) ∩ Ac) dx =
∫
Sr

∫ 0

−r
Vold(B(p + tep, r) ∩ Ac)ϑ(p, t) dtvσ (dp)

= r

∫
Sr

∫ 1

0
Vold(B(p − ηrep, r) ∩ Ac)ϑ(p, rη) dηvσ (dp).

Therefore,∣∣∣∣ 1

rd+1

∫
D∩Mr

Vold(B(x, r) ∩ Ac) dx − γdν(A)

∣∣∣∣
≤ 1

rd

∫
Sr

∫ 1

0
|Vold(B(p − ηrep, r) ∩ Ac)− πd(η)r

d |ϑ(p, rη) dηvσ (dp)

+
∣∣∣∣
∫
Sr

∫ 1

0
πd(η)ϑ(p, rη) dηvσ (dp)− γdν(A)

∣∣∣∣. (10)

Lemma 1 provides the inequality |Vold(B(p − ηrep, r) ∩ Ac)− πd(η)r
d | ≤ 2ωd−1r

d+1/ρ,
and the first inequality of Lemma 3 states that supp∈S sup−r≤t≤t ϑ(p, t) ≤ (1 + r/ρ)d−1.
Since r < ρ, supp∈S sup0≤η≤1 ϑ(p, ηr) ≤ 2d−1. Hence, the first term on the right-hand side
is bounded by

2ωd−1

(
r

ρ

) ∫
Sr

∫ 1

0
ϑ(p, rη) dηvσ (dp) ≤ 2dωd−1

(
r

ρ

)
Vold−1(Sr).

To bound the second term, a Taylor expansion leads to the relation ϑ(p, rη) = 1 +
ϑ ′(p, rξη)rη for some 0 < ξη < 1. The second inequality of Lemma 3 states that

sup
p∈S

sup
−r≤t≤r

|ϑ ′(p, t)| ≤ (d − 1)(1 + r/ρ)d−1

ρ − r

so that supp∈S sup0≤η≤1 |ϑ ′(p, rξη)| is bounded by (d − 1)2d/ρ since r < ρ. Recall that the

constant γd is expressed as γd = ∫ 1
0 πd(η) dη. Then the second term on the right-hand side
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of (10) is bounded by∣∣∣∣
∫
Sr

∫ 1

0
πd(η) dηvσ (dp)− γdν(A)

∣∣∣∣ + r

∫
Sr

∫ 1

0
ηπd(η)|ϑ ′(p, rξη)| dηvσ (dp)

≤ γd | Vold−1(Sr)− Vold−1(S)| + (d − 1)2dγd

(
r

ρ

)
Vold−1(Sr)

≤ γd Vold−1(S ∩Mc
r )+ (d − 1)2dγd

(
r

ρ

)
Vold−1(Sr),

where we have used the fact that S \ Sr ⊂ Mc
r since S ∩Mr ⊂ Sr . Collecting terms, the term

on the left-hand side of (10) is bounded by

γd Vold−1(S ∩Mc
r )+ C

r

ρ
Vold−1(Sr)

for some constant C independent of M .
For the integral over D ∩Mc

r , since D is included in the intersection of tubes of radius r
about ∂R and ∂M , i.e. D ⊂ V(∂R, r) ∩ V(∂M, r), we have∫

D∩Mc
r

Vold(B(x, r) ∩ Ac) dx

≤
∫
∂R∩V(∂M,r)

∫ 0

−r
Vold(B(p + tep, r) ∩ Ac)ϑ(p, t) dtvσ (dp)

= r

∫
∂R∩V(∂M,r)

∫ 1

0
Vold(B(p − ηrep, r) ∩ Ac)ϑ(p, rη) dηvσ (dp)

≤ 2d−1ωdr
d+1 Vold−1(∂R ∩ V(∂M, r)),

where we have used Lemma 3 again to bound |ϑ(p, rη)| by (1 + r/ρ)d−1 ≤ 2d−1 in the last
inequality.

Combining the two inequalities on the integrals over D ∩Mr and D ∩Mc
r , we obtain∣∣∣∣ 1

γdrd+1 E[φ̄A,r (X1, X2)] − ν(A)

∣∣∣∣
≤ Vold−1(S ∩Mc

r )+ C
r

ρ
Vold−1(Sr)+ 2d−1ωd Vold−1(∂R ∩ V(∂M, r))

≤ C

(
Vold−1(∂R ∩ V(∂M, r))+ Vold−1(S)

r

ρ

)
,

which proves the first bound stated in Lemma 6.
To prove (ii), using the bound on (10), we deduce that

1

γdrd+1 E[φ̄A,r (X1, X2)] ≥ 1

γdrd+1

∫
D∩Mr

Vold(B(x, r) ∩ Ac) dx

≥ Vold−1(S)−
[

Vold−1(S ∩Mc
r )+ C

γd

r

ρ
Vold−1(Sr)

]

≥ Vold−1(S ∩Mr)− C
r

ρ
Vold−1(Sr),

and, since Sr ⊂ S, the result follows.
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2.4. Exponential inequalities

Proposition 1. Fix a sequence rn → 0. Let A ⊂ M be an arbitrary open subset of M . There
exists a constant C depending only on M such that, for any ε > 0 and all large enough n, we
have

P[|µn(A)− µ(A)| ≥ ε] ≤ 2 exp

(
− nrdnε

2

C(1 + ε)

)
.

In particular, if nrdn/ log n → ∞ then µn(A) converges almost surely to µ(A) when n → ∞.

Proof. By the triangle inequality we have

|µn(A)− µ(A)| ≤ |µn(A)− E[µn(A)]| + |E[µn(A)] − µ(A)|.
For all n large enough such that rn ≤ reach(∂M), the second term on the right-hand side (the
bias term) is bounded by Crn with C depending only on M . Indeed, Lemma 5 states that the
bias is lower than µ(A ∩Mc

rn
). The tubular neighborhood of ∂M of radius rn, which contains

A ∩Mc
rn

, has a volume bounded by Crn by (9).
Assume that n is large enough such that 2Crn ≤ ε. We then apply Theorem 4, which is

Hoeffding’s inequality for U -statistics, to the first term (the deviation term) on the right-hand
side with the kernel

φ := φA,rn − E[φA,rn(X1, X2)]
and t = ωdr

dε/2. The kernel satisfies ‖φ‖∞ ≤ 1, and simple calculations yield

var(φ(X1, X2)) ≤ E[φA,rn(X1, X2)
2] ≤ µ(A)ωdr

d
n

τM
≤ ωdr

d
n

τM
.

From this we obtain the large deviation bound. The almost-sure convergence is then a simple
consequence of the Borel–Cantelli lemma.

Proposition 2. Fix a sequence rn → 0. Let A be an open subset of M with smooth relative
boundary and positive reach. There exists a constant C depending only on M such that, for
any ε > 0 and all large enough n, we have

P[|νn(A)− ν(A)| ≥ ε] ≤ 2 exp

(
− nrd+1

n ε2

C(ν(A)+ ε)

)
.

In particular, if nrd+1
n / log n → ∞ then

νn(A) → ν(A) as n → ∞ almost surely.

Proof. By the triangle inequality we have

|νn(A)− ν(A)| ≤ |νn(A)− E[νn(A)]| + |E[νn(A)] − ν(A)|.
Using the control on the bias in Lemma 6(i), the second term on the right-hand side goes to 0
as n → ∞. Then, for large enough n, we apply Hoeffding’s inequality, Theorem 4, to the first
term on the right-hand side with the kernel

φ := φ̄A,rn − E[φ̄A,rn(X1, X2)]
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and t := γdr
d+1ν(A)ε/2. The kernel satisfies ‖φ‖∞ ≤ 1; hence,

var(φ(X1, X2)) ≤ E[φ̄A,rn(X1, X2)
2] = E[φ̄A,rn(X1, X2)] ≤ 2γdν(A)rd+1

n

τM
,

where the last inequality follows from the upper bound on the bias of Lemma 6(i) for large
enough n. From this we obtain the large deviation bound, and the almost-sure convergence is
a consequence of the Borel–Cantelli lemma.

2.5. Proof of Theorem 1

The first statement of Theorem 1 is an immediate consequence of the exponential inequalities
of Propositions 1 and 2.

To prove the second statement, under the conditions of Theorem 1, for any subset A
with smooth relative boundary, with probability 1, limn hn(A) = h(A;M) while hn(A) ≥
ωdH(Gn,rn)/γdrn, so that lim supn ωdH(Gn,rn)/γdrn ≤ h(A;M). Then we obtain the upper
bound of Theorem 1 by taking the infimum over all such subsets A.

3. Proofs of Theorems 2 and 3: consistent estimation

Consistent estimation in the context of Theorem 2 is possible because the class Rn is
sufficiently rich as to include sets that approach Cheeger sets of M and its complexity is
controlled, so as to allow for a uniform convergence both in terms of the discrete volume and
discrete perimeter. We exploit this control on the complexity of Rn in building a covering for
Rn, which is done in Section 3.1, later used to obtain uniform versions of Propositions 1 and 2.
Then Theorem 2(i), which states the convergence of a penalized graph Cheeger constant towards
the Cheeger constant ofM , is proved in Section 3.7. Finally, Theorem 2(ii), which characterizes
the accumulation points of a sequence of minimizing sets, is proved in Section 3.8. The
convergence of the discrete measures associated with a sequence of minimizing sets (Theorem 3)
is proved in Section 3.9.

3.1. Covering numbers

For ρ > 0, let Rρ be the class of open subsets R ⊂ (0, 1)d with reach(∂R) ≥ ρ. Let
dH (R,R

′) be the Hausdorff distance between two sets R and R′, i.e.

dH (R,R
′) = inf{r > 0 : R ⊂ R′ ⊕ B(r) and R′ ⊂ R ⊕ B(r)}.

Denote by N (ε,Rρ, dH ) the covering number of Rρ for the Hausdorff distance, i.e. the minimal
number of balls of radius ε for the Hausdorff distance, centered at elements in Rρ , that are
needed to cover Rρ .

Lemma 7. (i) There exists a constant C depending only on d such that, for any ε > 0 and any
ρ > 0,

log N (ε,Rρ, dH ) ≤ C

(
1

ε

)d
.

(ii) If 0 < ε < ρ then, for any R and R′ in Rρ , if dH (R,R′) ≤ ε then R�R′ ⊂ V(∂R, ε) ∩
V(∂R′, ε).

Proof. Let x1, . . . , xn be a ε-covering of (0, 1)d , so
⋃n
i=1 B(xi, ε) covers (0, 1)d and n ≤

Cε−d for some constant C depending only on d. For any set R in Rρ , define

Iε(R) = {i = 1, . . . , n : B(xi, ε) ∩ R �= ∅}.
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Then, clearly, by the definition of the covering, R ⊂ ⋃
i∈Iε(R) B(xi, ε), and⋃

i∈Iε(R)
B(xi, ε) ⊂ R ⊕ B(2ε).

Therefore,

dH

( ⋃
i∈Iε(R)

B(xi, ε), R

)
≤ 2ε.

Since, whenR ranges in Rρ , the cardinality of sets of the form
⋃
i∈Iε(R) B(xi, ε) is bounded by

2n, the collection of Hausdorff balls of radius 2ε and centered at sets of the form
⋃
i∈I B(xi, ε),

where I is any subset of {1, . . . , n}, covers Rρ . By doubling the radius of the balls, we can
take centers in Rρ , which proves the first part of the lemma.

The second part follows from the fact that if reach(∂R) > ρ then ∂R ⊕ B(ρ) = V(∂R, ρ),
assuming, without loss of generality, that ∂R has no boundary.

We mention that the bound on the ε-entropy of Rρ is rather weak. Standard results by
Kolmogorov and Tikhomirov [28] suggest a bound of the form C(ρε)−(d−1)/2. Such a result
would change the exponent for rn in Theorem 2 to (3d + 1)/2.

3.2. Perimeter bounds of a regular set

The classical isoperimetric inequality provides a bound of the volume of a Borel set R in
terms of its perimeter (see, e.g. [20]):

dω
1/d
d Vold(R)

1−1/d ≤ Vold−1(∂R). (11)

But, in the case where ∂R has positive reach, the perimeter may in turn be bounded by the
volume, as stated in Lemma 8 below. The proof uses the following inequality: for all Borel
sets R and S,

Vold−1(∂(R ∪ S))+ Vold−1(∂(R ∩ S)) ≤ Vold−1(∂R)+ Vold−1(∂S). (12)

Lemma 8. Let R be a bounded open subset of R
d with reach(∂R) = ρ > 0. Then,

Vold−1(∂R) ≤ d Vold(R)

ρ
.

Proof. Since reach(∂R) = ρ > 0, a ball of radius ρ rolls freely in R. Consequently, R can
be written as a countable union of balls of radius ρ, i.e.

R =
∞⋃
i=1

B(xi, ρ).

Set Rn = ⋃n
i=1 Bi , where Bi = B(xi, ρ).

Using the decomposition Rn+1 = Rn ∪ Bn+1, on the one hand, we have

Vold(Rn+1) = Vold(Rn ∪ Bn+1) = Vold(Rn)+ ωdρ
d − Vold(Rn ∩ Bn+1),

and, on the other hand, using inequality (12), we have

Vold−1(∂Rn+1) = Vold−1(∂(Rn∪Bn+1)) ≤ Vold−1(∂Rn)+dωdρd−1−Vold−1(∂(Rn∩Bn+1)).
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Consequently,

Vold−1(∂Rn+1)− d

ρ
Vold(Rn+1) ≤ Vold−1(∂Rn)− d

ρ
Vold(Rn)

+
[
d

ρ
Vold(Rn ∩ Bn+1)− Vold−1(∂(Rn ∩ Bn+1))

]
.

But, using the isoperimetric inequality (11), we may write

d

ρ
Vold(Rn ∩ Bn+1)− Vold−1(∂(Rn ∩ Bn+1))

≤ d

ρ
Vold(Rn ∩ Bn+1)− dω

1/d
d (Vold(Rn ∩ Bn+1))

1−1/d

≤ (Vold(Rn ∩ Bn+1))
1−1/d

[
d

ρ
Vold(Rn ∩ Bn+1)

1/d − dω
1/d
d

]
≤ 0

since, in the last bracket, Vold(Rn ∩ Bn+1) ≤ Vold(Bn+1) = ωdρ
d . Therefore, for all n ≥ 1,

we have

Vold−1(∂Rn+1)− d

ρ
Vold(Rn+1) ≤ Vold−1(∂Rn)− d

ρ
Vold(Rn).

But, since R1 is a ball of radius ρ, we have Vold−1(∂R1)− d Vold(R1)/ρ = 0 and so

Vold−1(∂Rn)− d

ρ
Vold(Rn) ≤ 0 for all n ≥ 1.

Since Rn converges to R in L1, it follows from the lower semicontinuity of the perimeter,
see, e.g. [25, Proposition 2.3.6], that lim infn Vold−1(∂Rn) ≥ Vold−1(∂R). This concludes the
proof.

3.3. Exponential inequalities

We prove the uniform versions of Propositions 1 and 2 for the class Rρ .

Proposition 3. There exists a constant C depending only onM such that, for any ε, r > 0 and
all n satisfying nrdρdεd+2 > C and ε > Cr , we have

P
[

sup
R∈Rρ

|µn(R)− µ(R)| ≥ ε
]

≤ 2 exp

(
− nrdε2

C(1 + ε)

)
.

Proof. The bias term is dealt with exactly as in Proposition 1, yielding

|E[µn(R)] − µ(R)| ≤ C0r,

valid for all R ∈ Rρ ; so, assuming that ε > 2C0r , we may focus on bounding the variance
term

µn(R)− E[µn(R)].
Define the kernel class

F = {φR,r : R ∈ Rρ}, (13)

where φR,r is defined in (6). Let Un(φ) be the U -process over F defined by

Un(φ) = 1

n(n− 1)

∑
i �=j

φ(Xi,Xj ).
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Observe that

sup
R∈Rρ

|µn(R)− E[µn(R)]| = τM

ωdrd
sup
φ∈F

|Un(φ)− µ⊗2(φ)|.

Consider a minimal covering of Rρ of cardinal K by balls centered at elements R1, . . . , RK
of Rρ , and of radius η < ρ for the Hausdorff distance. By Lemma 7,

log(K) ≤ C1

(
1

η

)d
.

For any R in Rρ , there exists 1 ≤ k ≤ K such that dH (R,Rk) ≤ η, which implies that
R�Rk ⊂ V(∂Rk, η). Also, by Lemma 4, there exists a constant C2 depending only on the
dimension d such that Vold(V(∂Rk, η)) ≤ C2η/ρ for all 1 ≤ k ≤ K , which implies that

µ(V(∂Rk, η)) ≤ C3η

ρ
for all 1 ≤ k ≤ K,

since η < ρ, and where C3 now depends on M .
We have

|φR,r (x, y)− φRk,r (x, y)| = 1
2 |1R(x)+ 1R(y)− 1Rk (x)− 1Rk (y)|1{‖x − y‖ ≤ r}

≤ 1
2 (1R�Rk (x)+ 1R�Rk (y))1{‖x − y‖ ≤ r}.

Next, consider the inequality

|Un(φR,r )− µ⊗2(φR,r )| ≤ |Un(φR,r )− Un(φRk,r )| + |Un(φRk,r )− µ⊗2(φRk,r )|
+ |µ⊗2(φRk,r )− µ⊗2(φR,r )|.

For the double expectations, we have,

|µ⊗2(φRk,r )− µ⊗2(φR,r )| ≤ µ⊗2|φRk,r − φR,r |
= E[1R�Rk (X1)1{‖X1 −X2‖ ≤ r}]
=

∫
R�Rk

µ(B(x, r))µ(dx)

≤
∫

V(∂Rk,η)
µ(B(x, r))µ(dx)

≤ ωdr
d

τM
µ(V(∂Rk, η))

≤ C4r
dη

ρ
,

with C4 still depending only on M . The last inequality is a consequence of Lemmas 4 and 8,
and the fact that Vold(Rk) ≤ 1 since Rk ⊂ (0, 1)d .

For the empirical averages, we have

|Un(φR,r )− Un(φRk,r )|
≤ 1

2

1

n(n− 1)

∑
i �=j
(1R�Rk (Xi)+ 1R�Rk (Xj ))1{‖Xi −Xj‖ ≤ r}

≤ 1

2

1

n(n− 1)

∑
i �=j
(1V(∂Rk,η)(Xi)+ 1V(∂Rk,η)(Xj ))1{‖Xi −Xj‖ ≤ r}

= Un(φV(∂Rk,η)).
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Therefore,

sup
R∈Rρ

|Un(φR,r )− µ⊗2(φR,r )|

≤ max
1≤k≤K Un(φV(∂Rk,η))+ C4

rdη

ρ
+ max

1≤k≤K |Un(φRk,r )− µ⊗2(φRk,r )|.
Consequently, for any ε > 0, we may write

P
[

sup
R∈Rρ

|µn(R)− E[µn(R)]| ≥ ε
]

= P

[
sup
φ∈F

|Un(φ)− µ⊗2(φ)| ≥ ωdr
dε

τM

]

≤ P

[
max

1≤k≤K Un(φV(∂Rk,η)) ≥ ωdr
dε

2τM
− C4

rdη

ρ

]

+ P

[
max

1≤k≤K |Un(φRk,r )− µ⊗2(φRk,r )| ≥ ωdr
dε

2τM

]

≤ K max
1≤k≤K P

[
Un(φV(∂Rk,η)) ≥ ωdr

dε

2τM
− C4

rdη

ρ

]

+K max
1≤k≤K P

[
|Un(φRk,r )− µ⊗2(φRk,r )| ≥ ωdr

dε

2τM

]
,

by the union bound. To bound the first term, note first that

var(φV(∂Rk,η)(X1, X2)) ≤ E[φV(∂Rk,η)(X1, X2)
2] ≤ E[φV(∂Rk,η)(X1, X2)],

with

E[φV(∂Rk,η)(X1, X2)] ≤ ωdr
d

τM
µ(V(∂Rk, η)) ≤ C4

rdη

ρ
,

for the same reasons as above. Now takeη=ρmin(ωdε/(8C4τM), 1). Then, for any 1 ≤k ≤K ,
by Hoeffding’s inequality for U -statistics (Theorem 4), we have

P

[
Un(φV(∂Rk,η)) ≥ ωdr

dε

2τM
− C4

rdη

ρ

]
≤ P

[
Un(φV(∂Rk,η))− E[Un(φV(∂Rk,η))] ≥ ωdr

dε

4τM

]

≤ exp

(
− n(ωdr

dε/4τM)2

5(C4rdη/ρ)+ 3(ωdrdε/4τM)

)

≤ exp

(
−nr

dε

C5

)
for a constant C5 > 0 depending only on M . To bound the second term, since

var(φRk,r (X1, X2)) ≤ E[φRk,r (X1, X2)] ≤ ωdr
d

τM
,

we may apply Lemma 4 again to obtain the bound

P

[
|Un(φRk,r )− µ⊗2(φRk,r )| ≥ ωdr

dε

2τM

]
≤ exp

(
− n(ωdr

dε/2τM)2

5ωdrd + 3(ωdrdε/2τM)

)

≤ exp

(
− nrdε2

C6(1 + ε)

)
for a constant C6 > 0 depending only on M .
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With the choice of η as above, the cardinalK of the covering is such that log(K) ≤ C7(ερ)
−d

for some constant C7 depending only on M , and we obtain the bound

P
[

sup
R∈Rρ

|µn(R)− E[µn(R)]| ≥ ε
]

≤ K exp

(
−nr

dε

C5

)
+K exp

(
− nrdε2

C6(1 + ε)

)

≤ 2 exp

(
C7(ερ)

−d − nrdε2

C8(1 + ε)

)

≤ 2 exp

(
− nrdε2

C9(1 + ε)

)

if nrdεd+2ρd > C9 for a constant C9 depending only on M .

For the perimeter, we only control the variance, as the bias may not be controlled uniformly
over Rρ . Indeed, consider the case whereM is a hypercube with rounded corners so as to satisfy
the condition on its reach, and let R be another hypercube with rounded corners included inM
sharing one of its faces with M . Then, given a sample X1, . . . , Xn, it is possible to translate
R inside M just enough that the translate does not share a boundary with M , while its discrete
volume and perimeter are left equal to those of R.

Proposition 4. There exists a constantC depending only onM such that, for any ε > 0, ρ < 1,
r < min(reach(M), ρ/2), and all n satisfying nr2d+1ρd+1εd+2 > C, we have

P
[

sup
R∈Rρ

|νn(R)− E[νn(R)]| ≥ ε
]

≤ 2 exp

(
− nrd+1ρε2

C(1 + ρε)

)
.

Proof. The proof follows that of Proposition 3, with the symmetric kernel φ̄R,r defined in (7)
and the class F̄ defined in (13) with φR,r replaced by φ̄R,r . Observe that

|νn(R)− E[νn(R)]| = τM

γdrd+1 sup
φ∈F̄

|Un(φ)− µ⊗2(φ)|.

As in the proof of Proposition 3, we start with a minimal covering of Rρ of cardinalK by balls
of radius η for the Hausdorff distance. For any R in Rρ at a Hausdorff distance no more than
η of an element Rk of the covering, we have

|1R(x)1Rc(y)− 1Rk (x)1Rc
k
(y)| ≤ |1R(x)− 1Rk (x)|1Rc(y)+ 1Rk (x)|1Rc(y)− 1Rc

k
(y)|

= 1R�Rk (x)1Rc(y)+ 1R�Rk (y)1Rk (x)

≤ 1R�Rk (x)+ 1R�Rk (y).

Hence,
|φ̄R,r (x, y)− φ̄Rk,r (x, y)| ≤ 2φR�Rk,r (x, y) ≤ 2φV(∂Rk,η)(x, y),

and, therefore, following the same arguments,

|µ⊗2(φ̄R,r )− µ⊗2(φ̄Rk,r )| ≤ 2µ⊗2(φV(∂Rk,η)) ≤ C1r
dη

ρ

for a constant C1 depending only on M; also,

|Un(φ̄R,r )− Un(φ̄Rk,r )| ≤ 2Un(φV(∂Rk,η)).
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Hence,

P
[

sup
R∈Rρ

|νn(R)− E[νn(R)]| ≥ ε
]

≤ K max
1≥k≥K P

[
Un(φV(∂Rk,η)) ≥ γdr

d+1ε

4τM
− C1

rdη

2ρ

]

+K max
1≥k≥K P

[
|Un(φ̄Rk,r )− µ⊗2(φ̄Rk,r )| ≥ γdr

d+1ε

2τM

]
.

Take η = ρmin(γdrε/(4C1τM), 1). For the first term, for any 1 ≤ k ≤ K , we have

P

[
Un(φV(∂Rk,η)) ≥ γdr

d+1ε

4τM
− C1

rdη

2ρ

]

≤ P

[
Un(φV(∂Rk,η))− E[Un(φV(∂Rk,η))] ≥ γdr

d+1ε

8τM

]

≤ exp

(
− n(γdr

d+1ε/8τM)2

5(C1rdη/ρ)+ 3(γdrd+1ε/8τM)

)

= exp

(
− nrd+1ε2

C2(1 + ε)

)

for some constant C2 > 0 depending only on M . For the second term, since, by Lemma 6,
when r ≤ ρ/2,

var(φ̄Rk,r ) ≤ C3r
d+1

ρ

for a constant C3 depending only on M , we have

P

[
|Un(φ̄Rk,r )− µ⊗2(φ̄Rk,r )| ≥ γdr

d+1ε

2τM

]

≤ exp

(
−n (γdr

d+1ε/2τM)2

5(C3rd+1/ρ)+ 3(γdrd+1ε/2τM)

)

≤ exp

(
− nrd+1ρε2

C4(1 + ρε)

)

for a constantC4 > 0 depending only onM . Finally, with the choice of η as above, the cardinal
K of the covering is such that log(K) ≤ C5(rρε)

−d for C5 depending only on M .
Then

K max
1≥k≥K P

[
Un(φV(∂Rk,η)) ≥ γdr

d+1ε

4τM
− C1

rdη

ρ

]
≤ exp

(
− nrd+1ε2

C6(1 + ε)

)

if nr2d+1ρdεd+2 > C6 and

K max
1≥k≥K P

[
|Un(φ̄Rk,r )− µ⊗2(φ̄Rk,r )| ≥ γdr

d+1ε

2τM

]
≤ exp

(
− nrd+1ρε2

C7(1 + ρε)

)

if nr2d+1ρd+1εd+2 > C7, where C6 and C7 depend on M only. Combining these inequalities
completes the proof.
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3.4. A uniform control on hn(A)

As argued earlier, the boundary ofM makes a uniform convergence of the perimeters of sets
in Rn impossible. Our way around that is to compare the discrete perimeter of a set R with its
perimeter inside Mrn , thus avoiding the boundary of M , i.e. Vold−1(∂R ∩Mrn), leading to a
comparison between hn(R) and h(R;Mrn). We relate the latter to h(R;M) in Section 3.5.

Lemma 9. Under the conditions of Theorem 2, with probability 1, we have

lim inf
n→∞ inf

R∈Rn

(hn(R)− h(R;Mrn)) ≥ 0. (14)

Proof. Take R ∈ Rn, and define

λn(R) = min(µn(R), µn(R
c)), λ∗

n(R) = 1

τM
min(Vold(R ∩Mrn),Vold(R

c ∩Mrn)),

as well as

ν∗
n(R) = 1

τM
Vold−1(∂R ∩Mrn).

Then

hn(R)− h(R;Mrn) = 1

λn(R)
(νn(R)− ν∗

n(R))+ ν∗
n(R)

λn(R)λ∗
n(R)

(λ∗
n(R)− λn(R))

=: ζn(R)+ ξn(R).

Define the event

�n =
{

1

2
≤ λn(R)

λ∗
n(R)

≤ 3

2
for all R ∈ Rn

}
.

We will see that P[�n] → 1.
Bounding ζn(R). By the definition of Rn, the setsR andRc each contain a ball of radius ρn,

and, by Lemma 2, the volume of the intersection of this ball with Mrn is bounded from below
by C1ρ

d
n for a constant C1 depending only on M . Hence,

λ∗
n(R) ≥ C1ρ

d
n . (15)

Also, on �n, λn(R) ≥ λ∗
n(R)/2. With these last two inequalities being valid for all R ∈ Rn,

for ε > 0, we have

I1 := P
[[

inf
R∈Rn

ζn(R) < −ε
]

∩�n
]

≤ P
[

inf
R∈Rn

(νn(R)− ν∗
n(R)) < −C2ερ

d
n

]
≤ P

[
inf
R∈Rn

(νn(R)− E[νn(R)])+ inf
R∈Rn

(E[νn(R)] − ν∗
n(R)) < −C2ερ

d
n

]

for a constant C2 = C1/2 > 0. Using the bias bounds of Lemma 6 together with the perimeter
bound in Lemma 8(ii), we have

inf
R∈Rn

(E[νn(R)] − ν∗
n(R)) ≥ −C3

rn

ρ2
n

.
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Hence, since rn = o(ραn ) for any α > 0, for fixed ε and large enough n, we have, by assumption,
for all large enough n,

I1 ≤ P

[
inf
R∈Rn

(νn(R)− E[νn(R)]) < −C2ερ
d
n

2

]

≤ P

[
sup

R∈Rρn

|νn(R)− E[νn(R)]| > C2ερ
d
n

2

]
,

where the second inequality comes from the fact that Rn ⊂ Rρn . By the fact that nr2d+1
n ραn →

∞ for any α > 0, the conditions of Proposition 4 are satisfied, so

I1 ≤ C4 exp

(
−nr

d+1
n ρ2d+1

n ε2

C4(1 + ε)

)

for some constant C4 > 0 and all large enough n. Finally, we have

nrd+1
n ρ2d+1

n

log(n)
= nr2d+1

n

ρ2d+1
n r−dn
log(n)

→ +∞,

since rn = o(ραn ) for any α > 0 and rn → 0 polynomially in n; thus, we deduce that, for all
ε > 0, ∑

n

P
[[

inf
R∈Rn

ζn(R) < −ε
]

∩�n
]
< ∞.

Bounding ξn(R). (We reset the constants, except for C1.) By the perimeter bound of
Lemma 8, we have

ν∗
n(R) ≤ Vold−1(∂R)

τM
≤ d

Vold(R)

τMρn
= C2

ρn

for a constant C2 > 0 depending only on M . So, together with (15) and the fact that, on �n,
λn(R) ≥ λ∗

n(R)/2,
ν∗
n(R)

λn(R)λ∗
n(R)

≤ C3ρ
−2d−1
n

for all R in Rn. It follows that

I2 := P
[[

inf
R∈Rn

ξn(R) < −ε
]

∩�n
]

≤ P

[
sup
R∈Rn

|λn(R)− λ∗
n(R)| >

ρ2d+1
n ε

C3

]
. (16)

Define

µ∗
n(R) = Vold(R ∩Mrn)

τM
.

Then
|λn(R)− λ∗

n(R)| ≤ |µn(R)− µ∗
n(R)| + |µn(Rc)− µ∗

n(R
c)|

≤ |µn(R)− µ(R)| + |µn(Rc)− µ(Rc)| + 2µ(Mc
rn
),

with µ(Mc
rn
) ≤ C4rn by (9). For fixed ε > 0 and large enough n, 2C4rn ≤ ρ2d+1

n ε/C3, again
by the fact that ρn → 0 subpolynomially in rn. We therefore obtain

I2 ≤ 2 P

[
sup

R∈Rρn

|µn(R)− µ(R)| > ρ2d+1
n ε

4C3

]
,
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where we have used the fact that Rc ∈ Rn when R ∈ Rn, together with Rn ⊂ Rρn . We then
apply Proposition 3, whose conditions are satisfied for fixed ε > 0 and large enough n, again
because ρn → 0 very slowly, arriving at

I2 ≤ C4 exp

(
−nr

d
nρ

4d+2
n ε2

C4(1 + ε)

)

for some constant C4 > 0 and all large enough n. As before, when ε is fixed, the exponent is a
positive power of n, so

∑
n

P
[[

inf
R∈Rn

ξn(R) < −ε
]

∩�n
]
< ∞.

Bounding P[�c
n]. Since λ∗

n(R) > Cρdn for some C uniformly over R ∈ Rn (see (15)), we
have

P(�c
n) = P

[
sup
R∈Rn

|λn(R)− λ∗
n(R)|

λ∗
n(R)

>
1

2

]
≤ P

[
sup
R∈Rn

|λn(R)− λ∗
n(R)| > Cρdn

]
.

We then proceed as in bounding (16), obtaining∑
n

P(�c
n) < ∞.

Conclusion. We have

P
[

inf
R∈Rn

(hn(R)− h(R;Mrn)) < −2ε
]

≤ P
[[

inf
R∈Rn

ζn(R) < −ε
]

∩�n
]

+ P
[[

inf
R∈Rn

ξn(R) < −ε
]

∩�n
]

+ P[�c
n],

so that the left-hand side is summable. Therefore, we complete the proof by applying the
Borel–Cantelli lemma.

3.5. Some continuity of the Cheeger constant

Our proof of Theorem 2 relies on the continuity properties of the normalized cut and of
the Cheeger constant. Lemma 10 below compares the conductance function on M and on
a bi-Lipschitz deformation of M . For a Lipschitz map f , let ‖f ‖Lip denote its Lipschitz
constant. If f is bi-Lipschitz, we define its condition number by cond(f ) := ‖f ‖Lip ‖f−1‖Lip.
Lemma 11 below states that Mr is a bi-Lipschitz deformation of M; hence, Lemma 10 yields
the continuity property of Proposition 5.

Lemma 10. Let f be a bi-Lipschitz and C1 map onM . Then, for any C1 open subset A ofM ,

max

{
h(f (A); f (M))

h(A;M) ,
h(A;M)

h(f (A); f (M))
}

≤ cond(f )d .

Proof. For any C1 open subset A of M , f (A) is also C1 since f is bi-Lipschitz and C1.
Moreover, ∂f (A) = f (∂A) and f (A)c ∩ f (M) = f (Ac ∩M), and so, for k = 1, . . . , d,

‖f−1‖−k
Lip Volk(A) ≤ Volk(f (A)) ≤ ‖f ‖kLip Volk(A).
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Therefore,

h(f (A); f (M)) = Vold−1(f (∂A ∩M))
min{Vold(f (A)),Vold(f (Ac ∩M))}

≤ ‖f ‖d−1
Lip Vold−1(∂A ∩M)

‖f−1‖−d
Lip min{Vold(A),Vold(Ac ∩M)}

≤ cond(f )d h(A;M),
and vice versa.

Lemma 11. Fix r < s < ρM , where ρM = reach(∂M). Then there is a bi-Lipschitz C1 map
between Mr and M that leaves Ms unchanged, and with condition number at most(

1 + 2r

s − r
+ s

ρM − s

)(
1 + 2r

s + r
+ s

ρM − s

)
.

Proof. Let δ denote the distance function to ∂M on M . For x in M such that δ(x) < s, let
ξ(x) ∈ M be its metric projection onto ∂M and let ux be the unit normal vector of M at ξ(x)
pointing outwards. Let g : [r, s] → [0, s] be a nonnegative, increasing, real-valued function of
class C1 such that

g(r) = 0, g(s) = s, g′(s) = 1, ‖g′‖∞ > 1, g′(u) ≥ 1 for all u ∈ [r, s].
Let f : Mr → M be the map defined for all x in Mr by

f (x) =
{
ξ(x)− g(δ(x))ux if δ(x) < s,

x if x ∈ M̄s.

By construction, f is of class C1 on Mr , bijective, and with inverse f−1 : M → Mr of class
C1 defined for all y in M by

f−1(y) =
{
ξ(y)− g−1(δ(y))uy if δ(x) < s,

y if y ∈ M̄s.

By [21, Theorem 4.8(1)], x → δ(x) is Lipschitz with constant at most 1 on M and is C1 on
M \ M̄ρM by [21, Theorem 4.8(5)]. By [21, Theorem 4.8(8)], x → ξ(x) is Lipschitz with
constant at most ρM/ρM − s onM \Ms , on which it is also C1 since ∂M is C2 by assumption.
Since the reach bounds the radius of curvature from below [21, Theorem 4.18], for any x and
y in M \Ms , we have

‖ux − uy‖ ≤ 1

ρM
‖ξ(x)− ξ(y)‖

(see also [42, Theorem 1]), and the map x → ux is C1 on M \Ms for ∂M is C2. From these
facts, it follows that f is of class C1 on Mr . We now bound the Lipschitz constants of f
and f−1.

First, for any x and y in Ms , ‖f (x) − f (y)‖ = ‖x − y‖. Second, for any x ∈ Ms and
y ∈ Mr \Ms , we have

‖f (y)− f (x)‖ = ‖f (y)− x‖ ≤ ‖x − y‖ + ‖y − f (y)‖ ≤ ‖x − y‖ + δ(y)− g(δ(y)),
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where we have used the fact that, under the assumptions on g, g(u) ≤ u for any u in [r, s].
Expanding g at s, we have g(δ(y)) = s + g′(ũ)[δ(y)− s] for some ũ ∈ [r, s]. Thus,

‖f (y)− f (x)‖ ≤ ‖x − y‖ + (‖g′‖∞ − 1)(s − δ(y))

≤ ‖x − y‖ + (‖g′‖∞ − 1)(δ(x)− δ(y))

≤ ‖x − y‖ + (‖g′‖∞ − 1)‖x − y‖
= ‖g′‖∞‖x − y‖.

Third, for any x and y in Mr \Ms , we have

‖f (x)− f (y)‖ = ‖ξ(x)− g(δ(x))ux − ξ(y)+ g(δ(y))uy‖
= ‖x + [δ(x)− g(δ(x))]ux − y − [δ(y)− g(δ(y))]uy‖
≤ ‖x − y‖ + |δ(x)− g(δ(x))− δ(y)+ g(δ(y))| + s‖ux − uy‖.

Expanding g at δ(x), we may write g(δ(y)) = g(δ(x))+ g′(ũ)[δ(y)− δ(x)] for some ũ in the
segment connecting δ(x) to δ(y), which is included in the segment [r, s]. Thus,

‖f (x)− f (y)‖ ≤ ‖x − y‖ + (‖g′‖∞ − 1)|δ(y)− δ(x)| + s

ρM − s
‖x − y‖

≤
[

1 + (‖g′‖∞ − 1)+ s

ρM − s

]
‖x − y‖

=
[
‖g′‖∞ + s

ρM − s

]
‖x − y‖.

Consequently, we have shown that f is Lipschitz with Lipschitz constant bounded as

‖f ‖Lip ≤ ‖g′‖∞ + s

ρM − s
.

Similarly, for any x and y in Ms , ‖f−1(x) − f−1(y)‖ = ‖x − y‖. For any x ∈ Ms and
y ∈ M \Ms ,

‖f−1(y)− f−1(x)‖ = ‖f−1(y)− x‖ ≤ ‖x − y‖ + g−1(δ(y))− δ(y),

where we have used the fact that, under the assumptions on g, g−1(u) ≥ u for any u ∈ [0, s].
Expanding g−1 at s, we have

g−1(δ(y)) = s + 1

g′(g−1(ũ))
[δ(y)− s]

for some ũ in [r, s]. Thus,

‖f−1(y)− f−1(x)‖ ≤ ‖x − y‖ +
[

1 − 1

‖g′‖∞

]
(s − δ(y))

≤ ‖x − y‖ +
[

1 − 1

‖g′‖∞

]
(δ(x)− δ(y))

≤
[

2 − 1

‖g′‖∞

]
‖x − y‖.
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Next, for any x and y in M \Ms ,

‖f−1(x)− f−1(y)‖ = ‖ξ(x)− g−1(δ(x))ux − ξ(y)+ g−1(δ(y))uy‖
= ‖x + [δ(x)− g−1(δ(x))]ux − y − [δ(y)− g−1(δ(y))]uy‖
≤ ‖x − y‖ + |δ(x)− g−1(δ(x))− δ(y)+ g−1(δ(y))| + s‖ux − uy‖.

Expanding g−1 at δ(x), we have

g−1(δ(y)) = g−1(δ(x))+ 1

g′(g−1(ũ))
[δ(y)− δ(x)]

for some ũ in the segment connecting g−1(δ(x)) to g−1(δ(y)), which is included in [0, s].
Thus,

‖f−1(x)− f−1(y)‖ ≤ ‖x − y‖ +
(

1 − 1

‖g′‖∞

)
|δ(y)− δ(x)| + s

ρM − s
‖x − y‖

≤
[

2 − 1

‖g′‖∞
+ s

ρM − s

]
‖x − y‖.

Consequently, we have shown that f−1 is Lipschitz with Lipschitz constant bounded as

‖f−1‖Lip ≤ 2 − 1

‖g′‖∞
+ s

ρM − s
.

Now, consider the function g : [r, s] → [0, s] defined by

g(u) = − r

(s − r)2
(u− r)2 + s + r

s − r
(u− r).

Then

g(r) = 0, g(s) = s, g′(s) = 1, g′′ < 0, 1 ≤ g′(u) ≤ g′(r) = s + r

s − r
,

so that we may apply the above bounds to deduce that

‖f ‖Lip ≤ 1 + 2r

s − r
+ s

ρM − s
and ‖f−1‖Lip ≤ 1 + 2r

s + r
+ s

ρM − s
.

Proposition 5. We have

H(Mr) = (1 + o(1))H(M) as r → 0.

Proof. Consider the bi-Lipschitz C1 transformation f defined in Lemma 11, with s as a
function s(r) such that s(r) → 0 and s(r)/r → ∞ as r → 0. Then, under these conditions,
the bound of Lemma 11 implies that cond(f ) = 1 + o(1). Then, using Lemma 10, we deduce
that

max

{
H(Mr)

H(M)
,
H(M)

H(Mr)

}
= 1 + o(1) as r → 0,

which immediately yields the desired result.
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3.6. L1-metric on Borel sets

We will use the L1-metric on Borel subsets of R
d , defined by Vold(A�B) = ∫ |1A(x) −

1B(x)| dx. This metric comes from the bijection between Borel sets A and their indicator
functions 1A, endowed with the L1-topology. Strictly speaking, this is a semimetric on Borel
subsets of R

d since Vold(A�B) = 0 if and only if A�B is a null set.
The following propositions are adapted from Theorem 2.3.10 and Proposition 2.3.6 of [25],

respectively, and are also proved in Theorems 1.19 and 1.9 of [23]. Proposition 6 is a
compactness criterion, and Proposition 7 results from the lower semicontinuity of the perimeter
measure with respect to theL1-metric. We recall that, for an open subsetAofM ,PM(A)denotes
its de Giorgi perimeter.

Proposition 6. Let (En) be a sequence of measurable subsets of M . Suppose that

lim sup
n→∞

PM(En) < ∞.

Then (En) admits a subsequence converging for the L1-metric.

Proposition 7. Let En and E be bounded measurable subsets of M such that En → E in L1.
Then

lim
n→∞ Vold(En) = Vold(E) and lim inf

n→∞ PM(En) ≥ PD(E).

Consequently,
lim inf
n→∞ h(En;M) ≥ h(E;M).

3.7. Proof of Theorem 2(i)

Lower bound. For each n, let Rn ∈ Rn be such that

h‡
n(Rn) = min

R∈Rn

h‡
n(R).

Then
h‡
n(Rn)−H(M) = [h‡

n(Rn)− h(Rn;Mrn)] + [h(Rn;Mrn)−H(Mrn)]
+ [H(Mrn)−H(M)]

≥ inf
R∈Rn

(hn(R)− h(R;Mrn))+ [H(Mrn)−H(M)],

since [h(Rn;Mrn)−H(Mrn)] ≥ 0 by the definition ofH(Mrn). On the last line, by Lemma 9,
the first term has a nonnegative inferior limit, and, by Proposition 5, the second term tends to 0.
Hence,

lim inf
n→∞ min

R∈Rn

h‡
n(R) ≥ H(M) almost surely. (17)

Upper bound. To obtain the matching upper bound, fix a subsetA ⊂ M with smooth relative
boundary and such that 0 < Vold(A) ≤ Vold(M \ A) < Vold(M). Then, for large enough n,
there exists Rn in Rn such that Rn ∩M = A, implying that

min
R∈Rn

h‡
n(R) ≤ hn(A).

By Theorem 1, hn(A) → h(A;M) almost surely, so

lim sup
n→∞

min
R∈Rn

h‡
n(R) ≤ h(A;M) almost surely.
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By minimizing over A, we obtain

lim sup
n→∞

min
R∈Rn

h‡
n(R) ≤ H(M) almost surely. (18)

Combining the lower and upper bounds, (17) and (18), we conclude that

lim
n→∞ min

R∈Rn

h‡
n(R) = H(M) almost surely. (19)

3.8. Proof of Theorem 2(ii)

Let Rn be a sequence in Rn satisfying

h‡
n(Rn) = min

R∈Rn

h‡
n(R),

and set An = Rn ∩ M . Fix a subset A0 ⊂ M with smooth relative boundary and such that
h(A0) < ∞. Then, for large enough n, there exists R in Rn such that A0 = R ∩M . Hence,
hn(An) ≤ hn(A

0), and, since hn(A0) → h(A0) by Theorem 1, we have

lim sup
n→∞

Vold−1(∂An) ≤ lim sup
n→∞

h(An)min{Vold(An),Vold(A
c
n ∩M)} ≤ 1

2h(A
0)Vold(M).

Therefore, by compactness of the class of sets with bounded perimeters (Proposition 6), with
probability 1, {An} admits a subsequence converging in the L1-metric.

On the one hand,

h(An;Mrn)−H(M) = [h(An;Mrn)−H(Mrn)] + [H(Mrn)−H(M)],
where the first difference term on the right-hand side is nonnegative by definition, while the
second difference term tends to 0 by Proposition 5. So, with probability 1,

lim inf
n→∞ h(An;Mrn) ≥ H(M).

On the other hand,

h(An;Mrn)−H(M) = [h(An;Mrn)− h‡
n(An)] + [h‡

n(An)−H(M)]
≤ − inf

R∈Rn

(h‡
n(R)− h(R;Mrn))+ [h‡

n(An)−H(M)],

so

lim sup
n→∞

h(An;Mrn)−H(M) ≤ −lim inf
n→∞ inf

R∈Rn

(h‡
n(R)− h(R;Mrn))+ [h‡

n(An)−H(M)],

which goes to 0 as n → ∞ from (14) and (19). Hence,

lim
n→∞h(An;Mrn) → H(M) almost surely.

Now let fn denote the bi-Lipschitz function mapping Mrn to M defined in Lemma 11 with
r and s replaced by rn and sn, and where the sequences (rn) and (sn) are such that rn → 0,
sn → 0, and sn/rn → ∞ as n → ∞. Define Bn = fn(An ∩Mrn). By Lemmas 10 and 11, we
have

h(Bn;M) ≤
(

1 + 2r

s − r
+ s

ρM − s

)d(
1 + 2r

s + r
+ s

ρM − s

)d
,
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so h(Bn;M) → H(M) almost surely as n → ∞. Moreover, by Proposition 6, with
probability 1, there exists a subset B∞ of M and a subsequence {Bnk } such that Bnk converges
to B∞ in the L1-metric. Since h(·;M) is lower semicontinuous by Proposition 7, with
probability 1,

lim inf
n→∞ h(Bn;M) ≥ h(B∞;M).

Since we also have lim infn→∞ h(Bn;M) = H(M) almost surely, it follows that h(B∞;M) =
H(M) almost surely and so B∞ is a Cheeger set of M .

Moreover, since fn leaves Msn unchanged,

Vold(An�Bn) ≤ Vold(M \Msn) → 0 as n → ∞.

Hence, with probability 1, 1An − 1Bn → 0 in L1. Consequently, the sequences {An} and {Bn}
have the same accumulation points, and so any convergent subsequence of {An} converges to
a Cheeger set of M .

3.9. Proof of Theorem 3

Let An = Rn ∩ M , and assume without loss of generality that An → A∞ in L1. For all
n ≥ 1, and all f in the class of bounded and continuous functions on M , say Cb(M), we have∣∣∣∣Qnf −

∫
M

f (x)1Rn(x)µ(dx)

∣∣∣∣ ≤ sup
R∈Rn

|Pn(f 1R)− µ(f 1R)|,

where Pn is the empirical measure of the sampleX1, . . . , Xn. Using the bound on the covering
numbers in Lemma 7, it is a classical exercise to prove that the collection of functions x →
f (x)1R(x), where R ranges over Rn, is a Glivenko–Cantelli class, whence∣∣∣∣Qnf −

∫
M

f (x)1Rn(x)µ(dx)

∣∣∣∣ → 0 almost surely as n → ∞.

Next,∣∣∣∣
∫
M

f (x)1Rn(x)µ(dx)−Qf

∣∣∣∣ =
∣∣∣∣
∫
M

f (x)1An(x)µ(dx)−Qf

∣∣∣∣ ≤ ‖f ‖∞µ(An�A∞),

which tends to 0 by the definition of A∞. Thus, we have shown that, for all f in Cb(M),
P[Qnf → Qf ] = 1. Using the separability of Cb(M) [19, p. 131], we deduce that

P[for all f ∈ Cb(M), Qnf → Qf ] = 1,

so that the event ‘Qn converge weakly to Q’ is of probability 1.
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