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SUMMARY

Vaccines are the cornerstone of influenza control policy, but can suffer from several drawbacks.
Seasonal influenza vaccines are prone to production problems and low efficacies, while pandemic
vaccines are unlikely to be available in time to slow a rapidly spreading global outbreak.
Antiviral therapy was found to be beneficial during the influenza A(H1N1)pdm09 pandemic even
with limited use; however, antiviral use has decreased further since then. We sought to determine
the role antiviral therapy can play in pandemic and seasonal influenza control using conservative
estimates of antiviral efficacy, and to assess if conservative but targeted strategies could be
employed to optimize the use of antivirals. Using an age-structured contact network model for
an urban population, we compared the transmission-blocking ability of a conservative antiviral
therapy strategy to the susceptibility-reducing effects of a robust influenza vaccine. Our results
show that while antiviral therapy cannot replace a robust influenza vaccine, it can play a role in
reducing attack rates and eliminating outbreaks, and could significantly reduce public health
burden when vaccine is either unavailable or ineffective. We also found that antiviral therapy, by
treating those who are infected, is naturally a highly optimized strategy, and need not be
improved upon with expensive targeted campaigns.
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INTRODUCTION

Influenza causes yearly epidemics, and has been re-
sponsible for four pandemics during the last 100
years [1, 2]. Infection leads to high levels of severe
complications and death in both young children and
the elderly [2, 3]. Vaccines are widely accepted as the
best tool to combat influenza [2]; however, current
vaccines exhibit several shortcomings. A new vaccine
must be developed each year, and circulating strains

must be predicted months before an epidemic occurs.
In the case of a pandemic, an effective vaccine is un-
likely to be available until several months after the
pandemic begins [4]. Influenza vaccines are generally
believed to be 70–90% effective; however, a recent
meta-analysis by Osterholm et al. revealed that
influenza vaccine efficacy found in ten randomized
controlled trials was only 59% on average, and fur-
thermore, found little or no evidence of vaccine
efficacy in those aged <18 or >64 years [5, 6]. While
this finding by no means shatters our vaccine-led
influenza control efforts, it reminds us of the need to
continue to develop better influenza vaccines and
therapeutics, as well as more efficient strategies to dis-
tribute these interventions.
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Antiviral drugs, such as the neuraminidase in-
hibitors oseltamivir and zanamivir, may be attractive
alternatives to current vaccines. Unlike influenza
vaccines, antiviral drugs are not strain-specific [7],
and they take effect almost immediately [8]. Fur-
thermore, while vaccines must be provided before an
outbreak occurs to those thought to be at risk of infec-
tion, antivirals are used to treat those who have
already been infected, ensuring that those individuals
most in need of protection are targeted. When used
to treat infected individuals within 48 h of symptom
onset, antivirals reduce the probability that an
infected individual will transmit influenza to his/her
contacts [9–12]. In this study, we aimed for a system-
atic understanding of the population-level impact of
antiviral usage, and sought to answer the following
questions. (1) For seasonal influenza, can antivirals re-
place vaccination, especially in the case of poor vac-
cine match or a shortage in vaccine supply? (2) In
the case of a pandemic, when faced with no vaccine
for several months, what impact will the use of antivir-
als have? (3) Are there targeted uses of antivirals that
optimize their impact? Without a greater understand-
ing of the potential transmission-reducing effects of
antiviral drugs, we cannot confidently declare vacci-
nation to be the most effective influenza control strat-
egy available.

Previous modelling studies assessing the population-
level impact of antivirals have helped establish the
potential of antiviral treatment as an influenza control
strategy, but most of these studies have revealed
greatly varying results. Carrat et al. and Ferguson
et al. found that treating 63% or 45% of clinically ill
individuals with antivirals leads to only a 7% or 15%
reduction in pandemic size, respectively [13, 14], while
a study by Pepin et al. found that 40% coverage of
infected individuals can reduce seasonal epidemic
transmission by 30% [15]. A study by Longini et al.
also considered the impact of prophylactic treatment
of close contacts of infected individuals, and found
that prophylaxis of 80% of all exposed individuals is
nearly as effective as vaccinating 80% of the popu-
lation [16]. While this study showed antiviral treat-
ment to be an effective control measure, it relied on
specific contact prophylaxis based on unrealistically
intensive contact tracing. Finally, a recent study by
Black et al. used mathematical modelling to better
understand why antivirals were ineffective at contain-
ing the A(H1N1)pdm09 pandemic, and found that
early treatment and prophylaxis of individuals in
infected households is crucial if influenza transmission

and pandemic doubling time is to be significantly
reduced [17]. This study is closest in nature to our
own, aiming for a quantitative assessment of the use
of antivirals in a simple epidemiological model with
social structure. Our study differs from the work of
Black et al. because we aimed not to explain the
lack of population-level impact of antivirals during
the A(H1N1)pdm09 pandemic, but rather to consider
the scenarios under which antiviral use would be vi-
able in future pandemics as well as seasonal epi-
demics. Using a network model where individual
hosts are ‘nodes’, and interactions (i.e. contacts)
that may allow influenza transmission are ‘edges’
(details in Methods below and Fig. 1), we simulated
susceptible-infected-recovered (SIR) epidemics to as-
sess the impact of antiviral treatment strategies on
influenza control. We also developed a parallel inter-
vention model of trivalent inactivated vaccine (TIV)
use, to consider the impact of antivirals as judged
against the well-understood and widely accepted case
of vaccination.

METHODS

Population model

We used a semi-empirical contact network model
which captures the interactions that underlie res-
piratory disease transmission within an urban popu-
lation. The model was based on demographic data
from Vancouver, British Columbia, Canada [18–20].
Individuals in the network were assigned an age and
age-appropriate activities (school, work, hospital,
etc.). Interactions between individuals reflect house-
hold size, employment, school, and hospital data.
The model population includes 10 304 individuals in
the following age groups: toddlers (<3 years), pre-
school children (3–4 years), school-age children
(5–18 years), adults (19–64 years), and elderly indivi-
duals (565 years), who may live in the community
or in a nursing home. Overall, the average degree
(number of contacts) in our network is 16·11.
Additional network characteristics are described in
section S1 of the online Supplementary material.

Epidemic and pandemic models

We defined the transmissibility of a disease, T, as
the average probability that an infectious indi-
vidual would transmit the disease to a susceptible
contact. This per contact probability of transmission

1622 S. C. Kramer and S. Bansal

https://doi.org/10.1017/S0950268814002520 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268814002520


summarized the susceptibility, σ (e.g. immune re-
sponse) and the infectivity, ι (e.g. viral shedding) of
individuals. The transmissibility of a given interaction
was then defined as the product of the infectivity of
the infected individual and the susceptibility of the
susceptible individuals (T= ισ). When no intervention
was implemented, ι= T and σ= 1 for all individuals.
The transmissibility value was also linearly related
to the key epidemiological parameter, R0, which
denotes the average number of individuals to
which each infected individual spreads the infection
early in the epidemic. This value takes into account
both transmissibility and network structure, as de-
scribed in section S1 (Supplementary material).
Transmissibility values were chosen such that seasonal

influenza infected 20% of the population [1] and pan-
demic influenza infected 40% [21] when no control
strategies were implemented; to enable comparison
to actual influenza epidemics and pandemics, the
resulting transmissibility values were converted to
corresponding R0 values, based on the population
structure of the urban network. The seasonal trans-
missibility in our model was 0·0643 (R0 = 1·14) while
the pandemic transmissibility was 0·0767 (R0 = 1·36).
For comparison, basic reproduction numbers have
been estimated to be about 1·2–1·4 for seasonal epi-
demics [1], and to be about 2–3 during the 1918 pan-
demic [22] and 1·3–1·7 during the A(H1N1)pdm09
pandemic [23].

Epidemics and pandemics were modelled using a
SIR simulation model. Beginning with an entirely sus-
ceptible population, infection was seeded at one ran-
dom individual. Each infected individual infected
their own susceptible contacts with probability, T;
and infectious periods were assumed to be constant
across the population. We simulated 5000 such out-
breaks, and an outbreak was classified as a large-scale
epidemic if over 5% of the population was infected
(Supplementary Fig. S1). Attack rate was defined as
the proportion of the total population infected, aver-
aged over all large-scale epidemics; epidemic likeli-
hood was defined as the frequency of large-scale
epidemics in all outbreaks.

Vaccination

We modelled the effects of a seasonal vaccine and
two pandemic vaccines, one with low coverage and
high efficacy, as seen during the A(H1N1)pdm09 pan-
demic [24, 25], and one with high coverage and low
efficacy (see Table 1). Vaccination was implemented
as a reduction in susceptibility for each vaccinated

Table 1. Efficacy and coverage values for each influenza
control scenario used (values for efficacy and realistic
vaccine coverage are weighted averages of values for all
age groups)

Control scenario Efficacy

Coverage

Random Realistic

Seasonal vaccine 64·5% 20% 24·7%
2009 vaccine 79·5% 30% 29·1%
High coverage vaccine 64·5% 40% 45·4%
Relaxed antiviral treatment 20% Varies 30%
Rapid antiviral treatment 40% Varies 30%
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Fig. 1. Urban contact network schematic and connectivity
profile. (a) Simple example of a contact network model,
where circles (i.e. nodes) represent individuals and lines
connecting them (i.e. edges) represent contacts over which
influenza can spread. Black nodes are recovered, gray are
infected, white are susceptible. Infected nodes infect
susceptible contacts with probability T= ισ, where T is
transmissibility, ι is infectivity, σ is susceptibility. (b) The
frequency distribution of number of contacts per
individual, or degree in the urban contact network model.
The network contains 10 304 individuals with an average
degree of 16·11.
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individual according to age-specific efficacies of TIV
(see Supplementary Table S2 and details below), as
influenza vaccines generally have no impact on
influenza symptoms or shedding [26]. Vaccination
was employed before an outbreak began, and indivi-
duals were assumed to be protected by the time
influenza spread began. Once an outbreak had started,
no further individuals were vaccinated.

Vaccine efficacy

Most vaccine studies measure vaccine efficacy by com-
paring attack rates in vaccinated populations to those
in unvaccinated populations, and are useful for under-
standing the population-level effects of vaccine. We
reviewed population-level estimates for age-specific
seasonal vaccine efficacy across multiple clinical
trials, meta-analyses, and reviews (references in Sup-
plementary section S5). We report the summarized
results of our review in Supplementary Table S3,
and the vaccine efficacies used for this study in
Supplementary Table S2.

In our study, we incorporated vaccine efficacy at the
individual-level. We defined σ as an age-specific
individual-level susceptibility. We then defined Sv,
the desired attack rate in individuals who have
been vaccinated in the age group in question, as
Sv = Sn(1−E), where Sn is the expected attack rate
in the age group when no control strategies are imple-
mented and E is the population-level vaccine efficacy
for the age group. We inferred σ* for each age
group by fitting Sv, the true attack rate in individuals
who had been vaccinated in the age group by having a
reduced level of susceptibility, σ, to Sv using a two-
type analytical percolation model [27].

For Figure 3, vaccine efficacy was gradually
reduced by a factor, r, as,

1− 1− r( ) 1− σ( ) = σ + r 1− σ( ) = σnew.

We note that a reduction in individual-level efficacy
corresponded to an increase in σ.

Random vaccination

For the seasonal scenario (Fig. 2a), vaccine was distrib-
uted to 20% of the population, based on CDC data
from several epidemics occurring prior to 2009 [28]. A
coverage level of 30% was employed for the 2009 pan-
demic vaccination scenario, based on CDC coverage
data for the monovalent A(H1N1)pdm09 vaccine [25],
and the high coverage pandemic vaccination scenario
was implemented at 40% coverage, to model increased

awareness and panic which may lead to higher coverage
levels in a pandemic more severe than the relatively
mild A(H1N1)pdm09 pandemic. Here, all vaccines
were distributed randomly, irrespective of age.

Realistic vaccination

Realistic, age-specific vaccination coverage levels
for both the seasonal and low coverage pandemic
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Fig. 2. Attack rates when antivirals were allocated ran-
domly during (a) seasonal epidemics and (b) pandemics.
Horizontal lines show attack rates in populations using no
control strategies (‘naive’; –––) and vaccination (- - -; in
(b) both model pandemic vaccines are shown). Both
relaxed (dark grey) and rapid (light grey) scenarios are
displayed. Percent of infected individuals treated is shown
along the x axis, and percent of total population treated is
shown within the bars. Results are only shown for those
simulations in which at least 5% of the population was
infected. Error bars are not shown, as standard errors for
attack rates were all below 0·008. TIV, Trivalent
inactivated vaccine.
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vaccines were derived from CDC data (Supplemen-
tary Table S1, weighted averages in Table 1, refer-
ences in Supplementary section S5). For the high
coverage pandemic vaccine, we simply doubled the
seasonal coverage levels for each age group. Nursing
home residents were the exception, as they were
already vaccinated at 90% coverage during the real-
istic seasonal scenario.

Antivirals

We modelled the effects of antiviral treatment by re-
ducing the infectivity of a specified proportion of
infected individuals over the course of an outbreak.
Because individuals did not receive treatment until
after infection, antiviral treatment had no impact on
susceptibility. Individuals were selected for treatment
as they became infected, and infectivity was reduced
prior to the next round of infections, such that the
infected individual infected its contacts with reduced
probability.

Treatment timing, efficacy and coverage

Antiviral drugs reduce influenza transmissibility if
used within 48 h of symptom onset, and become
more effective if treatment is started earlier. We mod-
elled two antiviral treatment scenarios: one in which
all treated individuals were treated within 48 h
(relaxed scenario), and one in which all treated indivi-
duals were treated within 24 h (rapid scenario). We
anticipate a realistic scenario to be a combination of
these scenarios. Timing of treatment was modelled
by altering the efficacy of antiviral drugs on individual
infectivity, based on the results of household trans-
mission studies [9–12]. Thus, antiviral effectiveness
was 20% for the relaxed scenario and 40% for the
rapid scenario (Table 1). Antiviral efficacy values are
reported directly in [10]. Values were calculated from
the remaining studies as E = 1− (SART/SARU),
where E is antiviral efficacy, and SART and SARU

are the reported secondary attack rates among
contacts of treated and untreated individuals, respect-
ively. If a study reported secondary attack rates separ-
ately for contacts of individuals treated within 24 h
and within 48 h of symptom onset, efficacy values
for both treatment scenarios were calculated. We re-
port the results of our review in Supplementary
Table S4. Finally, averages weighted by the number
of treated index cases in each study were calculated
and rounded down to obtain conservative estimates.
The desired coverage was achieved by treating infected
individuals randomly.

Targeted strategies

We modelled three targeted antiviral strategies. We
modelled a strategy preferentially treating children
(ages 5–18 years) by treating a certain proportion of
infected children until the desired coverage level was
achieved. If all infected children were treated and
coverage among infected individuals remained below
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Fig. 3. Attack rates for (a) seasonal epidemic and (b)
pandemic influenza when vaccines of varying efficacy were
employed at realistic, age-based coverage levels. Hori-
zontal lines show mean attack rates for naive populations
(–––) and populations using antiviral treatment at realistic
30% coverage (- - -; both scenarios shown). Sloped lines
show mean attack rates for populations using vaccine;
both pandemic vaccines are shown in (b). Vaccine
efficacies are displayed on the x axis, percent reduction in
individual-level vaccine efficacy for all age groups is given
beside each data point. Results are only shown for
simulations in which at least 5% of the population was
infected. Standard errors were consistently below 0·003.
TIV, Trivalent inactivated vaccine.
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the desired level, antiviral drugs were distributed ran-
domly among the remaining age groups to achieve the
designated coverage level. We implemented antiviral
prophylaxis by treating a given proportion of infected
individuals randomly, and additionally selecting ran-
domly a single susceptible contact of each treated indi-
vidual and reducing this contact’s susceptibility. We
continued to randomly choose contacts of each trea-
ted individual until a susceptible contact was iden-
tified. If a treated individual had no remaining
susceptible contacts, no prophylaxis was given. We
assumed that antiviral prophylaxis reduced suscepti-
bility by 70% [10, 12]. Finally, we implemented early
antiviral treatment at the population level by treating
all infected individuals until 1% or 2% of the entire
population had received treatment. We compared
this strategy to a baseline scenario in which infected
individuals were treated at a realistic coverage level
of 30% until the desired percentage of the entire popu-
lation was treated.

RESULTS

Random vaccination and antiviral treatment

To assess the potential of antiviral treatment in reducing
epidemic and pandemic attack rates, we first compared
the impact of random allocation of either vaccination or
antiviral treatment on influenza attack rates in a fully
susceptible population (see Supplementary Table S5
and Supplementary Fig. S2 for results when realistic
levels of natural immunity are included). Vaccination
was implemented at the coverage levels specified
(Table 1), and antiviral treatment was implemented at
a range of coverage levels (Fig. 2). Antiviral coverage
is reported as a proportion of the infected population
size (e.g. 20%, 40%, etc.) unless otherwise specified.

When the relaxed antiviral treatment strategy was
employed against seasonal influenza, 80% coverage
of infected individuals was required to reduce epi-
demic attack rates by the same amount as random
vaccination. When the rapid strategy was used, 40%
coverage was required, and no large-scale epidemics
emerged when coverage was 60% (Fig. 2a). In the
case of a pandemic, the relaxed strategy did not
reach the population-level effectiveness of either pan-
demic vaccine at any coverage level tested, and the
rapid strategy was more effective than both vaccines
only at 80% coverage (Fig. 2b).

Figure 2 also displays the percent of the total popu-
lation treated in each scenario. As coverage of infected

individuals increased, these values first increased, then
decreased as fewer individuals became infected,
suggesting that coverage among infected individuals,
and not among the population as a whole, is
important for population-level antiviral effectiveness.
Furthermore, the rapid strategy consistently out-
performed the relaxed strategy, even though fewer
members of the overall population were treated, indi-
cating the importance of initiating treatment soon
after symptom onset.

The limits of vaccination

We next considered the impact of vaccine efficacy on
influenza control to determine the minimum overall
vaccine efficacy beyond which antiviral use is more ef-
fective at reducing attack rate. Here, we assumed 30%
antiviral coverage (similar to coverage observed
during the A(H1N1)pdm09 pandemic [12, 15, 29])
and realistic age-based vaccine coverage levels
(Supplementary Table S1). We chose realistic vaccine
coverage levels to better illustrate the actual
population-level impact of vaccines, rather than their
impact were they to be distributed ideally. In
Figure 3, we found that vaccines began to reduce sea-
sonal epidemic attack rates by more than random, re-
alistic antiviral treatment at vaccine efficacies between
about 25% and 50%, depending on the timing of anti-
viral treatment. During a pandemic, vaccines began to
outperform antivirals at efficacies between about 10%
and 35%, depending on treatment timing.

Targeted antiviral control

To maximize use of antivirals, we compared several
targeted strategies for antiviral use during influenza
pandemics (see Supplementary Fig. S3 for seasonal
results). Preferentially treating children aged 5–18
years resulted in a slight reduction in attack rate
when infected individuals were treated within 48 h of
symptom onset (Fig. 4a). When treatment occurred
within 24 h of symptom onset, this reduction was lar-
ger. Notably, this significant reduction was achieved
despite the fact that coverage levels in the entire popu-
lation were lower than when antivirals were allocated
randomly (compare to Fig. 2b). In addition, it is key
that the effect of preferentially treating children did
not always increase with coverage level, as all infected
children were reached by 40% antiviral coverage.

When one susceptible contact of each treated
infected individual was provided with prophylactic
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treatment, attack rate was significantly decreased in
both antiviral treatment scenarios. However, while
the impact of prophylaxis increased with coverage in
the relaxed case, once 40% of infected individuals
were treated in the rapid case, the population-level im-
pact of prophylaxis began to decrease. This was due to
the greater efficacy of treatment in the rapid case,
which prevented onward transmission regardless of
prophylactic treatment. It is worth noting that the su-
perior impact of this strategy on attack rates required
higher antiviral treatment levels in the population as a
whole (compare to Fig. 2b).

Last, we considered the impact of early treatment at
1% and 2% coverage of the total population, with the
aim of halting the momentum of the outbreak and
preventing it from becoming a large-scale epidemic.
Results were compared to epidemic likelihood when
the same overall number of individuals was treated
over the course of the epidemic. We note that these
coverage levels are far lower than those achieved in
the previous sections. The likelihood of reaching a
large-scale pandemic outbreak was diminished greatly
in both the relaxed and rapid cases using early treat-
ment, and epidemics were particularly rare in the
rapid case.

DISCUSSION

Influenza antivirals are licensed for use in many coun-
tries, but are not widely employed during seasonal epi-
demics in most countries (with notable exceptions
such as Japan, where antiviral coverage rates of up
to 60–80% are reached [30]). Antivirals were also not
widely prescribed during the A(H1N1)pdm09 pan-
demic. In this study, our goal was to assess the poten-
tial impact of antivirals in the case of seasonal and
pandemic influenza using conservative estimates of
antiviral efficacy, and to determine if more targeted
(yet still conservative) strategies could be employed
to optimize the use of antivirals. Specifically, we
chose to compare the susceptibility-reducing effects

(a)
40

7.1%

5.7% 12.0%

14.8%

4.4%

15.6%

5.5%

Relaxed (48 h)
Rapid (24 h)

Target children

Relaxed (48 h)
Rapid (24 h)

Ring prophylaxis

35

30

At
ta

ck
 ra

te
 (%

)

10

15

20

25

5

20% 40%
Antiviral coverage (among infected)

60% 80%

(b)
40

12.5%

11.0%

19.1%

12.1%
20.4%

17.9%

8.8%

35

30

At
ta

ck
 ra

te
 (%

)

10

15

20

25

5

20% 40%
Antiviral coverage (among infected)

60% 80%

Relaxed (48 h)
Rapid (24 h)

Early treatment(c)
35

30

Ep
id

em
ic

 li
ke

lih
oo

d 
(%

)

10

15

20

25

5

1% 2%

% total population treated

Fig. 4. Impact of targeted antiviral treatment strategies.
(a, b) Attack rate (y axis) when (a) school-age children
were preferentially treated or (b) ring prophylaxis was used
compared to random antiviral treatment (horizontal lines
above bars) at various levels of antiviral coverage among
infected individuals. Percent of entire population treated is
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reached (horizontal lines above bars). Results shown only
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of the population was infected are not shown. Standard
errors were below 0·002 for panels (a–c).
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of vaccines to the transmission-blocking ability of
antiviral therapy. We used a semi-empirical contact
network model for an urban population to study the
population-level effectiveness of antiviral treatment.
Network-based models allow us to consider the
individual-level and contact-level impact of reductions
in susceptibility and infectivity due to interventions,
and the age structure of the population model allows
for age-specific variation in efficacy, coverage, and
control strategies. We note that our results represent
a best-case scenario for current influenza vaccine
efficacy. For seasonal influenza, vaccine efficacy varies
considerably from year to year; indeed, the 2012
meta-analysis by Osterholm et al. found that the
TIV was only significantly efficacious during eight of
the 12 influenza seasons analysed [5]. In addition, vac-
cine shortages occurred in over half of influenza sea-
sons between 1999 and 2009 [6]. Our results show
that antiviral treatment could significantly reduce
public health burden when vaccine is either unavail-
able or ineffective.

As an appropriate vaccine is unlikely to be avail-
able during the first wave of future influenza pan-
demics, intensive treatment of infected individuals
with antiviral drugs could be crucial in mitigating
the impact of a pandemic while a vaccine is in devel-
opment. These results also held for higher pandemic
transmissibility values, similar to those observed dur-
ing the 1918 pandemic (Supplementary Fig. S4).
Seasonal vaccines may be available, but, as influenza
pandemics are generally caused by novel strains,
such vaccines may not be efficacious enough
(10–35% efficacy) against a pandemic strain to outper-
form realistic antiviral treatment strategies. Indeed,
estimates of 2008 and 2009 seasonal vaccine efficacy
against the A(H1N1)pdm09 pandemic strain vary
greatly [31–33]. In order to minimize the emergence
of resistance in such a scenario, Moghadas et al.
recommended initially treating a relatively low pro-
portion of infected individuals, then greatly increasing
coverage before the pandemic is able to spread too
widely [34]. However, it is important to emphasize
that antiviral drugs are unlikely to greatly reduce pan-
demic attack rates in the long term; therefore, it is still
essential that an effective vaccine be developed as
quickly as possible. We also emphasize that our results
are based on conservative estimates (from household
studies) of antiviral efficacy to reduce infectivity.
Our sensitivity analyses (Supplementary Fig. S5)
demonstrated that if reduction in infectivity is higher
or if future work leads to improved antivirals, the

impact of antiviral therapy could greatly increase.
Furthermore, we found that antiviral treatment out-
performed vaccination at lower coverage levels when
network contact heterogeneity was low (Supplemen-
tary Fig. S6).

When it comes to influenza vaccination, various
studies have found that prioritizing certain age groups
(e.g. school-age children) [18, 35, 36] or occupation
groups (e.g. healthcare workers) [18, 37] is signifi-
cantly preferred over random distribution. Our study
found that this is not true of antiviral distribution.
Targeting school-age children and contacts of infected
individuals certainly reduced attack rates (when pre-
ferentially treating children, this effect was signifi-
cantly greater with increasing antiviral efficacy, as
demonstrated in Supplementary Fig. S7), and, when
children were preferentially treated, these lowered at-
tack rates were achieved with fewer courses of anti-
viral drugs. However, the additional cost of
launching a targeted antiviral campaign may out-
weigh the benefits. Antiviral treatment, in itself, is a
highly optimized strategy; by treating those who are
already infected, it naturally captures those who are
highly connected and most likely to spread infection.
Thus, it is likely that random allocation of antivirals
will remain the preferred strategy during most
influenza outbreaks. The timing of antiviral treatment,
on the other hand, both at the individual-level (early
during an individual’s infection period) and at the
population-level (early during an outbreak), does
have an impact worth aiming for. Efforts should be
made to treat infected individuals as soon as possible,
as this increases the efficacy of the drug at the individ-
ual level and prevents onward transmission, and to
treat infected individuals as soon as an outbreak
emerges, as this can greatly reduce the likelihood of
the outbreak becoming a large-scale epidemic. These
findings are in agreement with the recent results of
Black et al. [17].

While influenza antiviral therapy is significantly ef-
fective in reducing infection burden even with random
distribution, it does require active healthcare-seeking
behaviour on the part of infected individuals. A recent
study by CDC found that of those with influenza-like
illness during the autumn wave of the A(H1N1)pdm09
pandemic, 40% of adults and 56% of children reported
seeking healthcare for their symptoms [38]. Of the
adults who sought care, 26% were diagnosed with
influenza, and a further 36% were then treated with
antiviral drugs [38]. Other studies have found similar
but varied estimates (13–40%) for the proportion of
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infected individuals who were prescribed antiviral
drugs during the A(H1N1)pdm09 pandemic [12, 29].
The success of antiviral strategies thus hinges on in-
creasing healthcare-seeking rates for influenza by
making care accessible at locations other than hospi-
tals and physicians’ offices, as is possible with
influenza vaccination. Our sensitivity analyses
(Supplementary Fig. S5) show that an increase in
coverage levels can have a large impact on attack
rates, and can compensate for low antiviral efficacy
or delayed treatment initiation.

Our study does have some limitations. First, it is
important to emphasize that the impact of antiviral
drugs on infectivity has not been well-studied, and
the parameters used here are estimates obtained
from household studies. Our sensitivity analyses
(Supplementary Fig. S5) considered a wide range of
antiviral efficacy values, and show that variation in
antiviral efficacy can lead to marked changes in
influenza attack rates. Additionally, we did not ex-
plicitly consider the impact of antiviral therapy on
severe illness or mortality. Current guidance from
CDC and WHO emphasizes the importance of admin-
istering antiviral therapy to patients who are hospita-
lized with severe or progressive illness caused by
suspected influenza and in high-risk outpatients. It is
essential that antivirals continue to be used as
currently recommended to treat these individuals,
even when a vaccine is available. In fact, some
preliminary analyses (Supplementary Fig. S8) indi-
cated that targeting those individuals at highest risk
for complications and death due to influenza (e.g.
the elderly and children aged <5 years) could be a
prudent strategy as it would result in comparable
attack rates for both seasonal and pandemic influenza
to those of random antiviral allocation, but would be
expected to be more effective at reducing complica-
tions and death. Furthermore, we did not consider
the risk of antiviral resistance, primarily because our
results indicated that widespread use of antiviral
drugs is not the best way to reduce influenza attack
rates. Although resistance to oseltamivir and zanami-
vir has been limited historically, even in Japan, where
coverage rates are typically high [39], the 2007–2008
season brought us a strain of oseltamivir-resistant
seasonal H1N1 virus that circulated globally [2]. We
plan, in future work, to consider the impact of various
antiviral distribution strategies on the emergence and
spread of resistance. Last, our seasonal influenza
scenario did not incorporate pre-existing immunity,

which is likely to be present in seasonal out-
breaks. However, as our sensitivity analyses show
(Supplementary Fig. S2), the inclusion of appropriate
levels of pre-existing natural immunity did not quali-
tatively alter our findings.

Despite the significant potential of antiviral drugs
in the absence of an effective influenza vaccine, our
results indicated that even vaccines of suboptimal
efficacy are expected to outperform realistic antiviral
strategies in both seasonal and pandemic scenarios.
While exceptions to this conclusion may be made
for countries such as Japan, where antivirals are
regularly employed and coverage levels are particu-
larly high, it is clear from previous research that
achieving such high coverage rates in the United
States and other countries unaccustomed to wide-
spread antiviral use will be difficult. Additionally,
even if high levels of coverage were to be achieved,
such high coverage levels would increase the chance
of widespread emergence of antiviral resistance, ren-
dering the drugs ineffective in reducing disease trans-
mission or severity. Indeed, Chao et al. demonstrated
that an antiviral coverage level of only 30% would
allow a resistant strain of influenza to spread world-
wide, assuming this strain was equally transmissible
to the wild-type strain [40]. Thus, we conclude that
antivirals are not an appropriate substitute for
influenza vaccines.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268814002520.
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