ON SOME SPECIAL FACTORIZATIONS OF $\left(1-x^{n}\right) /(1-x)$

L. Carlitz and L. Moser
(received May 1, 1966)

Let $A: a_{1}<a_{2}<\ldots<a_{k}$ be a set of non-negative integers We call the corresponding polynomial $A(x)=x^{a_{1}}+x^{a_{2}}+\ldots+x^{a_{k}}$ the characteristic polynomial, or briefly, the c-polynomial of A. Any polynomial of such a form we call a c-polynomial and any factorization of a c-polynomial into others of the kind we call a c-factorization. If a c-polynomial cannot be factored in this way we call it c-irreducible. In this note we will determine all c-factorizations of the polynomial $1+x+x^{2}+\ldots+x^{n-1}$, and will find under what circumstances the c-irreducible factors are also irreducible in the usual sense, i.e., irreducible over the field of rationals.

The motivation for these problems stems from the following considerations: If we have three sets of integers A, B, C, with corresponding c-polynomials $A(x), B(x)$ and $C(x)$, then $A(x)=B(x) C(x)$ if and only if each element of A is uniquely expressible, apart from order, as a sum of one element from B and one from C. In characterizing the c-factorizations of $1+x+x^{2}+\ldots+x^{n-1}$ we are therefore, in effect, characterizing all sets of sets $A_{1}, A_{2}, \ldots, A_{r}$, such that each of the numbers $0,1,2, \ldots, n-1$ has a unique representation in the form $a_{1}+a_{2}+\ldots a_{r}$ with $a_{i} \in A_{i}, i=1,2, \ldots, r$. For the set $0,1,2, \ldots, n-1$ replaced by the set of all non-negative integers this last problem was solved by De Bruijn [1]. De Bruijn's argument operates directly with the integers, i.e., does not consider c-polynomials, and though quite elementary is still a little subtle.

Canad. Math. Bull. vol. 9, no. 4, 1966

1. Let $F_{n}(x)=\prod_{r \cdot s=n}\left(x^{r}-1\right)^{\mu(s)}$,
where $\mu(\mathrm{n})$ is the Möbius function, denote the cyclotomic polynomial. We shall prove the following

THEOREM 1. Put $n=p_{1} p_{2} \cdots p_{r}$, where the p_{j} are primes (not necessarily distinct): Then we have the factorization (1) $\frac{x^{n}-1}{x-1}=F_{p_{1}}(x) F_{p_{2}}\left(x^{p_{1}}\right) F_{p_{3}}\left(x^{p_{1} p_{2}}\right) \ldots F_{p_{r}}\left(x_{1}^{\left.p_{1} p_{2} \cdots p_{r-1}\right)}\right.$ where on the right each factor is c-irreducible. Moreover, all factorizations of $1+x+\ldots+x^{n-1}$ into c-irreducible factors are obtained in this way.

For example we have the factorizations

$$
\begin{aligned}
\frac{x^{6}-1}{x-1} & =\left(x^{2}+x+1\right)\left(x^{3}+1\right)=(x+1)\left(x^{4}+x^{2}+1\right) \\
\frac{x^{12}-1}{x-1} & =(x+1)\left(x^{2}+1\right)\left(x^{8}+x^{4}+1\right) \\
& =(x+1)\left(x^{4}+x^{2}+1\right)\left(x^{6}+1\right) \\
& =\left(x^{2}+x+1\right)\left(x^{3}+1\right)\left(x^{6}+1\right)
\end{aligned}
$$

Generally it is clear from the theorem that if

$$
\mathrm{n}=\mathrm{p}_{1}{ }^{\mathrm{e}_{1}} \mathrm{p}_{2}^{\mathrm{e}_{2}} \ldots \mathrm{p}_{\mathrm{r}}^{\mathrm{e}_{\mathrm{r}}}
$$

where now the p_{j} are distinct primes, then the number of factorizations of the form (1) is equal to

$$
\frac{\left(e_{1}+e_{2}+\ldots+e_{r}\right)!}{e_{1}!e_{2}!\ldots e_{r}!}
$$

The theorem is an easy consequence of the following lemmas.

LEMMA 1. Let

(2)

$$
\frac{x^{n}-1}{x-1}=A(x) B(x)
$$

where $A(x)$ and $B(x)$ are c-polynomials. Then either $A(x)$ or $B(x)$ is of the form $\left(x^{r}-1\right) /(x-1)$ where r is a divisor of n.

Proof. If the lemma is false we may assume that

$$
A(x)=1+x+\ldots+x^{j-1}+x^{k+1}+\ldots \quad(k \geq j)
$$

so that

$$
B(x)=1+x^{j}+x^{j+1}+\ldots+x^{k}+\ldots
$$

Then the coefficient of x^{k+1} in $A(x) B(x)$ is at least 2 . This evidently contradicts (2).

LEMMA 2. Let

$$
\begin{equation*}
\frac{x^{n r}-1}{x^{r}-1}=A(x) B(x) \tag{3}
\end{equation*}
$$

where $A(x)$ and $B(x)$ are c-polynomials. Then the exponents of all powers of x occuring in $A(x)$ and $B(x)$ are multiples of r.

Proof. If the lemma is false we may suppose that $A(x)$ contains a term x^{k} where k is not a multiple of r. Then the product $A(x) B(x)$ contains the term x^{k}, which contradicts (3).

LEMMA 3. If p is a prime and r is an arbitrary integer ≥ 1, the polynomial $F_{p}\left(x^{r}\right)$ is c-irreducible.

Proof. The lemma follows from Lemma 2 and the fact that $\frac{F_{p}(x)}{}$ is irreducible over the rationals.
2. We shall now prove

THEOREM 2. In the factorization (1) the factors on the right are irreducible over the rationals if and only if

$$
p_{1}=p_{2}=\ldots=p_{r}=p
$$

Proof. The sufficiency follows from the observation that

$$
F_{p}(x)=\frac{x^{p^{r}}-1}{x^{r-1}-1}=F_{p}\left(x^{p-1}\right)
$$

together with the irreducibility of $\mathrm{F}_{\mathrm{p}} \mathrm{r}(\mathrm{x})$ over the rationals.
To prove the necessity we observe that if $\mathrm{r} \neq \mathrm{p}^{\mathrm{n}}$ then $F_{p}\left(x^{r}\right)$ is reducible over the rationals. Indeed if

$$
r=p^{k} m \quad(p \nmid m)
$$

then

$$
F_{p}\left(x^{r}\right)=\frac{x^{p_{r}}-1}{x^{r}-1}=\prod_{d / m}^{F_{p} k+1}(x)
$$

Since $m>1$ it is evident that $F_{p}\left(x^{r}\right)$ is reducible.
3. Let $f(n)$ denote the number of factorizations

$$
\begin{equation*}
\frac{x^{n}-1}{x-1}=A(x) B(x) \tag{4}
\end{equation*}
$$

where $A(x), B(x)$ are $c-p o l y n o m i a l s$ and the orders of the factors are disregarded. To determine $f(n)$ we put

$$
R_{k}(x)=\left(x^{k}-1\right) /(x-1)
$$

and

$$
\begin{aligned}
& A(x)=R_{k_{1}}(x) R_{k_{3}}\left(x^{k_{1} k_{2}}\right) \ldots, \\
& B(x)=R_{k_{2}}\left(x^{k^{1}}\right) R_{k_{4}}\left(x^{k_{1}^{k} 2^{k} 3}\right) \ldots,
\end{aligned}
$$

where $n=k_{1} k_{2} \ldots k_{r}$ and every $k_{t}>1$. It follows from Theorem 1 that

$$
\begin{gathered}
f(n)=\sum_{k_{1} k_{2} \cdots k_{r}=n}^{\sum 1}=\sum_{r=0} T_{r}^{\prime}(n), \\
k_{t}>1
\end{gathered}
$$

where

$$
(\zeta(s)-1)^{r}=\sum_{n=1}^{\infty} \frac{\Gamma_{r}^{\prime}(n)}{n^{s}} .
$$

This evidently implies (with $f(1)=1$)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}=\sum_{r=0}^{\infty}(\zeta(s)-1)^{r}=\frac{1}{2-\zeta(s)} \tag{5}
\end{equation*}
$$

so that
(6)

$$
2 f(n)=\sum_{d \mid n} f(d)
$$

By means of (5) or (6) we may calculate $f(n)$. For $n=p^{\alpha}$, where p is a prime and $\alpha \geq 1$, (6) reduces to

$$
f\left(p^{\alpha}\right)=\sum_{j=0}^{\alpha-1} f\left(p^{j}\right)
$$

This implies

$$
\begin{equation*}
f\left(p^{\alpha}\right)=2^{\alpha-1} \quad(\alpha \geq 1) \tag{7}
\end{equation*}
$$

To compute $f(n)$, where n is squarefree, put

$$
u_{r}=f\left(p_{1} p_{2} \cdots p_{r}\right) \quad\left(p_{i} \neq p_{j}\right) .
$$

Then by (6)

$$
2 u_{r}=\sum_{j=0}^{r}\binom{r}{j} u_{j}
$$

which implies

$$
\sum_{r=0}^{\infty} \frac{u_{r} x^{r}}{r!}=\frac{1}{2-e^{x}}
$$

If we recall [2] the definition of the Eulerian number $H_{n}(\lambda)$:

$$
\frac{\lambda-1}{\lambda-e^{x}}=\sum_{n=0}^{\infty} H_{n}(\lambda) \frac{x^{n}}{n!}
$$

we see that
(8)

$$
\mathrm{u}_{\mathrm{r}}=\mathrm{H}_{\mathrm{r}}(2)
$$

REFERENCES

1. N. G. De Bruijn, On number systems. Nieuw Archief voor Wiskunde (3), 4, (1956), pages 15-17.
2. L. Carlitz, Eulerian numbers and polynomials. Mathematics Magazine, 32, (1958), pages 247-258.

Duke University, Durham, North Carolina and
University of Alberta, Edmonton, Alberta

