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ARE ONE-SIDED INVERSES TWO-SIDED INVERSES
IN A MATRIX RING OVER A GROUP RING?

BY
GERALD LOSEY

§1. Introduction. A ring R with identity element is n-finite(*) if for any pair
A, B of nxn matrices over R, AB=1I, implies BA=1,. In module theoretic terms,
R is n-finite if and only if in a free R-module of rank n any generating set of n
elements is free. If R is n-finite for all positive integers » then R is said to be strongly
finite. It is known that all commutative rings, all Artinian rings and all Noetherian
rings are strongly finite. These and many other interesting results appear in a
paper of P. M. Cohn [1]. In that paper there is a conjecture, attributed to
1. Kaplansky, that:

(C,) The group algebra of any group over any field is strongly finite. A proof
of this conjecture for the field of complex numbers appears in [4].

In §2 of this paper an apparent generalization of this conjecture is considered,
namely:

(C,) The group ring of any group over any commutative ring is strongly finite.

It is shown (Theorem 1) that, in fact, (C,) and (C,) are equivalent.
A broader generalization, but one which seems to be easier to handle, is:

(C,) The group ring of any group over any strongly finite ring is strongly finite.

Denote by & the class of all groups G having the property that the group ring
RG is strongly finite for any strongly finite ring R. If G € # we say that G is an
& -group. Then (C;) is equivalent to the assertion: & is the class of all groups. In
§3 it is shown that the class & is closed under taking subgroups and formation of
(complete) direct products, that & contains all finite groups, abelian groups, nil-
potent groups and free groups and that any group which is locally or residually
an & -group is an £ -group.

All rings R appearing in this paper are assumed to have an identity element and
any subring S of R is assumed to contain the identity element of R.

The following easily proved results will frequently be used in what follows:

(I) Any subring of an n-finite (strongly finite) ring is n-finite (strongly finite).

(I) A ring is n-finite (strongly finite) if and only if every finitely generated
subring is n-finite (strongly finite).
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(Y) The terminology is a modification of that in [3]. Also, R is n-finite if, in the terminology
of [1], R does not have property y,.
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(IID) If {R,}eea is a family of n-finite (strongly finite) rings then [ [,c4R,, the
complete direct product of the R,, is n-finite (strongly finite).
(IV) If R is strongly finite then so is (R),, the ring of n x n matrices over R.

The group ring of the group G over the ring R is denoted by RG. If o: G — H is
a homomorphism of groups with kernel K then o can be extended by linearity to
a ring homomorphism @: RG — RH with kernel I;(K), the ideal of RG generated
by the elements k—1 for all k € K (cf. [2]).

§2. The Equivalence of (C,) and (C,). We first prove

LeMMA 1. Let R be a ring and {J,}oc4 a family of ideals of R such that
(1) R/J, is n-finite for all « € A,
(i) J=\aeals is locally nilpotent.
Then R is a n-finite.

Proof. Let R be the complete direct product of the rings R/J,, « € A. By (III),
§1, R is n-finite. The canonical homomorphism ¢: R — R sending r onto (r+J,)ze4
has kernel J. Extend ¢ in the natural manner to a homomorphism ¢: (R), — (R),
of the corresponding matrix rings: ¢([a;;]) = [¢(a;;)]. The kernel of ¢ is (J),. Since
J is locally nilpotent so is (J),.

Let A, Be(R), and assume AB=1I, Set D=I,—BA. Then AD=A— ABA
=A—I,A=0and so D?=([,—BA)D=D—BAD=D. Thus D™= D for all positive
integers m. Now @(A)¢(B)=¢(4B)=¢(I,)=1I, and so ¢(B)§(4d)=I, since R is
n-finite. Hence, $(D)=¢(l,—BA)=0 and D e (J),. Since (J), is locally nilpotent,
Dm=0 for sufficiently large m. Therefore D=0 and BA=1,.

ReMARrk. Hypothesis (ii) could be replaced by the weaker condition (ii'):
J={\seal, 1s locally residually nilpotent.
The equivalence of conjecture (C,) and (C,) follows from

THEOREM 1. Let G be a group. Then RG is n-finite for every commutative ring R
if and only if kG is n-finite for every field k.

Proof. Assume kG is n-finite for all fields k. If Ris an integral domain with field
of quotients k then RG is a subring of kG and, thus, RG is n-finite.

Now let R be any commutative ring, {P,},c, the family of prime ideals of R
and A =" e4P, the nil radical of R (cf. [6, p. 151]). Since .#" is nil and R is com-
mutative, A" is locally nilpotent. Let J,=P,G, « € A. Then J, is an ideal of RG
and RG/J,=RG/P,G~(R/P,)G. Since R/P, is an integral domain, RG/J, is n-finite.
Moreover, J={\oeale={Neca PG=A"G. Since A" is locally nilpotent so is A4G.
The family of ideals {/,},. thus satisfies hypothesis of Lemma 1. Therefore RG
is n-finite.

The opposite implication is obvious.
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§3. F-groups. A group G is an F-group if RG is strongly finite for all strongly
finite rings R. It is easily seen that (RG),~(R),G. It thus follows that G is an
Z-group if and only if RG is 1-finite for all strongly finite rings R. It is clear that
the identity group {1} is an &#-group, any group isomorphic to an & -group is an
Z-group and any subgroup of an &-group is an Z-group. Since any finite set of
elements of RG involve only finitely many elements of G it follows that G is an
F-group if and only if every finitely generated subgroup of G is an #-group. In
other words, G is an & -group if and only if it is locally an & -group.

LemMMmA 1. Let Gy, Gy, ..., G, be F-groups. Then G, XxGyx ---xG, is an
F-group.

Proof. It suffices to prove the result for k=2; the lemma then follows by in-
duction on k. Let G, H be # -groups and R a strongly finite ring. Then RG is strongly
finite and, hence, (RG)H is strongly finite. The mapping ¢: (RG)H — R(G x H)
defined by

3 (S e e~ 3 He ke h

heH (geG

is easily verified to be a ring isomorphism. Thus R(G x H) is strongly finite and,
therefore, G x H is an & -group.

THEOREM 2. Let {N,},c4 be a family of normal subgroups of G such that, for each
a€ A, G/N, is an F-group. Let N={\yes N,. Then G/N is an F-group.

Proof. By passing to quotients if necessary, we may assume N={1}. Let Ny, ...,
N, €{N,}. The mapping G — G/N; X - - - x G/N,, given by g — (gN1,...,gNy) is a
homomorphism of G into the #-group G/N; X - - - x G/N,, with kernel (-, N,.
Thus G/}~ N;isisomorphicto asubgroup of an % -group and is itself an #-group.
Hence we may assume that the set {N,} is closed under finite intersections. Con-
sequently, given finitely many elements x;, x,, ..., X, € G there exists N € {N,}
such that x; ¢ N, i=1,2,...,n.

Let R be a strongly finite ring. Then R(G/N,)~ RG/I4(N,) is strongly finite for
each « € 4. Let R denote the complete direct product of the rings RG/I4(N,),
a € A. Then R is strongly finite. Let «: RG — R be the canonical homomorphism.
The kernel of o« is J={"yes Io(NV,). Suppose r € J, r #0. Then r=27_, r(g;)g; where
the g;, i=1,2, ..., n, are distinct elements of G and r(g;)#0,i=1,2,...n. Let N,
be such that g,g; ¢ Ny, i,j=1,2,...,n,i#j. Then g;Ny#g;N, if i#j. Thus the
element 7=>7; r(g)g:N;#0 in R(G/Ny) and so its image >7_; r(g)g:i+ Is(Np)
under the natural isomorphism of R(G/N;) onto RG/I;(N,) is not zero, that is,
r=>7_, r(g)g; ¢ I.(N;), a contradiction. Hence J=(0) and «: RG — R is one-one.
Since RG is isomorphic to a subring of the strongly finite ring R, RG is itself
strongly finite and, therefore, G is an & -group.

For any group property &, a group G is said to be residually an &-group if there
5—C.M.B.
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exists a family {N,} of normal subgroups of G such that, for each «, G/N, is an
&-group and (N, N,={1}. Thus an equivalent form of Theorem 2 is

THEOREM 2'. A group G is an F-group if and only if it is residually an & -group.

COROLLARY. If {G}sea is a family of F-groups then the complete direct product
G =TTlues G, is an F-group.

Proof. Foreacho € A4, set N,={(gs)pcs | g.=1}. Then G/N,~ G, and ", N.={1}.
By Theorem 2, G is an % -group.

THEOREM 3. Let G be a group and H a subgroup of G of finite index. If H is an
F-group then G is an F-group.

Proof. Let G=Hx, U Hx, U ---U Hx, be a decomposition of G into distinct
cosets of H. Let R be a strongly finite ring. Then RG is a free left RH-module
having x4, ..., x, as a free basis. Thus

Homgy (RG, RG) =~ (RH),

and, since RH is strongly finite, it follows from IV, §1, that Homgy (RG, RG) is
strongly finite. For each « € RG the mapping @: RG — RG defined by (B)a=p« is
an RH-homomorphism of RG into itself (as a module). The mapping « — & is
easily verified to be a ring homomorphism of RG into Homyy (RG, RG). If a=0
then 0=(1)a=1le=c and, hence, the homomorphism is one-one. Thus RG is
isomorphic to a subring of a strongly finite ring and is itself strongly finite. There-
fore G is an & -group.

COROLLARY. Any finite group is an F-group. Therefore all locally finite groups
and all residually finite groups are & -groups.

A result of K. Hirsch asserts that any finitely generated nilpotent group is
residually finite (see [5, p. 80]). Consequently, we have

COROLLARY. Any nilpotent group, locally nilpotent group or residually nilpotent
group is an F-group.

Since abelian groups are nilpotent and free groups are residually nilpotent (see
[5, p. 80)) this implies

COROLLARY. Any abelian group is an F-group. Any free group is an F-group.
Thus, any locally free group or residually free group is an F-group.

The most obvious next stage in the investigation is to examine whether or not
solvable groups are #-groups. We have made only the following short steps in
this direction.

THEOREM 4. Let G be a group, N a normal subgroup and assume

(i) G/N is abelian,
(ii) N is finite.
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Then G is an F-group.

Proof. It is sufficient to assume G/N finitely generated. Then G/N~G,/N
x -+ x Gy/N where each factor G;/N is cyclic. Each finite cyclic factor is an
& -group (by Theorem 3) and so the problem reduces to the special case: G/N infinite
cyclic. Let xN be a generator of G/N. Then y — x~1yx is an automorphism of N.
Since N has a finite automorphism group, x™ centralizes N for some m>0. Thus
N*={x™, N)={x™)x N is an Z-group and [G: N*]=m. By Theorem 3, G is an
F-group.

REMARK. Theorem 4 remains true if (ii) is replaced by (ii"): N is an Z-group
and has a periodic automorphism group.

COROLLARY. Let G be a group, N a normal subgroup and assume

(i) G/N is abelian,
(ii) N is finitely generated abelian.

Then G is an F-group.

Proof. It is not difficult to show that N has a family {H,} of characteristic sub-
groups such that N/H, is finite for each e and (", H,={1}. The H, are then normal
in G and, by Theorem 4, G/H, is an & -group. By Theorem 2, G is an & -group.
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