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p-adic class invariants

Reinier Bröker

Abstract

We develop a new p-adic algorithm to compute the minimal polynomial of a class invariant. Our
approach works for virtually any modular function yielding class invariants. The main algorithmic
tool is modular polynomials, a concept which we generalize to functions of higher level.

1. Introduction

Let K be an imaginary quadratic number field and let O be an order in K. The ring class field
HO of the order O is an abelian extension of K, and the Artin map gives an isomorphism

Pic(O) ∼−−→Gal(HO/K)

of the Picard group of O with the Galois group of HO/K. In this paper we are interested in
explicitly computing ring class fields. Complex multiplication theory provides us with a means
of doing so. Letting ∆ denote the discriminant of O, it states that we have

HO =K[X]/(P j∆),

where P j∆ is the minimal polynomial over Q of the j-invariant of the complex elliptic curve
C/O. This polynomial is called the Hilbert class polynomial. It is a non-trivial fact that P j∆
has integer coefficients.

The fact that ring class fields are closely linked to j-invariants of elliptic curves has its
ramifications outside the context of explicit class field theory. Indeed, if we let p denote a
prime that is not inert in O, then the observation that the roots in Fp of P j∆ ∈ Fp[X] are
j-invariants of elliptic curves over Fp with endomorphism ring O made computing P j∆ a key
ingredient in the elliptic curve primality proving algorithm [12]. Fast algorithms to compute
P j∆ are also desirable from a cryptographic point of view. For example, computing P j∆ allows
us to efficiently construct elliptic curves for which the discrete logarithm problem is presumed
to be hard; cf. [6, Chapter 23].

There are currently three known algorithms to compute P j∆ ∈ Z[X]: a complex analytic [8],
a p-adic [4, 7] and a ‘multi prime’ approach [1, 2, 22]. If the Generalized Riemann Hypothesis
(GRH) holds true, the run time of all three algorithms is Õ(|∆|); see [2]. Here the Õ-notation
indicates that factors that are of logarithmic order in the main term have been disregarded.
These three algorithms are efficient in the sense that the bottleneck for each algorithm is the
size of the output. We are therefore inherently limited to ‘small’ discriminants. However, also
for small discriminants, the coefficients of P j∆ are huge. For ∆ =−23, we obtain

P j−23 =X3 + 3491750X2 − 5151296875X + 12771880859375

for instance. History tells us we should be able to do better. In his Lehrbuch der Algebra [24]
from 1908, Weber introduces a modular function f from the upper half-plane H to C with
the property that, for a suitable choice of ω, the value f(ω) generates the ring class field of
Z[ω] for all imaginary quadratic orders Z[ω] in which 3 is unramified and 2 splits completely.
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p-ADIC CLASS INVARIANTS 109

For ∆ =−23, a root of the polynomial

P f
−23 =X3 −X2 + 1

generates the Hilbert class field of Q(
√
−23). Weber’s function f is related to the j-function

via (f24 − 16)3 − jf24 = 0, so computing P f
∆ has the same cryptographic applications as

computing P j∆.
Following Weber, we call a function value f(ω) of a modular function f : H→C a class

invariant if we have
K(f(ω)) =HZ[ω],

that is, if it generates the ring class field over K = Q(ω). The logarithmic height of the
coefficients of the minimal polynomial P f∆ of a class invariant is a constant factor smaller
than the coefficients of P j∆. This means that from a purely asymptotic point of view, there is
no advantage in computing P f∆ instead of P j∆: the difference in run time is absorbed in the
O-constant. The example above shows, however, that from a more practical point of view, class
invariants give a big improvement.

The theory of class invariants is well understood in the complex analytic setting. Using
complex analytic techniques, it is now a rather mechanical process [21] to decide if f(ω) is a
class invariant, and if so compute its minimal polynomial P f∆.

In this paper we explain how to work with class invariants over non-archimedean fields Qp.
The functions we will use are integral over Z[j], and most of our computations will take place
in the ring Zp. Computing over Zp instead of over C has the advantage that rounding errors
cannot occur when computing the minimal polynomial P f∆ of a class invariant. This gives our
approach an edge over the complex analytic approach. Our computer experiments indicate
that our algorithm is also reasonably fast in practice. Without trying to write highly optimized
code, we computed the polynomial

P f
−92806391 ∈ Z[X]

for the Weber-f function and an order of discriminant roughly −108 in roughly 15 minutes on
our standard 32-bit, 2.8 GHz PC. In comparison, it took the computer algebra package Magma
many hours to compute this polynomial using a complex analytic algorithm on the same PC.
We expect that with optimized code, our algorithm has the potential to obtain similar timings
as in [8] where an optimized version of the complex analytic approach is used.

As a by-product of our algorithm, we obtain an algorithm to compute P f∆ modulo a prime p
and we can in turn use this information (for certain functions f) to compute P f∆ using
a ‘Chinese remainder theorem’ (CRT)-approach as in [2]. The CRT-approach is currently
the fastest method [22] for computing the Hilbert class polynomial P j∆, and we expect that the
‘one p-adic digit version’ of our algorithm can be used to give a fast CRT-approach to compute
P f∆. This paper solely focuses on computing P f∆ over the p-adics, however.

Our treatment of class invariants is of a more geometric nature than the complex analytic
treatment. To keep the geometry manageable, we will mostly restrict ourselves to modular
functions f of level N with the property that the natural map

f : Γ(f)\H→A1

induced by the inclusion Γ(f)⊆ SL2(Z) has degree one. Here, Γ(f)⊆ SL2(Z) denotes the stab-
ilizer of f inside the special linear group SL2(Z). Examples of such functions include the
aformentioned Weber function f and a cube root γ2 of the j-function. If f has degree one, then
we can rigorously prove that our approach works. If f has larger degree, then we need to rely on
heuristics to prove the correctness of our algorithm. We make the heuristics precise in Section 5.

The main algorithmic ingredient of our algorithm is the modular polynomial Φfl relating
the complex analytic functions f(z) and f(lz) for a prime l not dividing the level N . These
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110 R. BRÖKER

polynomials Φfl are a generalization of the classical modular polynomial for the j-function.
In Section 5 we give the geometric interpretation of Φfl and prove reduction properties of the
curve Φfl = 0.

Our algorithm is an extension of the p-adic algorithm for the j-function [4, 7], which we
briefly recall in Section 2. In Section 3 we recall properties of the modular function field
and give a ‘weak version’ of Shimura reciprocity linking modular functions and ring class
fields. The geometric approach to class invariants is developed in Sections 4 and 5, and the
resulting algorithm is stated in Section 6. We illustrate the algorithm with a detailed example
in Section 7.

2. p-adic algorithm for the j-function

In this section we explain the p-adic algorithm to compute, on input of a discriminant ∆<−4,
the Hilbert class polynomial P j∆ ∈ Z[X]. For more details, proofs, and examples, see [4, 7].

As before, let O ⊂K = Q(
√

∆) be the imaginary quadratic order of discriminant ∆. Let
p be a ‘small’ prime that splits completely in the ring class field HO. Since a prime splits
completely in the ring class field if and only if it splits into principal primes in O, we can find
such p by looking for an integer solution to the equation

4p= x2 −∆y2 (2.1)

with p prime. Under GRH, we may take p of size Õ(|∆|) by [4, Lemma 3.1].
The set

Ell∆(Qp) = {j ∈Qp | ∃E/Qp with j(E) = j and End(E) =O}

is a finite set of cardinality # Pic(O), and consists of the roots of P j∆ ∈Qp[X]. The set Ell∆(Fp)
is defined similarly. Its elements are the # Pic(O) j-invariants of elliptic curves over Fp with
endomorphism ring O, or equivalently, the roots of P j∆ ∈ Fp[X].

We first construct an (ordinary) elliptic curve E/Fp with j(E) ∈ Ell∆(Fp). Write N =
p+ 1− x with x as in equation (2.1). We try random curves over Fp until we find a curve E with
N points. The subring Z[Frob]⊆O generated by the Frobenius morphism then has index y > 1.
For cryptographic applications, we are mostly interested in the case that O is the maximal
order. If we have y = 1 in this case, we know that the curve E has endomorphism ring O. For the
general case, the equality #E(Fp) =N does not imply that E has endomorphism ring O. We
then compute the endomorphism ring End(E) using [16] and apply an isogeny of degree divid-
ing [OK : Z[Frob]] to find an elliptic curve with endomorphism ring O. We refer to [4, Section 3]
for details, and fix an elliptic curve E/Fp with End(E) =O for the remainder of this section.

We want to lift j(E) ∈ Fp to ̃ ∈ Ell∆(Qp). Let Cp be the completion of an algebraic closure
of Qp, and put X∆(Cp) = {j ∈Cp | j mod p ∈ Ell∆(Fp)}. The set X∆(Cp) consists of # Pic(O)
discs of p-adic radius 1. Each disc contains exactly one element of the set Ell∆(Qp) that we
want to compute.

XΔ (Cp) :

EllΔ (Fp) :
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Let E/Qp be an elliptic curve with endomorphism ring O. For an invertible ideal I ⊂O,
there exists an elliptic curve EI/Qp and a separable isogeny E→ EI which has the subgroup
E[I] of I-torsion points as kernel. We obtain a bijection ρI : Ell∆(Qp)→ Ell∆(Qp) that sends
j(E) to j(EI). The fundamental idea in [7] is that the map ρI has a natural extension to a map

ρI :X∆(Cp)→X∆(Cp)

for invertible O-ideals I that are coprime to p. For principal ideals I, the map ρI has the set
Ell∆(Qp) as unique fixed points.

To define ρI(j) for j ∈X∆(Cp), choose an elliptic curve E/Cp with j(E) = j that has good
reduction modulo p. Assume that I is coprime to p, and let l ∈ Z>0 be its norm. The reduced
curve E′/Fp has endomorphism ring O, and the subgroup E′[I]⊂ E′[l] lifts canonically to a
subgroup S ⊂ E[l]. We put ρI(j) = j(E/S). Note that for j ∈ Ell∆(Qp) we have S = E[I], so
ρI is indeed an extension of the map defined on Ell∆(Qp).

One proves [4, Theorem 4.2] that (for ∆<−4) for principal ideals I = (α) 6⊂ Z, the map
ρα :X∆(Cp)→X∆(Cp) is analytic, that is, it can locally be given by a power series. In this
case, the derivative at ̃ ∈ Ell∆(Qp) is given by α/α; cf. [4, Lemma 4.3]. Here, α denotes the
complex conjugate of α. If j1 ∈Cp denotes any integral lift of j(E) ∈ Ell∆(Fp), the ‘Newton
process’

jk+1 = jk −
ρα(jk)− jk
(α/α)− 1

for k ∈ Z≥1 (2.2)

converges to the canonical lift ̃ ∈ Ell∆(Qp) if α/α− 1 is a p-adic unit. For k = 1 the
computation is performed with two p-adic digits of precision, and the precision is doubled
at each step. The accuracy required for the computation of P j∆ can be explicitly bounded [4,
Section 7].

The run time of the lifting phase depends heavily on the choice of α. The equality ρIJ = ρIρJ
shows that we want α to be smooth, that is, only divisible by primes of ‘small’ norm. Then ρα
factors as a product of maps, corresponding to the prime divisors of (α), that are quicker to
compute. The smoothness properties are ‘in practice’ a lot better than what can be rigorously
proved [7, Lemma 2]. At the end of this section we give more details on the explicit computation
of ρα.

Once we have computed the canonical lift with a high enough accuracy of n p-adic digits, we
need to compute its conjugates under the action of the Picard group Pic(O). This can be done
using the same techniques as before, since the action of an ideal class [I] ∈ Pic(O) is given by

j(E) 7→ j(EI) = ρI(j(E)).

We compute small generators of the Picard group, and compute the Galois conjugates of ̃. In
the end we expand the Hilbert class polynomial

P j∆ =
∏

[I]∈Pic(O)

(X − ρI(̃)) ∈ (Zp/pn)[X]

and lift the coefficients to integers between −pn/2 and pn/2.
We explain how to explicitly compute the map ρI . It suffices to show how to treat the case

that I is a prime ideal, and we let l 6= p be its norm. For j(E) ∈ Ell∆(Fp), the isogeny E→ E
I

has degree l. Let Φl(X, Y ) ∈ Z[X, Y ] be the classical modular polynomial of level l. It is a
singular model for the modular curve X0(l) parametrizing (cyclic) l-isogenies. This means that
j(E

I
) ∈ Fp is a root of Φl(X, j(E)) ∈ Fp[X]. Under the mild condition that the l-torsion E[l]

is not Fp-rational, this polynomial has only two roots in Fp by [4, Theorem 5.1], namely j(E
I
)

and j(E
I
). Choose a root h.

We need to decide if we have ρI(j(E)) = h or not. Let E/S have j-invariant h, corresponding
to a cyclic subgroup S ⊂ E[l] of order l, that is, S is the kernel of the isogeny E→ E/S.
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112 R. BRÖKER

Choosing a Weierstraß equation
Y 2 =X3 + aX + b

for E, the techniques that Elkies used to improve Schoof’s original point counting algorithm [19,
Sections 7 and 8] allow us to compute a polynomial fS ∈ Fp[X] that vanishes exactly on the
x-coordinates of the points in S.

Write I = (l, c+ dπp) with πp ∈ O an element of norm p. Then the group E[I] is an eigenspace
for the action of Frobenius with eigenvalue −c/d ∈ Fl. We now test if (Xp, Y p) =−c/d · (X, Y )
holds for the points in S, that is, we compute both (Xp, Y p) and (−c/d) · (X, Y ) in the ring

Fp[X, Y ]/(fS(X), Y 2 −X3 − aX − b).

If they are equal, we have h= ρI(j(E)). Otherwise, we need to take the other root of
Φl(j(E), X).

We have ‘decomposed’ the map ρα : Ell∆(Fp)→ Ell∆(Fp) as a cycle of isogenies. Using
modular polynomials, it is a simple matter to lift this cycle of maps

j(E) I1−−→ j(E
I1)−−→ · · · In−−−→ j(E

(α)
) = j(E)

over Fp to a ‘cycle’ jk −−→ · · · −−→ ρα(jk) over Qp. Indeed, we know that Φl(jk, X) ∈ Zp[X]
only has two roots in Zp, and since we know j(E

I
) ∈ Fp, we know which root is ρI(jk). This

enables us to compute the map ρα on X∆(Cp).

3. Shimura reciprocity over the ring class field

Let f : H→C be a modular function. If we evaluate f at a generator ω of the Z-algebra
O = Z[ω], then the result f(ω) will typically lie in an extension field of the ring class field HO;
see Theorem 3.2 below. However, in special cases it turns out that f(ω) does lie in HO and
generates the extension HO/K. Following Weber, we call f(ω) a class invariant in this case.

The example in the introduction shows that the minimal polynomial of a class invariant f(ω)
can be a lot smaller than the Hilbert class polynomial. To quantify the improvement we obtain
by using the modular function f instead of j, we define the reduction factor

r(f) =
degf (Ψf )
degj(Ψf )

,

where Ψf is an irreducible polynomial with Ψf (j, f) = 0. By [14, Proposition B.3.5], the value
r(f) is, asymptotically, the inverse of the quotient

lim
h(j(τ))→∞

h(f(τ))
h(j(τ))

.

Here, h is the absolute logarithmic height, and we take the limit over all complex multiplication
points SL2(Z) · τ ∈H. We see that r(f) is a good measure for the improvement we obtain by
computing the minimal polynomial of a class invariant f(ω). We have r(γ2) = 3, and the value
r(f) = 72 is close to optimal in view of the upper bound r(f)6 101 proved in [5]. We refer
to [9] for an overview of the ‘available functions’ and their reduction factors. In this section
we explain a method, due to Shimura, that enables us to decide if a modular function f yields
class invariants for a given imaginary quadratic order O.

For an integer N > 0, let

Γ(N) =
{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a≡ d≡ 1 mod N, b≡ c≡ 0 mod N
}

be the full congruence subgroup of level N . The modular group SL2(Z) acts on the complex
upper half-plane H and its completion H = H ∪P1(Q) by fractional linear transformations.
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The quotient Γ(N)\H has the structure of a compact Riemann surface, and as such, it is
isomorphic to the modular curve X(N) over C.

It is well known that the modular curve X(N) can be defined over the cyclotomic field
Q(ζN ), where ζN is a primitive Nth root of unity. Let FN be the function field of X(N) over
Q(ζN ). We have F1 = Q(j). Elements of FN are called modular functions of level N . Explicitly,
a function f : H→C is called modular if it is invariant under Γ(N) and if the coefficients of
its Fourier expansion (which it has because

(
1 N
0 1

)
is an element of Γ(N)) lie in Q(ζN ).

Define the function m by

m(w, τ) =−2735 · g2(τ)g3(τ)
∆(τ)

℘(w; 〈1, τ〉)

for w ∈C and τ ∈H. Here, ℘(·; 〈1, τ〉) is the Weierstraß ℘-function associated to the lattice
Z + Z · τ . For r, s ∈ (1/N)Z/Z, not both 0, define the Fricke function fr,s of level N by

fr,s(τ) =m(rN + s, τ).

The Fourier coefficients of fr,s are contained in Q(ζN ). If we fix τ and let r, s vary over
(1/N)Z/Z, not both equal to 0, we obtain the normalized x-coordinates of the N2 − 1
non-trivial points of order N of the complex elliptic curve C/(Z + Z · τ).

Theorem 3.1. We have

FN = Q
(
j, fr,s

∣∣∣∣ r, s ∈ 1
N

Z/Z, not both 0
)
.

Proof. See [17, Theorem 6.2 and the beginning of § 6.3].

The extension FN/F1 is Galois with group GL2(Z/NZ)/{±1}. This combines the geometric
SL2(Z/NZ)/{±1}-action coming from the Galois cover X(N)C/X(1)C with the arithmetic
(Z/NZ)∗-action coming from Q(ζN )/Q. Here, σd : ζN 7→ ζdN acts on a modular function
f =

∑
k ck · qk/N via

fσd =
∑
k

σd(ck) · qk/N . (3.1)

Let Ô =O ⊗Z Ẑ be the profinite completion of the imaginary quadratic order O ⊂K. Class
field theory tells us that the Galois group Gal(Kab/HO) of the maximal abelian extension of
HO is given by the exact sequence

1−−→O∗ −−→ Ô∗ Artin−−−−→Gal(Kab/HO)−−→ 1.

We obtain Kab as the union of finite extensions HN,O corresponding to the finite quotients

Ô∗� (Ô/NÔ)∗ = (O/NO)∗.

The field HN,O is called the ray class field of conductor N for the order O, and the Artin map
gives an isomorphism

(O/NO)∗/Im[O∗] ∼−−→Gal(HN,O/HO).

If O is the maximal order of K, the field HN,O is the ray class field of conductor N of K.

Theorem 3.2. Let f ∈ FN be modular of level N , and write O = Z[ω]. If f(ω) is finite, we
have f(ω) ∈HN,O.

Proof. See [17, Chapter 10].
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Let the notation be as in Theorem 3.2 above. Then we have f(ω) ∈HO ⊆HN,O if f(ω) is a
class invariant. To decide if this is the case for a given value f(ω), we need to know the Galois
action of Gal(HN,O/HO) on values of modular functions. A variant of Shimura reciprocity,
described below, enables us to compute this action.

Let gω : (O/NO)∗→GL2(Z/NZ) be the map that sends x to the transpose of the matrix
representing multiplication by x on the (Z/NZ)-module Z/NZω + Z/NZ with respect to the
basis [ω, 1]. The map gω connects the rows in the following diagram.

O∗ // (O/NO)∗ Artin //

gω

��

Gal(HN,O/HO) // 1

{±1} // GL2(Z/NZ) // Gal(FN/Q(j)) // 1

Explicitly, if ω has minimal polynomial X2 + bX + c ∈ Z[X], then we have

gω : x= sω + t 7−→
(
t− bs −cs
s t

)
.

The content of Shimura’s reciprocity law is that the Galois conjugate f(ω)x of f(ω) under the
Artin symbol Artin(x) ∈Gal(HN,O/HO) may be computed via the reciprocity relation

(f(ω))x = (fgω(x−1))(ω);

cf. [20, Theorem 6.31]. If the extension FN/Q(f) is Galois, we have the fundamental equivalence

(f(ω))x = f(ω)⇐⇒ fgω(x) = f.

The implication ⇐ is immediate from the reciprocity relation. The other implication requires
the hypothesis and an additional argument [20, Proposition 6.33].

We compute generators x1, . . . , xk for (O/NO)∗ and map them to GL2(Z/NZ) using the
map gω. The value f(ω) is contained in the ring class field HO if and only if gω(x1), . . . , gω(xk)
act trivially on f . If we, for instance, also know that there is an inclusion Q(j)⊆Q(f), then
f(ω) is also a class invariant if gω(x1), . . . , gω(xk) act trivially on f . We refer to [13] for
examples.

4. Class invariants over Qp

In this section we extend the p-adic algorithm from Section 2 to work with modular functions
other than the j-function. The description we present in this section is not ideally suited for
explicit computations yet, and serves as a stepping stone for the more practical version in
Section 5. Throughout this section, we fix a modular function f of level N > 1 that is integral
over the ring Z[j], that is, f is a root of some monic irreducible polynomial Ψf (X) ∈ (Z[j])[X].
All known modular functions yielding class invariants are integral. We do not assume that f
has degree one in this section.

As before, let p be a prime that splits completely in the ring class field HO for the
order O of discriminant ∆<−4. For a j-value j(Ẽ) ∈ Ell∆(Qp), the roots of the polynomial
Ψf (X, j(Ẽ)) ∈HO[X] lie in the ray class field of conductor HN,O of conductor N for the
order O; cf. Theorem 3.2. If we know that f yields class invariants, for instance by using
Shimura reciprocity, we know that some of these roots actually lie in the ring class field HO. We
need to decide which ones, and compute the action of the Galois group Gal(HO/K)∼= Pic(O)
on such roots.

The key observation is that f is an element of the function field

FN = Q
(
j, fr,s

∣∣∣∣ r, s ∈ 1
N

Z/Z, not both 0
)
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of the modular curve X(N) over Q(ζN ); cf. Theorem 3.1. The Fricke functions fr,s are
normalized x-coordinates of N -torsion of points on the elliptic curve C/(Z + Z · τ), and we
can write f as a Q-rational function in j and the functions fr,s.

Fix a primitive Nth root of unity ζN ∈Qp. For a ∈ (Z/NZ)∗, let Y (N)a be the modular
curve parametrizing isomorphism classes of triples

(E, P, Q)

where P, Q ∈ E[N ] form a basis that maps to ζaN under the Weil pairing eN . Then f is an
element of the function field of Y (N)a,Qp

for every a ∈ (Z/NZ)∗. Let x ∈Qp be a root of
Ψf (X, j(Ẽ)) ∈Qp[X]. There exist a ∈ (Z/NZ)∗ and (Ẽ, P, Q) ∈ Y (N)a(Qp) with f(Ẽ, P, Q) =
x ∈Qp.

The group of invertible O-ideals acts on Ell∆(Qp) via j(E) 7→ j(EI), and the action of the
Artin symbol [I, HO/K] of I for the extension HO/K satisfies j(Ẽ)[I,HO/K] = j(ẼI). If N is
coprime to the norm l of I, the isogeny

ϕI : Ẽ −−→ ẼI

extends to a natural isomorphism

ϕI : Ẽ[N ] ∼−−→ ẼI [N ].

A basis 〈P, Q〉 for Ẽ[N ] gets mapped to a basis 〈P I , QI〉 for ẼI [N ]. We compute

eN (P I , QI) = eN (P, ϕ̂I(QI)) = eN (P, lQ) = ζlN

and conclude that we have (ẼI , P I , QI) ∈ Y (N)la(Qp). We have the fundamental equality

f(Ẽ, P, Q)[I,HN,O/K] = f(ẼI , P I , QI).

We can explicitly compute the isogeny ϕI : first we compute the kernel polynomial gI ∈Qp[X]
corresponding to I using the ‘Atkin–Elkies techniques’ alluded to in Section 2 and then
we compute the isogeny using Vélu’s formulas [23]. Hence, we have a way of computing
f(Ẽ, P, Q)[I,HN,O/HO].

A root x ∈Qp of Ψf (X, j(Ẽ)) ∈Qp[X] lies in HO if and only if it is invariant under the
action of

Gal(HN,O/HO)∼= (O/NO)∗/Im(O∗).

We write x= f(Ẽ, P, Q) for some choice of basis P, Q ∈ Ẽ[N ] and test whether x[(y),HN,O/HO] =
x holds for all generators y of (O/NO)∗/Im(O∗).

Once we have found that a certain root x ∈Qp lies in the ring class field HO, we need to
compute its conjugates under Gal(HO/K)∼= Pic(O). This proceeds exactly as before, since we
have

x[I,HO/K] = f(Ẽ, P, Q)[I,HO/K] = f(ẼI , P I , QI) ∈Qp

for invertible O-ideals I that are coprime to the level N . If the minimal polynomial of x has
integer coefficients, then the coefficients of

P f∆ =
∏

[I]∈Pic(O)

(X − f(Ẽ, P, Q)[I,HO/K]) ∈Qp[X]

lie in the subring Z⊂Qp. If we know an upper bound on the logarithmic height of the
coefficients, then we can compute all conjugates of x= f(Ẽ, P, Q) ∈ Zp/pn with high enough
p-adic accuracy and lift the coefficients of P f∆ ∈ (Zp/pn)[X] to integers between −pn/2 and
pn/2, just like we did for the j-function in Section 2.
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Example. Let γ2 : H→C be the holomorphic cube root of j with integral Fourier
expansion. It is a classical fact that γ2 is modular of level 3. It yields class invariants for
all imaginary quadratic orders O in which 3 is unramified [24, Section 125].

Let E : Y 2 =X3 + aX + b be an elliptic curve over Qp, with p > 3. Let c1, . . . , c4 ∈Qp be
the roots of the 3-division polynomial of degree (32 − 1)/2 = 4. Then

−48a
2a− 3(c1c2 + c3c4)

(4.1)

is a cube root of j(E), as may be checked by using the Fourier expansion of the Fricke functions.
Expression (4.1) nicely illustrates that γ2 is not a function of an elliptic curve alone: some
ordering on the 3-torsion is also required. We indeed get three distinct cube roots of j(E).
From a geometric point of view, there is no way to single out a root ‘corresponding’ to γ2.

We illustrate how we can use this ‘geometric γ2’ to compute the polynomial P γ2−31 ∈ Z[X]
for the order O of discriminant ∆ =−31 using p-adic methods. The primes 47 = 42 + 31 and
67 = 62 + 31 both split completely in the Hilbert class field H =HO of K = Q(

√
−31). The

case p= 67 best illustrates our techniques, since ̃ ∈ Ell∆(Qp) then has three cube roots in Qp.
First we compute a curve Ẽ/Qp with End(Ẽ)∼=O. Since we have r(γ2) = 3 for the reduction

factor of γ2, the accuracy needed is only one third of the required nine 67-adic digits accuracy
for the computation of the Hilbert class polynomial P j−31. Using the algorithm from Section 2
we find that we may take

j(Ẽ) = 3 + 33p− 16p2 +O(p3) ∈Qp

as j-invariant. The three cube roots of j(Ẽ) are

η1 = 18 + 26p+ 38p2 +O(p3)
η2 = 53 + 3p+ 30p2 +O(p3)
η3 = 63 + 36p+ 65p2 +O(p3).

Only one of them lies in the Hilbert class field H ⊂Qp. Indeed, if two roots lay in H, then ζ3
would be contained in H as well and 3 would ramify in H.

We fix a Weierstraß equation

Y 2 =X3 + aX + b

for Ẽ/Qp. Let c1, . . . , c4 ∈Qp be the four roots of the 3-division polynomial for Ẽ. We compute
3-torsion points Pi with x-coordinates ci. The points Pi are defined over the unramified
extension of degree four of Qp.

Let I be an O-ideal that is coprime to 3. The isogeny ϕI : Ẽ→ ẼI extends to a natural
isomorphism

ϕI : Ẽ[3] ∼−−→ ẼI [3].

Hence, we get a natural bijection

ϕI : {η1, η2, η3}
∼−−→ {cube roots of j(ẼI)}.

For a cube root

η =
−48a

2a− 3(c1c2 + c3c4)

we have

η[I,H3/H] =
−48a′

2a′ − 3(c′1c
′
2 + c′3c

′
4)
.

Here, c′i is the x-coordinate of ϕI(Pi) ∈ ẼI [3] and ẼI has Weierstraß equation Y 2 =X3 +
a′X + b′. The group (O/3O)∗/O∗ ∼= Z/4Z is generated by α= (−1 +

√
−31)/2 of norm 8. We
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compute η[I,H3/H]
i for I = (α) = p3

2 and obtain

η1
ϕI−−−→ η1

η2
ϕI−−−→ η3

η3
ϕI−−−→ η2.

Hence, η1 = 18 +O(p) is a class invariant. Note that ϕp2 is just a 2-isogeny, so we do not
actually need the ‘Atkin–Elkies’ techniques from [19, Sections 7 and 8].

Computing the conjugates of η1 ∈HO under Gal(HO/K)∼= Pic(O) proceeds similarly. We
have Pic(O)∼= Z/3Z∼= 〈[p2]〉 and

η
[p2,HO/K]
1 = ϕp2(η1).

We compute the Galois conjugates of η1 up to three 67-adic digits accuracy and expand

P γ2−31 =
3∏
i=1

(X − ϕip2(η1)) =X3 + 342X2 + 837X + 116127 ∈ Z[X].

5. Computing the action of invertible ideals

The theory developed in Section 4 is not directly suited for explicit computations. If we are
given a modular function f of level N that is integral over Z[j] as a Fourier expansion, it is not
clear how to write this as a rational function in j and the Fricke functions. Secondly, we have
to partially factor the N -division polynomial to use the approach from the previous section.
The degree of this polynomial is roughly N2, and factoring it annihilates the improvement
gained by working with a ‘smaller’ function f . In this section we explain how to circumvent
these problems if we restrict ourselves to functions f for which the natural map

f : Γ(f)\H→A1

induced by the inclusion Γ(f)⊆ SL2(Z) has degree one. Here, Γ(f)⊆ SL2(Z) denotes the
stabilizer of f inside SL2(Z). If f has larger degree, then we have to rely on the heuristics
given at the end of the section to prove that our algorithm works.

The crucial observation is that it suffices to compute xI , where x ∈Qp is a root of
Ψf (X, j(E)) ∈Qp[X] and I is an invertible O-ideal of norm coprime to N . Indeed, if we want to
know which root x of Ψf (X, j(E)) ∈Qp[X] is a class invariant, we need to check which root is
invariant under the action of (O/NO)∗/Im(O∗). This amounts to computing xI for the princi-
pal ideals I generated by generators of (O/NO)∗. Once we know that x ∈Qp is a class invariant,
we need to compute xI ∈Qp for some choice of generators I of Pic(O) that are coprime to N .

Before showing how to compute xI we give some theory regarding modular curves and
modular polynomials.

5.1. Modular curves

Let f and Γ(f) be as above. We have Γ(N)⊆ Γ(f)⊆ SL2(Z), by the assumption that f
is modular of level N . Write X(f) for the modular curve corresponding to the congruence
subgroup Γ(f). The complex points of this curve are Γ(f)\H. The curve X(f) is a quotient of
the modular curve X(N) by a subgroup of SL2(Z/NZ), and can be defined over Q(ζN ). We
have a commutative diagram

X(N)

##GG
GG

GG
GG

G
f // P1

X(f)

f
<<zzzzzzzz
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and f :X(N)→P1 factors through the quotient X(f). Likewise, there exists a curve X(f)a
for every a ∈ (Z/NZ)∗ such that f factors through X(N)a→P1. As a complex curve, we have
X(f)a =X(f).

For ease of notation, we simply denote an affine point on X(f)a by a triple (E, P, Q) instead
of (E, P, Q). Here, P, Q form a basis for the N -torsion E[N ] of E with eN (P, Q) = ζaN for a
fixed choice of ζN .

Let l be a prime not dividing the level N . Writing Γ(f ; l) = Γ(f) ∩ Γ0(l), we have
inclusions

Γ(lN)⊆ Γ(f ; l)⊆ Γ(f).

Let Y (f ; l) andX(f ; l) be the affine and projective curves corresponding to Γ(f ; l), respectively.
They can be defined over Q(ζlN ). Just as we have curves X(f)a, we also have curves
X(f ; l)a. Affine points on X(f ; l)a (or points on Y (f ; l)a) are quadruples (E, P, Q, G), with
(E, P, Q) ∈X(f)a and G⊂ E[l] a (cyclic) subgroup of order l.

There is a natural map s :X(f ; l)a→X(f)a and a natural map t :X(f ; l)a→X(f)la. The
map s sends (E, P, Q, G) ∈X(f ; l)a to (E, P, Q) ∈X(f)a. The map t sends (E, P, Q, G) ∈
X(f ; l)a to (E/G, ϕ(P ), ϕ(Q)), where ϕ : E→ E/G has kernel G. The situation is as
follows.

X(f ; l)a
s

yyttttttttt
t

%%KKKKKKKKK

F

{{

F ′

$$

X(f)a

f

��

X(f)la

f

��
P1 P1

(5.1)

Here, F and F ′ are the composed maps.

Lemma 5.1. The maps s, t in diagram (5.1) both have degree l + 1.

Proof. We will show that the diagram

X(f)a

f

��

X(f ; l)a
soo

��
X(1) X0(l)oo

is Cartesian in the category of smooth projective curves with surjective maps. As the cover
X0(l)/X(1) has degree l + 1, this implies that s and t have degree l + 1. Here, the maps on
the ‘lower right part’ of the square are the forgetful maps. Instead of working over Q(ζN ), we
will work over C; the same result then holds over Q(ζN ). We may then omit the subscript
a in the diagram. Moreover, it is easier to work with X(N)/X(1) and X(l)/X(1) instead of
X(f)/X(1) and X0(l)/X(1), since in this case we explicitly know the Galois groups.

The fibre product of X(l) and X(N) is almost equal to X(Nl). Indeed, writing d(k) =
#(SL2(Z/kZ)/{±1}), the degree of X(Nl)/X(1) is

# SL2(Z/NlZ)/{±1}= 2 · d(N)d(l),
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and we obtain the diagram

X(Nl)

vv

}}

2

yyrrrrrrrrrr

X(N)

d(N)

��

X(Nl)/H
d(l)oo

d(N)

��
X(1) X(l)

d(l)
oo

where H is the subgroup {1} × {±1} ⊆ SL2(Z/NZ)× SL2(Z/lZ). Since we are working over
C, we know that the degrees on parallel sides of the square are equal. Hence, the square is
Cartesian.

Since we have
(−1 0

0 −1

)
∈ Γ0(l), the curve X(Nl)/H is a cover of X(f ; l). Hence, the diagram

X(f)

f

��

X(f ; l)soo

��
X(1) X0(l)oo

(5.2)

‘fits inside’ the bigger Cartesian diagram for X(Nl)/H. In particular, it is Cartesian. Since the
degree of X0(l)/X(1) is l + 1, the same must hold for X(f ; l)/X(f).

Remark 5.2. The curve X0(l) can be defined over Q. The Cartesian diagram (5.2) shows
that X(f ; l)a can be defined over Q(ζN ).

5.2. Modular polynomials

Let Y (f ; l)a be the affine curve defined in Subsection 5.1. We map Y (f ; l)a to a curve C inside
A1 ×A1 as in diagram (5.3) below. The map b is defined by b(x) = (s(x), t(x)), and the maps
p1, p2 are the two projection maps.

Y (f ; l)a
b // //

F ′ ))TTTTTTTTTTTTTTTTT

F

))
C // // A1 ×A1

p1
//

p2

��

A1

A1

(5.3)

The function field of C is generated by f and fl. Here, fl is as in (3.1) defined by fl(ω) = fσl(lω).
If f has rational Fourier coefficients, we have fl(ω) = f(lω). The minimal polynomial Φfl of fl
over Q(ζN )(f) is called the modular polynomial relating f and fl. The coefficients of Φfl need
not be polynomials in f yet, but after multiplying the coefficients by the common denominator,
we obtain a polynomial in Q(ζN )[X, Y ]. This polynomial is a model for the curve C. As we
have deg(F ) = deg(F ′), diagram (5.3) tells us that we have

degX(Φfl ) = degY (Φfl ) =
(l + 1) deg(f)

deg(b)
.

Remark 5.3. For f = j, the modular polynomial Φjl is the ‘classical’ modular polynomial
Φl that we used in Section 2.

Lemma 5.4. If f has rational Fourier expansion, then Φfl has rational coefficients.
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Proof. It suffices to show that X(f) can be defined over Q. Since the algebraic closure of Q
inside Q(f, j) is Q itself, the minimal polynomial Ψf of f over Q(j) is absolutely irreducible.
The curve defined by Ψf = 0 is absolutely irreducible and has Q(f, j) as function field showing
that X(f) is defined over Q.

Computing Φfl is relatively easy if we know the Fourier expansion of f . We have an upper
bound

deg(f)(l + 1)

for the degrees degX(Φfl ) and degY (Φfl ). By comparing the Fourier coefficients of f and
fl, we can recursively find the coefficients of Φfl . The following lemma often simplifies the
computations.

Lemma 5.5. Let f be a modular function, and let l be a prime not dividing the level of f .
Suppose that the modular polynomial Φfl has integer coefficients. If f is invariant under the
action of either S =

(
0 −1
1 0

)
∈ SL2(Z) or M =

(
0 −l
1 0

)
∈GL2(Q), then we have

Φfl (X, Y ) = Φfl (Y, X),

that is, Φfl is symmetric.

Proof. The proof is similar to the symmetry proof [17, Theorem 5.3] of the classical modular
polynomial for the j-function. Assume first that f is invariant under S. If we replace z by
−1/(lz) in the equation Φfl (f(z), f(lz)) = 0, we obtain

Φfl (f(−1/(lz)), f(−1/z)) = 0.

Using the invariance of f under S, we derive

Φfl (f(lz), f(z)) = 0.

Since Φfl (X, f) is irreducible in C[X, Y ], we see that Φfl (f, X) is a multiple of Φfl (X, f). There
exists a polynomial g(X, Y ) with

Φfl (f, X) = g(X, f)g(f, X)Φfl (f, X).

The Gauß lemma tells us that we have g(X, Y ) ∈ Z[X, Y ] and hence g(X, Y ) =±1. For
g(X, Y ) =−1, we obtain Φfl (X, Y ) =−Φfl (Y, X) and Φfl (X, X) = 0. Then X − Y would be
a factor of Φfl (X, Y ). This contradicts the irreducibility. Hence, we have g(X, Y ) = 1 and Φfl
is symmetric.

The other case proceeds similarly, one replaces z by −1/z in the beginning of the proof.

It is of great help that for many class invariants the coefficients of the modular polynomial
Φfl are a lot smaller than those of the classical modular polynomial for j. As an example, we
consider the Weber function f from the introduction. For small primes l the coefficients of the
polynomial are really small, like

Φf
5(X, Y ) = (X5 − Y )(X − Y 5) + 5XY.

For l = 13 it takes at least two of these journal pages to write down the polynomial Φjl , but we
have

Φf
13(X, Y ) = (X13 − Y )(X − Y 13) + 5 · 13XY

+ 13(X2Y 12 +X12Y 2 + 4X10Y 4 + 4X10Y 4 + 6X6Y 8 + 6X8Y 6).
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5.3. Computing xI

We now show how to use the modular polynomial Φfl to compute the desired value xI . As
before, we let x ∈Qp be a root of Ψf (X, j(E)) ∈Qp[X] and let I be an invertible O-ideal
of prime norm l -Np. Let Φfl be the modular polynomial defined above. From the moduli
interpretation of X(f ; l)a, it is clear that one of the roots of Φfl (x, X) ∈Qp[X] equals xI . To
see what the other roots are, we look at diagram (5.1). Above x ∈A1(Qp) there are deg(f)
distinct points (Ei, Pi, Qi) ∈ Y (f)a(Qp). Above (Ei, Pi, Qi) ∈ Y (f)a(Qp), there are l + 1 points
(Ei, Pi, Qi, Gj) ∈ Y (f ; l)a(Qp). Here, Gj ranges over the l + 1 subgroups of order l of Ei[l]. The
points (Ei, Pi, Qi, Gj) all map to x ∈A1(Qp) under F . The images under F ′ :X(f ; l)a→A1

are exactly the roots of Φfl (x, X).

Remark 5.6. The curve X(f ; l) is a quotient of X(lN). Since X(N) has good reduction
outside N , the curve X(f ; l) has good reduction outside lN by [15, Proposition 4.2]. Hence,
the description of the roots of Φfl (x, X) remains valid over Fp.

We need to decide which root of Φfl (x, X) equals xI . The first observation is that it suffices
to look at the roots in Qp. Indeed, if x is a class invariant then we automatically have x ∈Qp.
If x is not a class invariant, then xI need not lie in Qp. But if it does not, we have automatically
proven that x is not a class invariant.

Usually, xI is the only root of Φfl (x, X) that is also a root of Ψf (X, j(EI)). Hence, we test
for all roots α ∈Qp of Φfl (x, X) whether Ψf (α, j(EI)) = 0 holds. If x is a class invariant, we
find at least one such α. If we find exactly one root with this property, we have computed xI .

Lemma 5.7. Let the notation be as above. Suppose that f has degree one, and let x ∈Qp

be a class invariant. If the l-torsion of E is not Qp-rational, then there is exactly one root

α ∈Qp of both Φfl (x, X) ∈Qp[X] and Ψf (X, j(EI)) ∈Qp[X].

Proof. Let (E, P, Q) ∈ Y (f)a(Qp) be the unique point of Y (f)a with f(E, P, Q) = x ∈Qp.
Of the l + 1 points (E, P, Q, Gi) ∈ Y (f ; l)a(Qp) lying over (E, P, Q) ∈ Y (f)a(Qp), only for
the two points having Gi = E[I] or Gi = E[I] is the value j(t(E, P, Q, Gi)) contained in Qp;
cf. [4, Theorem 5.1]. If both F ′(E, P, Q, E[I]) and F ′(E, P, Q, E[I]) are roots of Φfl (x, X) ∈
Qp[X], then we must have [I] = [I] ∈ Pic(O). Because x is a class invariant, we then have
F ′(E, P, Q, E[I]) = F ′(E, P, Q, E[I]).

Assume that f has degree one, which is the case for example for the Weber-f function and the
function γ2 from the introduction. By Lemma 5.7, the polynomials Φfl (x, X) and Ψf (X, j(EI))
then have exactly one root in common: the value xI we were after. The proof of Lemma 5.7
breaks down if f has larger degree: there are more points (Ei, Pi, Qi) ∈ Y (f)a(Qp) that satisfy
f(Ei, Pi, Qi) = x. However, we think that it is unlikely that the conclusion of the lemma is
false, leading to the following conjecture.

Conjecture 5.8. The conclusion of Lemma 5.7 also holds for modular functions f that
yield class invariants but have degree larger than one.

Heuristics. Let f be a modular function that yields class invariants. Since we normally only
use f if its minimal polynomial P f∆ has ‘small’ coefficients, the degree of f will typically be
‘small’. Hence, there are not many points (Ei, Pi, Qi) ∈ Y (f)a(Qp) satisfying f(Ei, Pi, Qi) = x.

The main reason for our heuristic is of a practical nature: we did several experiments with
various modular functions (all of which had moderately small degree) and have never found a
counterexample.
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6. The algorithm

In this section we give the algorithm for computing the minimal polynomial of a class invariant
using p-adic arithmetic. The input of the algorithm is a discriminant ∆<−4 and a modular
function f of degree one that is known to yield class invariants for the order O of discriminant
∆. We assume that f is integral over Z[j], and for simplicity we assume that the polynomial P f∆
that we want to compute is integral. The function f needs to be specified both by its Fourier
expansion and by its minimal polynomial Ψf (f, X) ∈ Z[j, X] over C(j).

The output of the algorithm is the polynomial P f∆ ∈ Z[X].

Initialization. List the elements of the class group Pic(O) as reduced binary quadratic
forms [a, b, c] and compute the precision of

k =
π
√
|∆|

log 2

∑
[a,b,c]

1
a

+ 10

bits required to compute the Hilbert class polynomial for O. We will use n= dk/r(f)e bits
digits precision in our computations. We note that we have no rigorous proof that this precision
suffices, because the precision k for the Hilbert class polynomial is heuristic. Furthermore, the
reduction factor r(f) is only an asymptotic statement and is not proven to be correct for our
particular order O. Our heuristic bound of n bits has sufficed in all our experiments. If we insist
on a proven output we should replace k by the proven bound for the Hilbert class polynomial
from [2] and not divide by r(f).

Step 1. Find a prime p -N and an elliptic curve E/Fp with End(E)∼=O using the approach
outlined in Section 2. Compute the zeros x1, . . . , xk ∈ Fp of Ψf (X, j(E)) ∈ Fp[X].

Step 2. We have to decide which of these zeros is the reduction of a class invariant. First we
compute the structure of the group (O/NO)∗. This is a well-known computation in algebraic
number theory, and the standard way of doing this is by localizing the ring O at the primes l
dividing N , and then applying the l-adic logarithm to reduce the multiplicative problem to a
computation with additive groups. We refer to [18, § II.5] for details.

Sieve in the set

S = {a+ bπp | a, b ∈ Z, b 6= 0, (a, b) = 1, a+ bπp and pN∆ are coprime}

for smooth elements y1, . . . , yt generating (O/NO)∗. Here, πp is an element of norm p.

Step 3. Write (y1) = α1 · · · · · αs, with N(αi) = li ∈ Z prime. Compute the cycle

j(E)
ρ̄α1−−−→ j(E

α1)
ρ̄α2−−−→ · · ·

ρ̄αt−−−→ j(E
(y1)

) = j(E)

of j-invariants over Fp as in Section 2 using the modular polynomials for j. Using the
linear algebra technique explained in Section 5, compute the modular polynomial Φfl1 of
degree l1 for f . Next, compute all roots ηi ∈ Fp of Φfl1(x1, X) ∈ Fp[X] that also satisfy
Ψf (ηi, j(E

α1)) = 0. By Lemma 5.7, we find either zero or one such root ηi. If we find zero roots,
then x1 is not the reduction of a class invariant. If we find one root, we have computed xα1

1 .
Continuing like this, compute a series

x1

ρ̄α1−−−→ xα1
1

ρ̄α2−−−→ · · ·
ρ̄αt−−−→ x

(y1)
1 .

If we have x(y1)
1 = x1, compute x(y2)

1 , etc. If x1 is invariant under all generators y1, . . . , yt of
(O/NO)∗, it is the reduction of a class invariant. Otherwise, repeat this computation with x2,
etc. As there are only finitely many xk, this computation terminates after a finite number of
steps.
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Step 4. Say that x ∈ Fp is the reduction of a class invariant. Choose a smooth O-ideal
(α) = α1 . . . αu for the map ρα from Section 2 by sieving in the set S from Step 2.

Compute a cycle

j(E)
ρ̄α1−−−→ j(E

α1)
ρ̄α2−−−→ · · · ρ̄αu−−−−→ j(E

(α)
) = j(E),

and use this cycle to compute the corresponding cycle

x
ρ̄α1−−−→ xα1

ρ̄α2−−−→ · · · ρ̄αu−−−−→ xα = x

for x, just as in Step 3.

Step 5. Lift E/Fp to E1/Qp by lifting the coefficients of the Weierstraß equation for E
arbitrarily. We use two p-adic digits accuracy in this step.

Step 6. Lift x ∈ Fp to x1 ∈ Zp/(p2) as a root of Ψf (X, j(E1)) ∈ Zp[X]. As in Step 5, write
(α) = α1 . . . αt. Compute xα1 as the unique root of Φfl (x1, X) ∈ (Zp/(p2))[X] that reduces to
xα1

1 = xα1 modulo p, where l is the norm of α1.
Lift the cycle from Step 4 to a cycle

x
ρα1−−−→ xα1 −−→ · · · −−→ xα

over Qp with two p-adic digits accuracy. We will typically not have x= xα.
Compute ρα(j(E1)) as the unique root of Ψf (x(α)

1 , X) ∈ Zp[X] that reduces to j(E)
modulo p.

Step 7. Update ρα(j(E1)) to j(E2) according to the ‘Newton formula’ (2.2).

Step 8. Repeat Step 6 with j(E1) replaced by j(E2). We now work with four p-adic
digits precision. We obtain j(E3). Continue this iteration process until we have computed
the canonical lift j(Ẽ) with n= dk/r(f)e bits or m= n(log 2)/(log p) p-adic digits accuracy.
Compute the ‘canonical lift’ x̃ ∈ Zp of x as the root of Ψf (X, j(Ẽ)) reducing to x ∈ Fp.

Step 9. Compute the conjugates of x̃ under Pic(O) in the same fashion as before: for an
invertible O-ideal I of norm l coprime to N , compute j(E

I
) ∈ Fp as in Section 2. Knowing

j(E
I
), compute the unique root β ∈Fp of Φfl (x, X)∈Fp[X] that also satisfies Ψf (β, j(E

I
)) = 0.

Since we know the reduction x̃I = β of x̃I , we know which root of Φfl (x̃, X) ∈ Zp[X] is x̃I .

Step 10. Expand the polynomial

P f∆ =
∏

[I]∈Pic(O)

(X − x̃I) ∈ (Zp/(pm))[X],

and lift the coefficients of P f∆ from Zp/(pm) = Z/(pm) to Z, where we take the representative
between −pm/2 and pm/2. Return P f∆ ∈ Z[X].

Remark 6.1. The algorithm presented in this section also works for modular functions of
degree >1 for which Conjecture 5.8 holds.

We expect the run time of this algorithm to be Õ(|D|) for fixed f , just like the run time
for the p-adic algorithm for the j-function from [4]. There is a serious obstacle that prevented
us from proving this run time. The problem is that we cannot prove a reasonably smoothness
bound on the generators y1, . . . , yt in Step 2. If GRH holds true, we have a bound for the
α we find in Step 5; see [7, Lemma 2]. Although being B-smooth and lying in a prescribed
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residue class in (O/NO)∗ are quite unrelated, there appears to be no hope in proving similar
smoothness bounds for the generators in Step 2.

Furthermore, since the reduction factor of f only holds asymptotically we have no rigorous
proof that the precision

n= dk/r(f)e

we use in the computation will suffice. For a proven run time we would have to use k digits,
annihilating the improvement we obtain by using with a smaller function. We note that this
obstacle also prevented a run time analysis of the complex analytic method to compute minimal
polynomials of class invariants; see [8].

7. Example

We illustrate the p-adic algorithm by working with the function

f(z) =
η(z/5)η(z/7)
η(z)η(z/35)

∈ Z[[q1/35]],

where η(z) denotes the Dedekind eta function. More examples, including a large example and
an example where the polynomial P f∆ does not have integer coefficients, can be found in [3,
Chapter 7]. As displaying large numbers is not particularly pleasing to the human eye, we
work with a relatively small discriminant. Let O be the order of discriminant ∆ =−1571.
By [10, Theorem 3], the value f(ω) is a class invariant for a suitable choice of generator of the
Z-algebra O = Z[ω]. Furthermore, the polynomial P f∆ has integer coefficients, and the size of
these coefficients is a factor r(f) = 24 smaller than for the j-function.

By explicitly computing the conjugates of f over Q(j), we compute the minimal polynomial
Ψf of f . In accordance with the example in [11], we find

Ψf (j, X) =X48 + (−j + 708)X47 + . . .+ 12X + 1 ∈ Z[j, X].

The function f generates the function field of X0(35) over C(j) and therefore has degree two.
Using linear algebra, we compute some modular polynomials:

Φf2 = X3 + Y 3 −X2Y 2 + 2(XY 2 +X2Y ) +XY

Φf3 = X4 + Y 4 −X3Y 3 + 3(X2Y 3 +X3Y 2) + 3(Y 3X +X3Y )
+ 6(X2Y 2)− 3(Y 2X +X2Y )−XY.

The fact that these polynomials have degree l + 1 and not 2(l + 1) is due to the fact that f
is invariant under the Atkin–Lehner involution (the map b :X(f)→ C in diagram (5.3) has
degree two). Since 5 and 7 divide the level 35 of f , we cannot use Φf5 and Φf7 . We computed
all modular polynomials for primes up to 23. This should be seen as a precomputation.

The (heuristic) precision required to compute the Hilbert class polynomial for this order
is k = 550 bits. As we have r(f) = 48/2 = 24, we will use d550/24e= 23 bits accuracy in our
computations.

The prime p= 449 splits completely in the ring class field HO, and the elliptic curve

E : Y 2 =X3 +X + 16

of j-invariant 383 has endomorphism ring O. The polynomial Ψf (j(E), X) ∈ Fp[X] has the four
roots b1 = 62, b2 = 130, b3 = 239 and b4 = 358 in Fp. We know [10, Theorem 3] that each one
of them is a reduction of a class invariant. To illustrate our p-adic techniques, we reprove this.

A root bi ∈ Fp is the reduction of a class invariant if it is invariant under the action of
the group (O/35O)∗/{±1} ∼= Z/2Z× Z/2Z× Z/12Z× Z/12Z. We take {πp, 2πp − 11, 2πp −
19,−πp − 28} as a generating set for (O/35O)∗, where πp is an element of norm p. We choose
this particular set of generators, because the elements have smooth norm (except πp).
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Since bi is an element of Fp, it is invariant under the action of πp. The element α= 2πp − 11
has order 12 in (O/35O)∗, and the ideal (α) of norm 1587 = 3 · 232 factors as

(α) = p3 · p2
23 = (3, πp − 1) · (23, πp − 17).

We compute the cycle of j-invariants over Fp for the map ρα : Ell∆(Fp)→ Ell∆(Fp):

j(E) = 383
p3−−→ 13

p23−−−→ 24
p23−−−→ 383.

The modular polynomial Φf3 (b1, X) ∈ Fp[X] has two roots, namely 64, 95 ∈ Fp. We check that
64 satisfies Ψf (13, 64) = 0, where 13 is the j-invariant of E

p5 . The other root 95 does not satisfy
Ψf (13, 95) = 0, and we conclude that we have bp31 = 64 ∈ Fp. Continuing like this, we compute

b1 = 62
p3−−→ 64

p23−−−→ 34
p23−−−→ 62.

The computation for b2, b3, b4 proceeds similarly and they are also invariant under the action
of (α). The computation for the other two elements of our generating set is similar. All four
elements bi are invariant under the action of (O/35O)∗, proving that they are reductions of
class invariant.

We will work with b= b1 = 62 ∈ Fp. For the polynomial P j∆ we would have needed 62 p-
adic digits accuracy. For P f∆ we only need three p-adic digits. As element α for the map
ρα :XD(Cp)→XD(Cp) we again take α= 2πp − 11 of norm 3 · 232. We lift E/Fp to the curve
E1/Qp defined by Y 2 =X3 +X + 16 of j-invariant j(E1) = 383 + 224p ∈Qp. This leads to the
lift b1 = 62 + 45p ∈Qp.

We compute the ‘cycle’ for b1 ∈Qp corresponding to the map ρα:

b1 = 62 + 45p
p3−−→ 64 + 175p

p23−−−→ 34 + 6p
p23−−−→ 62− 198p= b

(α)
1 .

The degree two polynomial Ψf (X, b(α)
1 ) ∈ Zp[X] has roots 131− 94p+O(p2) and 383− 119p+

O(p2). We conclude that we have ρα(j(E1)) = 383− 119p ∈Qp. We update this j-value
according to the ‘Newton formula’ (2.2) and obtain j(E2) = 383− 98p ∈Qp. This is the
j-invariant of the canonical lift in two p-adic digits accuracy. We compute b̃= 62− 64p+
O(p2) ∈Qp. Similarly, we compute j(E3) = 383− 98p+ 127p2 and b̃= 62− 64p+ 66p2. To
compute the conjugates of b̃ under Pic(O)∼= Z/17Z∼= 〈p3〉 we use the modular polynomial
Φf3 once more. In the end we expand the polynomial

P f∆ =
∏

[I]∈Pic(O)

(X − b̃I) ∈ (Zp/p3)[X]

and we lift the coefficients to integers between −p3/2 and p3/2 to find

P f−1571 = X17 + 21X16 + 918X15 − 11046X14 + 49849X13 − 115187X12

+ 112918X11 + 168294X10 − 275500X9 + 361744X8 − 403346X7

+ 181066X6 − 10143X5 − 3403X4 − 4290X3 + 1422X2

− 71X + 1 ∈ Z[X].
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3. R. Bröker, ‘Constructing elliptic curves of prescribed order’, PhD Thesis, Universiteit Leiden, 2006.
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5. R. Bröker and P. Stevenhagen, ‘Constructing elliptic curves of prime order’, Contemp. Math. 463 (2008)

17–28.
6. H. Cohen, G. Frey et al., Handbook of elliptic and hyperelliptic curve cryptography (Chapman & Hall,

2006).
7. J.-M. Couveignes and T. Henocq, ‘Action of modular correspondences around CM-points’, Algorithmic

number theory symposium V, Lecture Notes in Computer Science 2369 (Springer, Berlin, 2002) 234–243.
8. A. Enge, ‘The complexity of class polynomial computation via floating point approximations’, Math.

Comp. 78 (2009) 1089–1107.
9. A. Enge and F. Morain, ‘Comparing invariants for class fields of imaginary quadratic fields’, Algorithmic

number theory symposium V, Lecture Notes in Computer Science 2369 (Springer, Berlin, 2002) 252–266.
10. A. Enge and R. Schertz, ‘Constructing elliptic curves over finite fields using double eta-quotients’,
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