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The separation angle of the free surface of a
viscous fluid at a straight edge
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We rework some of the die-swell singularity analysis for Stokes flow, originally by
Ramalingam (Ramalingam, 1994 Fiber spinning and rheology of liquid-crystalline
polymers, PhD thesis, Massachusetts Institute of Technology) in appendix A of his PhD
thesis, in an attempt to demonstrate that for capillary numbers in the range (0,∞)

the curvature may enter into the normal stress balance on the free surface and lead
to separation angles exceeding 180◦ and infinite curvature at the separation point.
The singular coefficients in the asymptotic solution and the free surface shape in a
neighbourhood of the separation point cannot be determined by a local analysis of the
Michael type (Michael, Mathematika, vol. 5, 1958, pp. 82–84) but must be found from
matching with the solution valid away from the die edge. The numerical method that
we use in the truncated die-swell domain is a boundary element method incorporating
the singular solution near the separation point. Although there is some variation in the
extrudate swell ratios at different capillary numbers reported in the numerical literature,
our results for capillary numbers Ca from 1 to 1000 are within the range of values
published in earlier papers. The computed separation angles at different values of Ca agree
well with the range of separation angles to be found in experimental and numerical papers.
The separation angle appears to converge to a value different from 180◦ as Ca increases,
leading us to conclude that the case of zero surface tension (Ca = ∞, with corresponding
separation angle of 180◦), is a singular limit.
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1. Introduction

The extrusion of a fluid, Newtonian or non-Newtonian, from a die in the form of a
right-circular tube or a straight channel, say, may give rise to a jet whose free surface is
different in shape from that of the die orifice. In the case of a viscoelastic fluid the extrudate
may have a diameter several times that of the die and gives rise to a phenomenon known
as die swell or extrudate swell, the correct prediction of which is of crucial importance in
maintaining the quality of processing applications of polymer melts such as blow moulding
or fibre spinning (Koopmans 1999). Even in the case of Newtonian fluids where polymer
chains, giving rise to hoop and extra normal stresses, are absent the jet will typically have
non-zero Gaussian curvature, the cross-sectional diameter of the jet at any distance from
the orifice being dependent on factors including the Reynolds number (Re) and capillary
number (Ca: the ratio between viscous drag forces and surface tension forces acting across
the free surface). The expansion or contraction of jets of Newtonian fluids under different
flow conditions and fluid properties seems to have first been reported experimentally by
Middleman & Gavis (1961).

One of the simplest extrusion flows of practical interest is that of the creeping planar flow
of a Newtonian fluid from a straight channel into air, in the absence of gravity. Although
there is now broad agreement in the literature, both experimental and computational,
on the final extrudate swell ratios of the jet at different capillary numbers, the study of
the asymptotic solution of Stokes flow near the separation point remains one of great
importance, for at least two reasons.

First, this simple flow is relevant to more complex cases.

(i) The neglect of inertial terms remains valid even near the separation point since, if
the components of the velocity v vary radially like rλ for some λ with Re(λ) > 0
(see (2.24a,b)), then the Cauchy stress ∼ rλ−1 and dominates over v · ∇v ∼ r2λ−1.

(ii) As pointed out by Ramalingam (1994), the analysis of the singular behaviour of the
flow variables near the orifice of an axisymmetric flow may be expected to appear
locally planar. Therefore, the asymptotic behaviour in the present case should not be
expected to be significantly different from the axisymmetric case.

(iii) The neglect of gravity may be justified following the argument of, for example,
Michael (1958): gravity gives variations in the free surface stresses of O(r) and this,
of course, corresponds to a contribution of O(rλ−1) with λ = 2. However, as will be
shown later, the strongest modes have exponents λ < 2, so that gravity plays no part
in forming the free surface very close to the point of separation.

(iv) The asymptotic form of the velocity field and even the stresses of this simple flow
are of great relevance to some viscoelastic fluid models and this is of interest
because of the polluting effects that stress singularities can have on the computation
of extrusion flows of polymer solutions and melts. For, example, Evans, Palhares
Junior & Oishi (2017) and Evans & Evans (2019) have proved that for extrudate
flow of both the Phan-Thien–Tanner (PTT) and Giesekus models in the presence of
a solvent viscosity, the velocity field is dominated by the Newtonian contribution
near the join of the die wall and free surface. A modified upper-convected Maxwell
(MUCM) model was derived by Apelian, Armstrong & Brown (1988) from network
theory and the fluid relaxation time made to decrease at increasing values of the
trace of the stress tensor. A consequence of this was that the viscoelastic stress fields
reduced to the asymptotic expressions for a Newtonian fluid near singularities at
non-deformable boundaries, including therefore those in ‘stick-slip’ flow. It should
be made clear, however, that viscoelastic stresses can have a dramatic effect on the
shape of the free surface in extrusion flows: see, as one example of many articles
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The separation angle of the free surface of a viscous

Axis of symmetry (y = 0)

Uniform flow

Poiseuille flow

Solid wall (y = 1)

y = η(x)

y = η∞

�2ψ = 0

(0,1)

α

Γ

Figure 1. Problem geometry of planar extrusion.

that could be cited, the recent paper of Varchanis et al. (2020). Since the angle of
separation is determined by matching the local singular solution with the far-field
solution this too is expected to be different from the Newtonian value, even if the
Reynolds number and the surface tension are the same.

The second reason for the ongoing importance of studying the asymptotic solution of
Stokes flow near the separation point is that an apparent discrepancy for this problem
between theoretical results on the one hand and computational and experimental results
on the other persists to the present day. Michael (1958), in his landmark paper of more
than 60 years ago, demonstrated using a local analysis and under the assumption of either
a planar free surface near the separation point or zero surface tension, that the angle of
separation α between the free surface and the channel wall (see figure 1) is 180◦. However,
there has been a wealth of results in the literature in the decades since then which seem to
contradict his theoretical result. Indeed, going back as far as some of the earliest finite
element (Nickell, Tanner & Caswell 1974) and boundary element (Kelmanson 1983b;
Tanner, Lam & Bush 1985; Tanner 1986) calculations and experimental results (Batchelor,
Berry & Horsfall 1973; Nickell et al. 1974), agreement on the shape of the free surface was
good and consistently showed that at the channel exit the free jet surface forms an angle in
excess of 180◦. The experimental results reported in Nickell et al. (1974), Tanner (1986)
and Tanner et al. (1985) were all at Reynolds numbers below 10−3 and those of Batchelor
et al. (1973) were for Re ≈ 10−8. The data from all these studies showed separation angles
of around 192◦ for the computations and between 189◦ and 194◦ for the experiments.

Schultz & Gervasio (1990) modified the earlier matched eigenfunction method of
Trogdon & Joseph (1980, 1981) to study the planar extrusion flow of a Newtonian fluid at
zero Reynolds number. Results for the free surface slope at the separation point seemed to
show this tended to 0 when Ca−1 = 0, as the number of eigenfunctions in their expansions
was increased sufficiently, consistent with the analysis of Michael (1958). However, for
non-zero surface tensions, no evidence of a zero free surface slope was found, and indeed
for the larger surface-tension curve Ca−1 = 1 it was found to be quite clear that the slope
was not converging to zero with an increase in the number of eigenfunctions.

More recently, mixed finite element methods with local irregular mesh refinement
near the separation point were used in computations by Salamon et al. (1995) of planar
extrudate flow at differing capillary numbers and Reynolds numbers, with and without
slip along the die wall. Verificatory calculations at Ca = 0 (the ‘stick-slip’ problem) and
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R.G. Owens

Re = 0 were stated to show excellent agreement for the computed pressure along the wall
with the analytical results of Richardson (1970), obtained with the Weiner–Hopf method,
and with the finite element results of Nickell et al. (1974), referred to already above. The
coefficients in the asymptotic expansion for the x-component of the velocity along the
free surface calculated by Salamon et al. (1995) were also pronounced to be in excellent
agreement with those in the literature (Richardson 1970; Ingham & Kelmanson 1984;
Georgiou et al. 1989; Tanner & Huang 1993). It should be noted, however, that the leading
coefficient ascribed to Richardson (1970) in table III of Salamon et al. (1995) is in fact
that of Tanner & Huang (1993) and that Richardson’s leading coefficient is some 16 %
smaller than the correct value. For larger values of Ca the calculations of Salamon et al.
(1995) predicted that the slope of the free surface at the die edge was strictly positive and,
following an earlier conjecture by Schultz & Gervasio (1990) that the free surface y = η(x)
near the separation point was of the form

η(x)− 1 = a + bx + cxn, (1.1)

determined that the best-fit coefficients were a = 0, b = 0.176, c = 0.0263 and n = 1.43
for Ca = 1 and Re = 0. This gives an angle of separation of (180 + arctan(0.176)) ≈
189.98◦ and, since 1 < n < 2, predicts both infinite curvature and integrable stresses at
the separation point, in keeping with the hypothesis of Schultz & Gervasio (1990). The
authors stated themselves to be in agreement with the earlier arguments of Ramalingam
(1994) that the contact angle α could be determined from the matching of the asymptotic
solution (valid close to the separation point) with the bulk flow.

Anderson & Davis (1993) performed a regular perturbation expansion in the limit of
small capillary number, similar to that of Richardson (1970) but, unlike his expansion,
theirs was valid near the corner singularity. Consistent with the results of Schultz &
Gervasio (1990) the authors showed that their local solution predicted a free surface having
infinite curvature at the corner which balances the normal force along the free surface.

Despite the weight of evidence presented above for a contact angle different from 180◦
for all but the cases Ca = 0,∞ it would be disingenuous to suggest that all authors have
been of this persuasion. In an attempt to reconcile what were seen to be contradictory
results from theory, computation and experiments for the separation angle between the free
surface and the die wall, Tanner (1986) and Tanner et al. (1985) used boundary element
methods to numerically investigate the effect on the jet shape of rounding the tube exit.
By setting the normal stress to zero just upstream of the separation point on the tube exit
the authors found that the initial departure of the free surface from the solid, rounded
wall was tangential, as demanded by the Michael theory. The authors were not able to
explain satisfactorily, however, why computations with sharp edged walls did not conform
to the condition of Michael. Trogdon & Joseph (1981) attempted to solve the problem of
determining the swell of a low speed planar jet by expressing the solution for the flow as
biorthogonal eigenfunction series and expressing the boundary conditions Fi(x, η(x)) = 0
(i = 1, 2, 3) on the free surface in terms of conditions evaluated on y = 1 by using Taylor
series:

Fi(x, η(x)) ≈ Fi(x, 1)+ (η(x)− 1)
∂Fi

∂y
(x, 1) = 0. (1.2)

The interface shape that resulted was a regular perturbation to the flat jet surface and
the authors predicted two possible values of the separation angle for any value of Ca,
including α = 180◦. This they chose as the physically more reasonable choice and arrived
at the conclusion that the dominant singular behaviour for the stresses was O(r−1/2),
irrespective of the value of Ca. However, the approach of Trogdon & Joseph has come
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The separation angle of the free surface of a viscous

under criticism by both Ramalingam (1994) and Salamon et al. (1995), who point out
that the Taylor series (1.2) for the kinematic and stress conditions used by Trogdon &
Joseph are not valid near the singularity (0, 1) because velocity gradients and the pressure
become singular as x → 0. Sturges (1979) has drawn attention to the fact that the local
analysis of Michael (1958) gave the angle of separation between a planar free surface of
a Newtonian fluid and a planar solid boundary and that therefore the source of apparent
discrepancy between the prediction of the Michael theory (α = 180◦) and the results of
computations and experiments of the die-swell problem (even with very small but non-zero
surface tensions) resides in the fact that the jet surface for the extrusion of a fluid is not
planar.

An outline of the present paper is as follows. After a brief reminder of the governing
equations for Stokes flow and an introduction to the problem to be solved and the boundary
conditions (§ 2.1) we rework some of the die-swell singularity analysis for Stokes flow,
originally by Ramalingam (1994) in appendix A of his PhD thesis, in an attempt to
demonstrate that for capillary numbers in the range (0,∞) the curvature enters into the
normal stress balance on the free surface and leads to separation angles different from π
and infinite curvature at the separation point. In this case, the singular coefficients and the
free surface shape in a neighbourhood of the separation point cannot be determined by a
local analysis of the Michael type (Michael 1958) but must be found from matching with
the solution valid away from the die edge. These conclusions are entirely consistent with
one scenario given by Ramalingam but we differ from him in some of the details of our
calculations, and these are presented in § 2.2.

The numerical method that we use for the solution of Stokes flow in the truncated
die-swell domain is a boundary element method incorporating the singular solution near
the separation point. Costabel (1987), Ingham & Kelmanson (1984, 1986), Katsikadelis
(2016), Kelmanson (1983a,b), Sauter & Schwab (2011) and a huge number of other
authors have already described in some considerable detail the derivation, advantages and
disadvantages of boundary element methods for the solution of a wide range of boundary
value problems in physics and engineering (including ones with boundary singularities)
and we accordingly limit our description of the basic method in § 3.1.1 to a brief treatment,
in order to give proper emphasis to more novel aspects of our work. Kelmanson (1983a)
used a boundary element method to solve the Stokesian ‘stick-slip’ problem. Because the
separation angle in this problem is fixed equal to 180◦ and the exponents {λn}∞n=1 in the
local asymptotic solution for the stream function ψ are known (cf. (2.21)), Kelmanson was
able to rewrite the governing biharmonic equation for ψ as one for χ where

χ = ψ − g, (1.3)

and g was a truncated asymptotic solution chosen so that χ had no singularities up to fourth
derivatives. This allowed the boundary used in the computations to pass right through
the separation point, since all terms appearing in the boundary integral formulation for
the problem (even the normal derivative of the Laplacian of χ ) remained bounded in a
neighbourhood of the separation point. The same approach was not possible, however,
when the author again used boundary element methods to solve the Stokesian die-swell
problem (Kelmanson 1983b) because neither the separation angle nor (therefore) the
exponents in the asymptotic solution were known a priori. This led the author to admit
that he was unable to take account of the true nature of the solution near the point of
separation and that therefore in this region the numerical results should be expected to be
in error.

In the context of finite element methods, Georgiou et al. (1989) used special singular
finite elements around the separation point in the Newtonian planar ‘stick-slip’ problem.
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In these elements the field shape functions embodied the known form of the singularity in
the radial direction and were compatible with the adjacent ordinary quadrilateral elements.
The singular elements for the pressure used lower-order representations than those in the
velocity singular elements and because the pressure is singular at the separation point itself
no node was placed there. Compared with ordinary finite elements, the singular elements
gave more accurate results for relatively coarse meshes and normal stress oscillations on
the free surface were practically eliminated. However, as with Kelmanson (1983b), an
analogous approach for the die-swell problem, using the correct asymptotic solution near
the separation point, was out of reach since the angles of separation and the associated
spectra of exponents were not available. Therefore, Georgiou, Schultz & Olson (1990)
used singular elements around the separation point having field shape functions in the
radial direction of the same form as in the ‘stick-slip’ case. Despite this approximation,
the authors found that the use of singular elements speeded up the convergence of the free
surface considerably compared with the cases where ordinary finite elements were used.
More recently, Georgiou & Boudouvis (1999) used singular finite element methods to
solve both the axisymmetric and planar Newtonian extrudate-swell problems. The authors
found that their singular finite element method performed better than a standard finite
element method for flows at low Reynolds numbers and with small to moderate surface
tensions. We compare the results of our simulations with theirs in § 4 of the present paper.

In this paper we show that it is possible to calculate the leading exponent in the local
asymptotic solution for ψ as the solution to a transcendental equation involving the
separation angle. We use the leading-order asymptotic solution for all variables on an
arc of radius 0 < rc � 1 centred at the separation point, the leading singularity expansion
coefficient in the asymptotic solution being one of the unknowns to be determined. This is
explained in greater detail in § 3.1.

By requiring that the normal component of velocity and the shear stress should both
vanish on the free surface, and by imposing suitable conditions elsewhere on the domain
boundary (see §§ 2.1.1 and 2.1.2) we are led to a well-posed problem. The normal stress
balance (see (2.18)) is then used to determine the correct position of the free surface itself.
A Levenberg–Marquardt method, described by Levenberg (1944) and Marquardt (1963)
and implemented in lsqnonlin of MATLAB, is used to determine numerically an optimum
free surface shape by minimizing the sum of squares of the normal surface stress residual
evaluated at certain points along the jet. More details are given in § 3.2.1. Once the jet
surface has been determined numerically away from the separation point, as described
above, we then proceed to find the parameters in the equation of the free surface near the
separation point by matching the two surfaces and their curvatures at a distance rc from
the separation point using the trust-region dogleg algorithm (implemented in fsolve in
MATLAB: see Powell (1970)). This is explained in greater detail in § 3.2.2.

2. Stokes flow

The steady inertialess flow of a Newtonian fluid in an n-dimensional domain Ω may be
described by the non-dimensionalized equations of continuity and linear momentum as
follows:

∇ · v = 0, in Ω, (2.1)

−∇p +�v = 0, in Ω, (2.2)

where v denotes the fluid velocity and p is the pressure.
From this point onwards we confine our attention to domains in the Cartesian

plane. With n = 2, (2.1) may be satisfied by the introduction of a twice continuously
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The separation angle of the free surface of a viscous

differentiable stream function ψ = ψ(x, y), where x and y are Cartesian coordinates, and
the Cartesian components u and v of the velocity are written as

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (2.3a,b)

By calculating the curl of (2.2) and thus eliminating the pressure, we arrive at the
biharmonic equation for the stream function

�2ψ = 0. (2.4)

Introducing the (negative scalar) vorticity ω := �ψ we see from (2.4) that ω satisfies
Laplace’s equation and that we may therefore rewrite (2.1)–(2.2) in terms of ψ and ω as

�ω = 0, �ψ = ω. (2.5a,b)

2.1. Planar extrusion: geometry and boundary conditions
We now consider the creeping planar extrusion flow of a Newtonian fluid, as illustrated
in figure 1. A viscous fluid is driven by an imposed pressure difference, in the absence of
gravity, in the channel/die between two parallel solid walls, x ∈ (−∞, 0], y = ±1, and is
then extruded at x = 0. Here (0, 1) is the separation point and, as will be seen later, where
the fluid stress is singular. The free surface of the fluid jet y = η(x) is labelled Γ in the
figure. Sufficiently far upstream the fluid flow is Poiseuille flow and in the jet downstream
the flow becomes uniform. Figure 1, for symmetry reasons, shows only the upper portion
of the flow geometry.

2.1.1. Inflow, outflow and wall boundary conditions
Along the channel walls no slip and no penetration conditions give us

u(x,±1) = v(x,±1) = 0, for all x ≤ 0, (2.6)

and along the line of symmetry a vanishing shear stress and no penetration mean that
∂u
∂y
(x, 0) = v(x, 0) = 0. (2.7)

By choosing the constant pressure gradient far upstream to be such that the volume flux
of fluid in the half-channel is equal to, say, 1, we get, assuming fully developed flow (u =
u( y) and v = 0 as x → −∞) the usual parabolic velocity profile

u(x, y) = 3
2
(1 − y2), v(x, y) = 0, as x → −∞. (2.8)

This immediately leads to the conclusion that

ψ = 3
2

y
(

1 − y2

3

)
and ω = −3y, (2.9a,b)

as x → −∞, where we have chosen to fix ψ = 0 on y = 0. The line of symmetry
and the solid walls y = ±1 are streamlines of the flow (see § 2.1.2). As x → ∞,
uniform flow conditions are assumed to hold and therefore limx→∞ u(x, y) = 1/η∞
and limx→∞ v(x, y) = 0, where η∞ := limx→∞ η(x). Thus, the fluid vorticity vanishes
infinitely far downstream and

lim
x→∞ψ(x, y) = y

η∞
, (2.10)

the free surface being a streamline, with ψ(x, η(x)) = 1.
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2.1.2. Free surface conditions
We require that the free surface Γ does not move, that the free surface shear stress vanishes
and that there is a zero net normal force at each point on Γ .

Let n̂ denote the outward pointing unit normal vector and t̂ a unit tangent vector to the
boundary ofΩ , oriented in the clockwise direction. Then the kinematic condition imposed
on the free surface is

n̂ · v = 0, (2.11)

which is equivalent to the free surface being a streamline (ψ(x, η(x)) = 1 in the present
case).

Denoting the Cauchy stress tensor by

σ := −pδ + (∇v + (∇v)T), (2.12)

where δ is the identity tensor, the vanishing of the shear stress on the free surface may be
written as

σnt := t̂ · σ · n̂ = 0. (2.13)

From (2.3a,b) and the definition of σ in (2.12) we get

∂2ψ

∂n2 − ∂2ψ

∂t2
= 0, on Γ, (2.14)

and thence, on the free surface,

ω := �ψ = ∂2ψ

∂n2 + ∂2ψ

∂t2
= 2

∂2ψ

∂t2
= −2κ

∂ψ

∂n
, (2.15)

(see, for example, Batchelor (1967) or Longuet-Higgins (1953)), where κ denotes the
signed curvature of the free surface

κ(x) = −∇ · n̂. (2.16)

The relationship (2.15) will be seen to be useful in § 3.
Finally, the normal stress balance equation that must be satisfied on Γ is

[σnn] := n̂ · σ · n̂ + pa = γ κ, (2.17)

where γ denotes the dimensionless surface tension (the reciprocal of the capillary number)
and [σnn] denotes the jump σnn + pa where pa is atmospheric pressure, assumed constant.
Again, using (2.3a,b) and the definition of σ in (2.12), we are led to the result

[σnn] = −[p] − 2
∂2ψ

∂n∂t
= −[p] − 2

∂2ψ

∂n∂s
= γ κ, on Γ. (2.18)

Here, ∂/∂s denotes differentiation with respect to the arclength s and [p] is the excess
pressure (fluid pressure p minus pa).

2.2. Planar extrusion: the solution and the shape of the free surface near the point of
separation

2.2.1. Shape of the free surface near (0, 1)
Michael (1958) assumed, at least sufficiently close to the separation point (0, 1), that the
equation of the free surface Γ was θ = α in plane polar coordinates (r, θ) centred at (0, 1)
with θ measured in the anticlockwise direction from the channel wall y = 1; see figure 2.
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θ

Γ

(0,1)Solid wall (y = 1)

r
(−r cos θ, 1 − r sin θ)

Figure 2. Polar angle θ measured in the anticlockwise direction from the channel wall y = 1.

We now seek to generalize this by assuming only the existence of a right-hand tangent line
to the free surface at the separation point (0, 1), and making an angle α with the channel
wall y = 1. Thus, α is the limit, as r → 0, of θ , when (−r cos θ, 1 − r sin θ) is a point on
the free surface.

Drawing inspiration from section A.4 of the appendix of Ramalingam (1994) but with
some differences of notation from his, we write the equation of the free surface Γ near
(0, 1) as the sum of the equation of the right-hand tangent line at (0, 1) and terms
accounting for the possible nonlinearity of the free surface

y = 1 + h(r)

= 1 + r sin(α − π)+ h1rp1+1 + h2rp2+1 − cpr2

2γ
cosα + O(rp3+1)

= 1 − r sinα + h1rp1+1 + h2rp2+1 − cpr2

2γ
cosα + O(rp3+1), (2.19)

with p3 > 1, p2 > p1 > 0 and 0 < γ < ∞, as shown in figure 1, where r denotes the
distance from (0, 1). The coefficients h1 and h2 and exponents p1 and p2 are to be
determined from the kinematic condition (2.11), the vanishing of the shear-stress (2.13)
and the normal stress balance (2.18) on the free surface. Here cp is a constant (actually, a
function cp = cp(γ )) appearing in the singular expression for the pressure (see § 2.2.6) and
chosen so as to make the singular normal stress and the far-field normal stress continuous
on the free surface. Note that in his thesis, Ramalingam (1994) did not attempt to calculate
h2 and that the term involving cp is absent.

2.2.2. Singular solution in a sector centred at (0, 1)
In the sector

D = {(r, θ) : 0 ≤ r ≤ rc, 0 ≤ θ ≤ π + arcsin(h(r)/r)}, (2.20)

at the separation point (0, 1) (for a certain rc > 0) we write the stream function in the form

ψ = 1 +
∞∑

n=1

r1+λn fn(θ), (2.21)

where the parameters {λn}∞n=1 are eigenvalues to be determined and the non-zero function
fn(θ) is a linear combination of trigonometric functions

fn(θ) = An cos((λn + 1)θ)+ Bn sin((λn + 1)θ)+ Cn cos((λn − 1)θ)+Dn sin((λn − 1)θ).
(2.22)
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Lugt & Schwiderski (1965) showed that the functions r1+λn fn(θ) (n = 1, 2, 3, . . .) in (2.21)
form a complete set of solutions to the biharmonic equation in the plane, provided that
λn 
= 1 and Re(λn) > 0. In all that follows we have ordered the {λn} so that

0 < Re(λ1) < Re(λ2) < Re(λ3) < . . . . (2.23)

The radial and transverse components of the velocity v are given by

vr = 1
r
∂ψ

∂θ
=

∞∑
n=1

rλn f ′
n(θ) and vθ = −∂ψ

∂r
= −

∞∑
n=1

(λn + 1)rλn fn(θ), (2.24a,b)

so that, as remarked for example by Sturges (1979), the weak regularity condition Re(λn) >
0 may be seen to mean that the velocity vanishes as r → 0. Following Michael (1958), we
also observe that Re(λn) > 0 is a physical requirement in order that the integrated stresses
remain finite as r → 0.

Note that additional terms of the form

r(A0 cos θ + B0 sin θ + C0θ cos θ + D0θ sin θ) (2.25)

and

r2(A1 cos(2θ)+ B1 sin(2θ)+ C1θ + D1), (2.26)

could have been added to the series (2.21) (being solutions to the biharmonic equation) but
these are excluded. The terms in (2.25) are omitted for reasons that are the same as those
given above for the insistence that the weak regularity condition Re(λn) > 0 hold. For the
terms in (2.26), it may be shown that if the boundary conditions applied are the same as
those for f1(θ) in §§ 2.2.3–2.2.5, non-trivial solutions for the coefficients A1, B1, C1 and
D1 are possible only if α satisfies

sin(2α)− 2α cos(2α) = 0, (2.27)

(see too, (2.31) of Anderson & Davis (1993) or (32) of Lugt & Schwiderski (1965)) and
therefore only for very specific values of the separation angle: α ≈ 0.715π, 1.230π or
1.735π.

If the equation y = 1 + h(r) of Γ is linear in r, as assumed by Michael (1958), then
obviously conditions on this surface are imposed at θ = α. More generally, however, in
order to impose (kinematic and stress) conditions at a point (r, θ) on the free surface
(2.19) we need to be able to develop all pertinent functions of θ about α. We note from
(2.19) and h = r sin(θ − π) = −r sin θ that

sin θ = sinα − h1rp1 − h2rp2 + cpr
2γ

cosα + h.o.t., (2.28)

where h.o.t. refers to higher-order terms. Choosing (r, θ) to be the polar coordinates of a
point on the free surface Γ , and recalling that α is the limit in this case as r → 0 of θ , we
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The separation angle of the free surface of a viscous

have sin(θ − α) ∼ θ − α which means, using (2.28) and a Taylor series centred at α, that

cos θ = cosα − (θ − α) sinα + h.o.t.

= cosα − sinα
[(

sinα − h1rp1 − h2rp2 + cpr
2γ

cosα
)

cosα − sinα cos θ
]

+ h.o.t.

⇒ cos θ = cosα + tanα
(

h1rp1 + h2rp2 − cpr
2γ

cosα
)

+ h.o.t. (2.29)

More generally, any function F(θ), differentiable at θ = α (for example, fn or f ′
n), may be

written as a Taylor series centred at α as follows:

F(θ) = F(α)− 1
cosα

(
h1rp1 + h2rp2 − cpr

2γ
cosα

)
F′(α)+ h.o.t. (2.30)

In what follows, we describe the boundary conditions on the solid wall {(x, 1) : x ≤ 0} as
well as the kinematic, shear-free and normal stress balance conditions that must hold on
the free surface Γ .

2.2.3. Wall boundary conditions (2.6)
From (2.6) and (2.24a,b), no slip and no penetration on the solid wall θ = 0 lead to the
conditions

fn(0) = f ′
n(0) = 0, n = 1, 2, 3, . . . (2.31)

2.2.4. Kinematic condition (2.11)
Using (2.19) and (2.24a,b), the vanishing of the normal component n̂ · v of velocity on the
free surface y = 1 + h(r) yields,

∞∑
n=1

(
h′ cos θ − r − hh′

√
r2 − h2

sin θ
)

rλn f ′
n(θ)

+
∞∑

n=1

(
h′ sin θ + r − hh′

√
r2 − h2

cos θ
)
(λn + 1)rλn fn(θ) = 0. (2.32)

Developing all functions of θ in (2.32) about α, as explained in (2.28)–(2.30), the
leading-order term for the first line of (2.32) may be shown to be(

h1p1rp1

cosα

)
rλ1 f ′

1(α), (2.33)

whereas that for the second line of (2.32) is −(λ1 + 1)rλ1 f1(α). To O(rλ1), the kinematic
condition therefore gives

f1(α) = 0, (2.34)

in agreement with (A.27) of Ramalingam (1994).
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Suppose now that p1 = λ2 − λ1, as assumed by Ramalingam (1994). Then, equating the
O(rλ2) terms of (2.32) gives

h1p1

cosα
f ′
1(α) = − h1

cosα
(λ1 + 1)f ′

1(α)+ (λ2 + 1)f2(α),

⇒ f2(α) = h1f ′
1(α)

cosα
. (2.35)

and the expression (2.35) corrects the result in (A.28) of Ramalingam (1994).

2.2.5. Vanishing free surface shear stress (2.13)
The evaluation of the leading-order (O(rλ1−1)) terms in (2.13) leads (again, using
(2.28)–(2.30)) to

1
2
((1 − λ2

1)f1(α)+ f ′′
1 (α)) = 0, (2.36)

which, combined with (2.34), gives

f ′′
1 (α) = 0, (2.37)

as also obtained by Ramalingam (1994) in his (A.30). From (2.22), (2.31), (2.34) and (2.37)
we have (cf. Michael (1958), equations (1)–(2))

An + Cn = 0, n = 1, 2, 3, . . . , (2.38)

(λn + 1)Bn + (λn − 1)Dn = 0, n = 1, 2, 3, . . . , (2.39)

and, when n = 1, (cf. Michael (1958), equations (3)–(4))

An cos((λn + 1)α)+ Bn sin((λn + 1)α)+ Cn cos((λn − 1)α)+ Dn sin((λn − 1)α) = 0,
(2.40)

An(λn + 1)2 cos((λn + 1)α)+ Bn(λn + 1)2 sin((λn + 1)α)

+ Cn(λn − 1)2 cos((λn − 1)α)+ Dn(λn − 1)2 sin((λn − 1)α) = 0. (2.41)

We see, from calculation of the determinant of the system (2.38)–(2.41) when n = 1 that
for non-trivial solutions to exist in this case, λn has to satisfy the eigenvalue problem

λn sin 2α − sin 2αλn = 0, (2.42)

and, for α ∈ [π, 3π/2], this equation always has a root λ1 ∈ [1/3, 1/2]. Equation (2.42)
has already been obtained by Dean & Montagnon (1949), Lugt & Schwiderski (1965) and
Moffatt (1964) in the context of corner and wedge flows, and, for example, by Sturges
(1979) and Ramalingam (1994) in the present context. Huilgol & Tanner (1977) also
derived (2.42) in their study of the separation at a sharp edge of a second-order fluid
under creeping flow conditions.

From (2.38)–(2.42), three of the coefficients A1, B1, C1 or D1 in the development (2.22)
of f1(θ)may be expressed in terms of the fourth. Expressing A1, B1 and C1 in terms of D1,
for example, leads to an expression for rλ1+1f1(θ) identical to that for the leading-order
perturbation approximation to the stream function in (2.22) of Anderson & Davis (1993).
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The separation angle of the free surface of a viscous

Again, assuming that p1 = λ2 − λ1 and using (2.28)–(2.30), the O(rλ2−1) terms in
(2.13) give

2λ1f ′
1(α)

h1p1

cosα
− (1 − λ2

1)h1

2 cosα
f ′
1(α)− h1

2 cosα
f ′′′
1 (α)+ 1

2
((1 − λ2

2)f2(α)+ f ′′
2 (α)) = 0.

(2.43)
Together with (2.35) we then get

f ′′
2 (α) = h1

cosα
( f ′′′

1 (α)− p1(2λ1 − p1)f ′
1(α)). (2.44)

2.2.6. Normal stress balance (2.17)
Observing that x(r) = (r2 − h(r)2)1/2 and y = 1 + h(r) and using (2.19), it may be shown
that the signed curvature (2.16)

κ(r) = −h1p1( p1 + 1)
cosα

rp1−1 − h2p2( p2 + 1)
cosα

rp2−1

+ h2
1 tanα sec2 αp1(2p1 + 1)r2p1−1 + cp

γ
+ h.o.t. (2.45)

Let us now integrate with respect to r the r-component of the conservation of linear
momentum equation (2.2):

0 = −∂p
∂r

+ 1
r
∂

∂r

(
r
∂vr

∂r

)
+ 1

r2
∂2vr

∂θ2 − vr

r2 − 2
r2
∂vθ

∂θ
. (2.46)

Then, supposing that λn 
= 1 and in agreement with Michael (1958) up to an additive
constant, we get

p =
∞∑

n=1

rλn−1

(λn − 1)

(
(λn + 1)2f ′

n(θ)+ f ′′′
n (θ)

)
+ pa − cp. (2.47)

Using this, (2.12) and (2.24a,b) we end up with the following expression for the normal
stress on y = 1 + h(r):

‖n‖2
2σnn = −

( ∞∑
n=1

rλn−1

(λn − 1)

(
(λn + 1)2f ′

n(θ)+ f ′′′
n (θ)

)
+ pa − cp

) n2
r +n2

θ︷ ︸︸ ︷(
h′2 + (r − hh′)2

r2 − h2

)

+ 2
∞∑

n=1

λnrλn−1f ′
n(θ)

(
h′2 cos 2θ − 2

h′(r − hh′)√
r2 − h2

sin 2θ − (r − hh′)2

r2 − h2 cos 2θ
)

︸ ︷︷ ︸
n2

r −n2
θ

+
∞∑

n=1

(
(1 − λ2

n)r
λn−1fn(θ)+ rλn−1f ′′

n (θ)
)

×
(

−h′2 sin 2θ − 2
h′(r − hh′)√

r2 − h2
cos 2θ + (r − hh′)2

r2 − h2 sin 2θ
)

︸ ︷︷ ︸
nrnθ

, (2.48)
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where

‖n‖2
2 = n2

r + n2
θ = h′2 + (r − hh′)2

r2 − h2 = 1 + O(r2p1) (2.49)

is the square of the (Euclidean) norm of a normal vector n = (nr, nθ ) to the free surface.

2.2.7. Determination of h1, h2 and f2(θ)
Determination of h1. With the choice p1 = λ1 (that is, assuming that curvature effects
enter into a dominant balance with the normal stress on the free surface) and using the
developments (2.28)–(2.30) we can equate the dominant O(rλ1−1) terms in (2.18) from
(2.45) and (2.48), to obtain

−γ h1λ1(λ1 + 1)
cosα

= − 1
(λ1 − 1)

(
(λ1 + 1)2f ′

1(α)+ f ′′′
1 (α)

)
− 2λ1f ′

1(α),

⇒ γ h1

cosα
= (3λ2

1 + 1)f ′
1(α)+ f ′′′

1 (α)

λ1(λ
2
1 − 1)

. (2.50)

From (2.38)–(2.40), for example, the coefficients A1, C1 and D1 appearing in the definition
(2.22) of f1 may be re-expressed in terms of B1. The subsequent evaluation of f ′

1(α) and
f ′′′
1 (α), the use of the eigenvalue equation (2.42) and some simplification then allows us to

rewrite (2.50) as

γ h1 = 4B1λ1 sinα cosα
(1 − λ1) sin λ1α

= 4B1 cos λ1α

(1 − λ1)
. (2.51)

This bears some resemblance to (A.33) of Ramalingam (1994), but note that his B1
corresponds to our A1. Using the numerical scheme to be presented in the next section
we have chosen to calculate C1 rather than B1 and in terms of this coefficient, h1 is written
as

γ h1 = − 4C1 cos λ1α sinα
(cosα − λ1 cot λ1α sinα)

. (2.52)

Determination of h2. With the choices p1 = λ1, p1 = λ2 − λ1 and p2 = λ2 and using
the developments (2.28)–(2.30) and the results (2.34) and (2.37) we can also equate the
O(rλ2−1) terms in (2.18) from (2.45) and (2.48), to obtain

− 1
(λ2 − 1)

((3λ2
2 + 1)f ′

2(α)+ f ′′′
2 (α))+ h1

(λ1 − 1) cosα
f (iv)1 (α)

= −γ h2λ2(λ2 + 1)
cosα

+ γ h2
1 tanα sec2 αλ1(2λ1 + 1),

⇒ γ h2

cosα
= (3λ2

2 + 1)f ′
2(α)+ f ′′′

2 (α)

λ2(λ
2
2 − 1)

+ γ h2
1

2
tanα sec2 α. (2.53)

In deriving (2.53) we have made use of the result that f (iv)1 (α) = 0; something that follows
immediately from the definition of f1 from (2.22) with coefficients A1 to D1 and λ1 and α
satisfying (2.38)–(2.42).

Determination of f2(θ). Referring to the linear combination (2.22) in the case n = 2
we see that (2.35), (2.38), (2.39) and (2.44) represent a system of four equations in the
four unknowns A2, B2, C2 and D2, which may therefore be found in terms of h1, α and
one of A1, B1, C1 or D1. The coefficient matrix for this system is non-singular since p1 =
942 A50-14
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λ1 = λ2 − λ1 ⇒ λ2 = 2λ1 (in agreement with the r exponent in the correction Caψ1 to
the leading-order term in the perturbation expansion (2.13a) of the stream function in
Anderson & Davis (1993)) and therefore, unless α = 3π/2, does not satisfy (2.42).

The assumptions that p1 = λ1 and p1 = λ2 − λ1 (and hence that λ2 = 2λ1) are
necessary in order that the separation angle α be different from π. This is proved in Lemma
A.1 (see Appendix A).

In summary of the results of the analysis of § 2.2, the singular expansion (2.21) for the
stream function may now be written as

ψ = 1 + r1+λ1 f1(θ)+ r1+2λ1 f2(θ)+ . . . , (2.54)

where the terms on the right-hand side depend upon r, λ1, θ and one of A1, B1, C1 or D1.
We will find C1 as part of the solution of the boundary integral discretization of the system
of (2.5a,b) and in § 3.1.1 explain precisely how. Ramalingam (1994) correctly stated that
λ1 and α cannot be decided by a local analysis but must be determined by matching with
the far-field solution. The same is true of the pressure constant cp. However, he did not
perform such a matching. The coefficients h1 and h2 may be determined from (2.50) and
(2.53), respectively. Details of the system of nonlinear equations to be solved for λ1, α, cp,
h1 and h2 will be described in § 3.2.2.

3. Numerical scheme

3.1. An integral formulation of (2.5a,b) using fundamental solutions
Let Ω be the truncated domain whose boundary ∂Ω is AB ∪ BC′ ∪ C′C′′ ∪ C′′D ∪ DE ∪
EA, as shown in figure 3. The inflow boundary AB is set at a distance −x−∞ upstream and
the outflow boundary DE a distance x∞ downstream of the die exit. Now C′C′′ is defined
to be the arc

{(rc, θ) : 0 ≤ θ ≤ π + arcsin(h(rc)/rc)}, (3.1)

for some choice of 0 < rc � 1. Thus, C′ is the point (−rc, 1) and C′′ the point (x0, η(x0))
where x0 is the positive root of

x2
0 + (η(x0)− 1)2 = r2

c . (3.2)

Suppose that (x′, y′) is an arbitrary point on ∂Ω . Then, using Green’s identities it may be
shown that ψ(x′, y′) and ω(x′, y′), the solutions to (2.5a,b), may be expressed in integral
form as

ξ(x′, y′)
2π

ψ(x′, y′) =
∫
∂Ω

(
∂ω

∂n
G2 − ω

∂G2

∂n
+ ∂ψ

∂n
G1 − ψ

∂G1

∂n

)
ds, (3.3)

ξ(x′, y′)
2π

ω(x′, y′) =
∫
∂Ω

(
∂ω

∂n
G1 − ω

∂G1

∂n

)
ds, (3.4)

where the normal derivative ∂/∂n := n̂ · ∇ and ξ(x′, y′) is the angle between the left- and
right-hand tangents at (x′, y′). The functions G1 = G1(x, y, x′, y′) and G2 = G2(x, y, x′, y′)
are fundamental solutions of, respectively, the two-dimensional Laplace’s equation and
biharmonic equation, chosen to be

G1 = − 1
4π

log((x − x′)2 + ( y − y′)2), (3.5)

G2 = − 1
16π

(((x − x′)2 + ( y − y′)2)(log((x − x′)2 + ( y − y′)2)− 2)). (3.6)
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A

B

E

D

C′

C′′

C
(0,1)

rc

x = x–∞

ω, ωn

ψn, ωn

ψn, ωn

Ω

Γ

x = x∞

Figure 3. The integrals on the right-hand sides of (3.3) and (3.4) are evaluated along AB ∪ BC′ ∪
C′C′′ ∪ C′′D ∪ DE ∪ EA. Along the arc C′C′′ the singular solution (3.7) and its derivatives are
used.

3.1.1. Discretization
A boundary element method for the determination of (ψ, ω) in the domain Ω with a
given free surface Γ will consist of a quadrature evaluation of (3.3)–(3.4) and incorporate
the boundary conditions given in § 2.1.1 and free surface conditions (2.11) and (2.15).
Referring to figure 3 we divide BC′ into N1 line segments. Unlike Kelmanson (1983b), the
singular solution

ψ(r, θ) ∼ 1 + r1+λ1 f1(θ)+ r1+2λ1 f2(θ), (3.7)

(see (2.21)) and its derivatives are used along C′C′′.
(N.B. An alternative to this approach, allowing us to take rc → 0, would be to use a

reformulation of the boundary integral equation. We note that in Stokes flow the tangential
derivative of the pressure p is the same as the normal derivative of ω along a curve,

∂p
∂s

= ∂ω

∂n
, (3.8)

so that, following Hansen & Kelmanson (1994), the first terms in the integrals on the
right-hand sides of (3.3) and (3.4) may be replaced by (∂p/∂s)G2 and (∂p/∂s)G1,
respectively. An integration by parts may now be performed along the domain boundary,
the integrability of −p(∂Gi/∂s) (i = 1, 2) at the separation point allowing us to shrink the
arc radius to zero. This merits further investigation.)

Again, unlike Kelmanson (1983b) C′′D is divided into (N2) arcs rather than chords.
Finally, EA is divided into N3 segments. We denote the total number of arcs and line
segments by M := N1 + N2 + N3 and, ordering these in a clockwise direction, beginning
with the segment having a left-hand end point at B we have

BC′ ∪ C′′D ∪ EA =
M⋃

i=1

∂Ωi, (3.9)

where the ith arc or line segment is denoted by ∂Ωi. The abscissa of the ith point (x′
i, y′

i)
of (3.3)–(3.4) is chosen to be that of the midpoint of the segment ∂Ωi in BC′ or EA or that
of the midpoint of the chord corresponding to the arc ∂Ωi in C′′D. The corresponding
ordinate y′

i is chosen so that (x′
i, y′

i) ∈ ∂Ωi. Then, one last point (x′
M+1, y′

M+1) ∈ ∂Ω ,
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The separation angle of the free surface of a viscous

different from the M others, is chosen. The 2M + 1 unknowns to be determined from
the discretization of (3.3)–(3.4) are then numerical approximations to:

(i) ω(x′
i, y′

i) and (∂ω/∂n)(x′
i, y′

i), for i = 1, 2, . . . ,N1 (along BC′);
(ii) (∂ψ/∂n)(x′

i, y′
i) and (∂ω/∂n)(x′

i, y′
i), for i = N1 + 1, . . . ,M (along C′′D and EA);

and
(iii) one of the coefficients, (C1, say), appearing in the function f1(θ) of (3.7) (the other

coefficients being found from (2.38)–(2.40)).

Note that along C′′D, ω, appearing in the integrals on the right-hand sides of (3.3)–(3.4),
is replaced by −2κ(∂ψ/∂n), as explained in (2.15).

We denote the numerical approximations to the variable evaluations in (i) and (ii) in the
list above by ωi, ωn,i and ψn,i. The jth equations in a discretized form of (3.3) and (3.4),
leading to a full rank linear system of 2M + 1 equations, may now be written as

ξ(x′
j, y′

j)

2π
ψ(x′

j, y′
j)

=
N1∑
i=1

(
ωn,i

∫
∂Ωi

G2(x, 1, x′
j, y′

j) dx − ωi

∫
∂Ωi

∂G2

∂y
(x, 1, x′

j, y′
j) dx − ∂G1

∂y
(x, 1, x′

j, y′
j) dx

)

+
M∑

i=N1+1

(
ωn,i

∫
∂Ωi

G2(x, y, x′
j, y′

j) ds + ψn,i

∫
∂Ωi

(
2κ
∂G2

∂n
(x, y, x′

j, y′
j)+ G1(x, y, x′

j, y′
j)

)
ds

−ψi

∫
∂Ωi

∂G1

∂n
(x, y, x′

j, y′
j) ds

)

+
∫

C′C′′∪AB∪DE

(
∂ω

∂n
G2 − ω

∂G2

∂n
+ ∂ψ

∂n
G1 − ψ

∂G1

∂n

)
ds, j = 1, 2, 3, . . . ,M + 1,

(3.10)

ξ(x′
j, y′

j)

2π
ωj =

N1∑
i=1

(
ωn,i

∫
∂Ωi

G1(x, 1, x′
j, y′

j) dx − ωi

∫
∂Ωi

∂G1

∂y
(x, 1, x′

j, y′
j) dx

)

+
M∑

i=N1+1

(
ωn,i

∫
∂Ωi

G1(x, y, x′
j, y′

j) ds + 2ψn,i

∫
∂Ωi

κ
∂G1

∂n
(x, y, x′

j, y′
j) ds

)

+
∫

C′C′′∪AB∪DE

(
∂ω

∂n
G1 − ω

∂G1

∂n

)
ds, j = 1, 2, 3, . . . ,N1, (3.11)

−ξ(x
′
j, y′

j)

π
κ(x′

j, y′
j) =

N1∑
i=1

(
ωn,i

∫
∂Ωi

G1(x, 1, x′
j, y′

j) dx − ωi

∫
∂Ωi

∂G1

∂y
(x, 1, x′

j, y′
j) dx

)

+
M∑

i=N1+1

(
ωn,i

∫
∂Ωi

G1(x, y, x′
j, y′

j) ds + 2ψn,i

∫
∂Ωi

κ
∂G1

∂n
(x, y, x′

j, y′
j) ds

)

+
∫

C′C′′∪AB∪DE

(
∂ω

∂n
G1 − ω

∂G1

∂n

)
ds, j = N1 + 1, . . . ,M. (3.12)
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3.1.2. Remarks
(i) For the sake of simplicity, in our presentation (3.10)–(3.12) have been written out in

a form that is fuller than necessary. It should be clear that a number of considerable
simplifications can be made: ψ = 0 along AE, for example, and κ = 0 along BC′
and AE.

(ii) All integrals over elements ∂Ωi have either been evaluated exactly or, as in the case
of elements along Γ , using an adaptive quadrature method (Shampine 2008).

(iii) Integrals over AB were calculated exactly using the known inflow conditions (see
§ 2.1.1).

(iv) Now consider the right-hand sides of (3.10)–(3.12). At the point D there is a
singularity in ∂ψ/∂n and this can lead to unphysical oscillations in the calculated
values of the x-component of velocity in the elements on the free surface nearest to
D. Therefore, rather than evaluate the integrals∫

DE

(
∂ω

∂n
G2 − ω

∂G2

∂n
+ ∂ψ

∂n
G1 − ψ

∂G1

∂n

)
ds (3.13)

and ∫
DE

(
∂ω

∂n
G1 − ω

∂G1

∂n

)
ds, (3.14)

using the known outflow conditions (again, see § 2.1.1), the numerical solution
behaviour near outflow was seen to improve considerably by replacing the integrals
with ones over DD′ ∪ D′E′ ∪ E′E where D′ is the point (x̂∞, η∞) and E′ the point
(x̂∞, 0) for some suitable x̂∞ > x∞. This is justified on the grounds that given
any region E ⊂ R

2 (for example, the rectangle (x∞, x̂∞)× (0, η∞)) bounded by a
positively oriented, piecewise smooth, simple closed curve S and point (x′, y′) /∈ Ē∮

S

(
∂ω

∂n
G2 − ω

∂G2

∂n
+ ∂ψ

∂n
G1 − ψ

∂G1

∂n

)
ds =

∮
S

(
∂ω

∂n
G1 − ω

∂G1

∂n

)
ds = 0.

(3.15)
Over DD′, since

∂2ψ

∂n∂s
(x, η(x)) → 0,

∂2ω

∂n∂s
(x, η(x)) → 0, (3.16a,b)

as x → ∞, the values of ∂ψ/∂n and ∂ω/∂n were assumed to be the same as in
∂ΩN1+N2 and thus the integral

−
∫

DD′
G1 ds, (3.17)

appeared in the coefficient matrix when multiplying either (∂ψ/∂n)(x′, y′) or
(∂ω/∂n)(x′, y′) and (x′, y′) ∈ ∂ΩN1+N2 . All other contributions to the integral over
DD′ ∪ D′E′ ∪ E′E were calculated exactly using the known fully developed solution.
For all computational results presented in § 4 it was found to be adequate to choose
x̂∞ = 2x∞. In doing this we effectively extended the downstream flow domain to
twice its original length.

(v) The integrals over the arc C′C′′ in (3.10)–(3.12) create the elements of the coefficient
matrix that multiply C1 in the function f1(θ) of (3.7).

(vi) A well known disadvantage of boundary element methods is that the
coefficient matrix in the resulting system of equations is typically ill-conditioned
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The separation angle of the free surface of a viscous

and non-symmetric. Although there has been recent progress in developing
preconditioned GMRES (generalized minimal residual) iterative methods for
systems arising in the context of boundary element methods (see, for example,
Benedetti, Aliabadi & Davì (2008)), the small scale of the present problem allowed
us to use a direct method such as Gaussian elimination with pivoting.

3.2. Determination of the free surface Γ

3.2.1. Free surface {(r, θ) : r > rc}
To determine numerically the free surface shape we use a Levenberg–Marquardt method
(Levenberg 1944; Marquardt 1963) to solve the least-squares problem,

min
c

N+1∑
i=1

Ri(c)2, (3.18)

where Ri (i = 1, 2, 3, . . . ,N + 1) is the residual of the normal stress balance (see (2.18))

Ri := [p(xi, η(xi))] + 2
∂2ψ

∂n∂s
(xi, η(xi))+ γ κ(xi, η(xi)), (3.19)

evaluated at a point (xi, η(xi)) on the free surface (for some xi ≥ x0) and depending on
some vector of parameters c.

Calculation of Ri. In order to calculate Ri we need both the pressure excess over
atmospheric pressure, [p], and the tangential derivative of the tangential free surface
velocity t̂ · v(= ∂ψ/∂n). From (2.2) we get

t̂ · ∇[p] = t̂ ·�v ⇒ ∂p
∂s

= ∂ω

∂n
(3.20)

along Γ . Let us define the arc ∂Ωi (i = N1 + 1, . . . ,N1 + N2) along Γ by

∂Ωi = {(x, η(x)) : ai ≤ x ≤ ai+1} , (3.21)

so that ∂Ωi has end points (ai, η(ai)) and (ai+1, η(ai+1)), for a certain choice of {ai} such
that

x0 = aN1+1 < aN1+2 < . . . < aN1+N2+1 = x∞. (3.22)

Then, if the outflow excess pressure [p(D)] = [p(aN1+N2+1, η(aN1+N2+1))] = 0 we
calculate

[p(ai)] = [p(ai+1)] − ωn,i

∫
∂Ωi

ds, i = N1 + N2, . . . ,N1 + 1. (3.23)

At D we set the tangential derivative of the tangential free surface velocity equal to zero
and to calculate

∂2ψ

∂n∂s
(ai, η(ai)), i = N1 + 1,N1 + 2,N1 + 3, . . . ,N1 + N2, (3.24)

we use simple finite difference formulae.
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The vector of parameters c. The vector c of (3.18) consists in the present paper of the
parameters {αi, βi, γi, ε0,i, ε∞,i} appearing in a representation of η as

η(x) =
n∑

i=1

βiηi(x), (3.25)

of n linearly independent functions

ηi(x) = 1 + αi tanh(x(ε∞,i + (ε0,i − ε∞,i) exp(−γix))), (3.26)

(see Kelmanson 1983b). Since we require that the linear combination (3.25) be equal to 1
at x = 0, we have the constraint that

n∑
i=1

βi = 1, (3.27)

so that the number of free parameters in the linear combination (3.25) totals 5n − 1 and
thus c ∈ R

5n−1. Having chosen n we then set N = 5n − 2.

3.2.2. Free surface 1 − r sinα + h1rλ1+1 + h2rλ2+1 − cpr2

2γ
cosα with r ≤ rc

Coupled with the numerical determination of the free surface η(x) away from the
singularity, as described above, we have, from (2.19), (2.42), (2.45), (2.50), (2.52) and
(2.53) the problem of finding the solution (h1, h2, α, λ1, cp) to the nonlinear system,

1 − rc sinα + h1rλ1+1
c + h2r2λ1+1

c − cpr2
c

2γ
cosα = η(x0), (3.28)

−h1λ1(λ1 + 1)
cosα

rλ1−1 − 2h2λ1(2λ1 + 1)
cosα

r2λ1−1

+h2
1λ1(2λ1 + 1)(tanα sec2 α)r2λ1−1 + cp

γ
= κ(x0), (3.29)

γ h1

cosα
= (3λ2

1 + 1)f ′
1(α)+ f ′′′

1 (α)

λ1(λ
2
1 − 1)

= − 4C1 cos λ1α tanα
cosα − λ1 cot λ1α sinα

, (3.30)

γ h2

cosα
= (12λ2

1 + 1)f ′
2(α)+ f ′′′

2 (α)

2λ1(4λ2
1 − 1)

+ γ h2
1

2
tanα sec2 α, (3.31)

λ1 sin 2α − sin 2αλ1 = 0, (3.32)

where, on the right-hand side of (3.29),

κ(x0) := η′′(x0)

(1 + η′2(x0))3/2
, (3.33)

is the signed curvature of the surface y = η(x) at x = x0. The solution of the system
(3.28)–(3.32) is achieved using the trust-region dogleg algorithm fsolve in MATLAB, see
Powell (1970).
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4. Results

4.1. Parameter values and boundary element meshes
Calculations were performed for values of the dimensionless surface tension γ = 0.001,
0.01, 0.1 and 1, on meshes varying from M = 624 (1249 unknowns) to M = 1854 (3709
unknowns). The radius rc of the arc C′C′′ (see figure 3) was set equal to 10−5. With
a choice of n = 10 basis functions ηi (see (3.26)) the number of points N + 1 where
the normal stress balance residual (3.19) was evaluated was equal to 5n − 1 = 49. For
any given value of γ and on any mesh, the Levenberg–Marquardt algorithm for the
determination of the vector of parameters c ∈ R

5n−1 solving the least-squares problem
(3.18) was considered to have converged when c(k+1), the (k + 1)th iterative value of c,
satisfied

‖c(k+1) − c(k)‖2 < s‖1 + c(k)‖2, (4.1)

the relative step tolerance s being set equal to 10−6. Our choice of the relative step tolerance
s led to values of the objective function (3.18) that were always (sometimes significantly)
less than O(10−5). Numerical continuation was used in order to obtain solutions on
increasingly refined meshes. That is, the converged values of c calculated on a given mesh
were used as the starting values for computations on finer meshes.

4.2. Numerical results

4.2.1. Extrudate swell ratio
In table 1 and figure 4 we present the results of calculations of the extrudate swell ratio
for values of the dimensionless surface tension γ = 1, 0.1, 0.01 and 0.001 using meshes
varying from M = 1434 (2869 unknowns) to M = 1854 (3709 unknowns).

Comparison is made in table 1 with the results of the singular finite element calculations
of Georgiou & Boudouvis (1999) and those of the finite element method of Mitsoulis,
Georgiou & Kountouriotis (2012), the method of fundamental solutions of Poullikkas et al.
(1998) and the high-resolution finite element method of Salamon et al. (1995). The results
of Poullikkas et al. (1998), although in reasonable agreement over the range γ ∈ [0.001, 1]
with some earlier numerical results in the literature, such as those of Kelmanson (1983b),
are rather different from those of the other authors shown in this table. Although there is a
small amount of spread in the values obtained by Georgiou & Boudouvis (1999), Mitsoulis
et al. (2012) and Salamon et al. (1995), the result of Salamon et al. (1995) for γ = 1 was
computed on a highly refined finite element mesh involving 171 258 unknowns and may
be considered, we believe, to be a benchmark value. The value of the extrudate swell ratio
at this value of γ computed by Georgiou & Boudouvis (1999) is within 0.026 % of the
benchmark value and was obtained on a finite element mesh leading to 30 866 unknowns.
Our own best calculation of η(∞) at γ = 1 is within 0.061 % of the benchmark value but
was obtained using a mesh having only 3709 unknowns. The cost advantages of using a
boundary element method are clear.

There is evidence in our results presented in both table 1 and figure 4 of extrudate
swell ratios that continue to show small increases as the mesh is refined, so that we would
expect the true converged values to be slightly higher at all values of the surface tension
γ than those shown here and bringing them into even closer agreement with the results
of Georgiou & Boudouvis (1999) and Salamon et al. (1995). However, calculations for
M > 1854 are beyond what we can perform conveniently with the computing resources
currently at our disposal.
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250 300 350 400

N1 = N2 = N3

450 500 550 600
1.12

1.13

1.14

1.15

η∞
1.16

1.17

1.18

1.19

γ = 1

γ = 0.1
γ = 0.01
γ = 0.001

Figure 4. Meshes with N1 = N2 = N3 varying from 208 to 618. Extrudate swell ratios η(∞) computed at
values 1, 0.1, 0.01 and 0.001 of the dimensionless surface tension γ .

γ M = 1434 M = 1644 M = 1854
Georgiou

et al.
Mitsoulis

et al.
Poullikkas

et al.
Salamon

et al.

1 1.1278 1.1280 1.1282 1.1291 1.129 1.123 1.12881
0.1 1.1785 1.1790 1.1792 1.1794 1.180 1.161 —
0.01 1.1849 1.1853 1.1857 — 1.186 1.168 —
0.001 1.1855 1.1859 1.1861 — — 1.177 —

Table 1. Values of the extrudate swell ratio η∞ for different values of the non-dimensional surface tension γ ,
computed using the boundary integral equation method and M boundary elements.

Figure 5 shows, on a log-normal scale, the extrudate swell ratios calculated on the finest
mesh and, although with the present code we are unable to compute the free surface at zero
surface tension, the graph shows a clear trend to a limiting value of η(∞) as γ → 0.Tanner
(1988) presented a number of extrudate swell ratios at zero surface tension available in
the literature at that time and, based on these, estimated that η(∞) was in the range
[1.188, 1.192]. On their finest ordinary finite element mesh Georgiou & Boudouvis (1999)
calculated the extrudate swell ratio at zero surface tension to be equal to 1.1869. The
corresponding values obtained by Taliadorou, Georgiou & Mitsoulis (2008) and Claus,
Cantwell & Phillips (2015), for example, were 1.1878 and 1.1891, respectively. The trend
of the results displayed in figure 5 is certainly consistent with these limiting values. As
will be explained in § 5.2, when γ = 0 we should have a separation angle equal to π and
a surface that is locally described by y = 1 + O(r2). This is not the case for any of the
results presented in figure 5 and we take up this point in more detail in § 5.3. However,
Georgiou et al. (1989) showed that the numerically determined extrudate swell ratios for
the planar extrudate swell problem are not sensitive to small variations of the exponents
of the singular solution, so that we would not expect the extrudate swell ratio at γ = 0
calculated by matching the far-field solution to y = 1 + O(r2) to be significantly different
from the values calculated by the above-cited authors.
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10–3 10–2 10–1 100

1.13

1.14

1.15

1.16

1.17

1.18

γ

η∞

Figure 5. Finest mesh (N1 = N2 = N3 = 618). Log-normal plot of extrudate swell ratios η(∞) computed at
values 1, 0.1, 0.01 and 0.001 of the dimensionless surface tension γ .

4.2.2. Shape of the free surface
In figures 6–8 we plot the converged free surface function y = η(x), given by the
linear combination (3.25), as well as its first and second derivatives, over the range of
dimensionless surface tensions considered in this article. The computations were done
on our finest mesh (M = 1854). Although the choice of coefficients {βi}n

i=1 in (3.25)
is constrained by the requirement that η(0) = 1, the other coefficients {αi, γi, ε0,i, ε∞,i}
appearing in the basis functions ηi(x) are determined, as was explained in § 3.2.1, so as to
minimize the residual of the normal stress balance (3.18) in the interval [x0, x∞]. It follows
that

η′′(0) = −2
n∑

i=1

βiαi(ε0,i − ε∞,i)γi, (4.2)

will be finite and that there is no expectation that

η′(0) =
n∑

i=1

βiαiε0,i, (4.3)

will equal arctan(α).
Given the inadequacy of the representation (3.25) of the free surface in the

neighbourhood of the separation point, we match the correct asymptotic form (2.19) as
explained in § 3.2.2 to this far-field solution. In figure 9 we show the results of the matching
at x = x0 of (2.19) with (3.25), as computed on our finest mesh. Over this very small
interval (x ∈ [0, 2rc]) both the graph of (2.19) and that of (3.25) resemble straight line
segments. However, κ(0), the curvature at the origin, is infinite.

In table 2 we show the values of the parameters h1, h2, α (in radians), λ1 and cp
computed on the finest mesh. We compare the values of α shown in the fourth column of
the table with the few that can be found elsewhere in the literature in § 4.2.4. As mentioned
in the introduction, following an earlier conjecture by Schultz & Gervasio (1990) that the
free surface y = η(x) near the separation point is of the form (1.1), Salamon et al. (1995)
estimated the coefficients to be a = 0, b = 0.176, c = 0.0263 and n = 1.43 for γ = 1
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γ = 0.001

Figure 6. Finest mesh (N1 = N2 = N3 = 618). Free surface y = η(x) computed at values 1, 0.1, 0.01 and
0.001 of the dimensionless surface tension γ .

1 2
x

η′(x)

3 4 50

0.05

0.10

0.15

0.20

0.25
γ = 1
γ = 0.1
γ = 0.01
γ = 0.001

Figure 7. Finest mesh (N1 = N2 = N3 = 618). First derivative y = η′(x) computed at values 1, 0.1, 0.01 and
0.001 of the dimensionless surface tension γ .

and Re = 0. This gives λ1 = n − 1 = 0.43, not too far from our own computed value of
0.45321.

4.2.3. Normal stress on the free surface
Evidence, in the case γ = 1, of the successful solution of the least-squares problem
(3.18) is shown in figure 10. As noted in the introductory paragraph of § 4, values of the
objective function (3.18) for all surface tensions were always (sometimes significantly)
less than O(10−5). In figure 11 we show the free surface normal stress values γ κ(x)
computed for γ = 0.001, 0.01, 0.1 and 1 and x ∈ [x0, x∞]. Since these computations are
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0 1 2
x

3 4 5
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η′′(x)

γ = 1
γ = 0.1
γ = 0.01
γ = 0.001

Figure 8. Finest mesh (N1 = N2 = N3 = 618). Second derivative y = η′′(x) computed at values 1, 0.1, 0.01
and 0.001 of the dimensionless surface tension γ .

0 0.5 1.0

x
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(×10–5)

1.0000000

1.0000005

1.0000010
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γ = 0.1

γ = 0.01
γ = 0.001

Figure 9. Finest mesh (N1 = N2 = N3 = 618). Matching of the inner solution (2.19) to the outer solution
y = η(x) at x = x0 (see (3.2)) at values 1, 0.1, 0.01 and 0.001 of the dimensionless surface tension γ .

not valid in the immediate neighbourhood of the separation point we have matched the
normal stress with the asymptotic solution at x = x0 (see (3.29)) and show the results of
this matching in figure 12, where the open circles indicate the matching point for each
value of γ . The O(rλ1−1) behaviour of the normal stresses very near the singularity is
clearly seen in the log–log plots of figure 13. The slope of the triangle hypotenuse is
λ1 − 1 = 0.45321 − 1 = −0.54679 and is the gradient of the line segment corresponding
to the γ = 1 data for very small r, although as we may note from column 5 of table 2
there is very little difference in the values of the exponent of r as the surface tension
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γ h1 h2 α (rads.) λ1 cp

1 3.8354 × 10−5 −4.1654 × 10−7 3.3049 4.5321 × 10−1 2.7092 × 10−1

0.1 1.0592 × 10−3 −2.0275 × 10−4 3.3338 4.4598 × 10−1 −8.9265 × 10−3

0.01 1.1786 × 10−2 −2.4210 × 10−2 3.3363 4.4535 × 10−1 −4.1189 × 10−2

0.001 1.1948 × 10−1 −2.4902 × 100 3.3363 4.4537 × 10−1 −3.1145 × 10−2

Table 2. Values of the parameters h1, h2, α, λ1 and cp calculated from (3.28) to (3.32). The far-field solutions
were computed on the finest mesh (M = 1854).

0 1 2

x
3 4 5

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

0.25

0.30
κ(x)

–[ p] – 2∂
2ψ
∂n∂s

Figure 10. Finest mesh (N1 = N2 = N3 = 618). Signed curvature (2.16) and normal stress σnn (2.17) on the
free surface for x ∈ [x0, x∞] at value γ = 1 of the dimensionless surface tension.

decreases from 1 to 0.001. Vanishing or infinite surface tensions would require that
λ1 = 0.5 (see Michael (1958) and the discussion in §§ 5.1 and 5.2). Since −1 < λ1 < 1
the components of viscous stress, although singular at (0, 1), therefore remain integrable
and the components of the velocity vanish as r → 0. The data shown in figures 10–13 was
computed using the finest mesh M = 1854.

4.2.4. Separation angles α
In figure 14 we present the values of the separation angles α − 180◦ for different values
of γ calculated on meshes with M varying from 624 to 1854. The results of our finest
mesh calculations have already been presented in radians in the fourth column of table 2
and upon conversion to degrees give α − 180◦ values of 9.36◦, 11.01◦, 11.16◦ and 11.15◦
when γ = 1, 0.1, 0.01 and 0.001, respectively. As mentioned in the introduction, the data
from the experimental results reported in Batchelor et al. (1973), Nickell et al. (1974),
Tanner (1986) and Tanner et al. (1985) showed separation angles to be between 189◦ and
194◦. The high-resolution finite element computations by Salamon et al. (1995) allowed
for an estimate of α = (180 + arctan(0.176)) ≈ 189.98◦ when γ = 1. The values of α that
we have computed therefore fall within the interval arising from previous experimental
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γ = 0.1
γ = 0.01
γ = 0.001

Figure 11. Finest mesh (N1 = N2 = N3 = 618). Normal stress σnn = γ κ(x) on the free surface for
x ∈ [x0, x∞] at values 0.1, 0.01 and 0.001 of the dimensionless surface tension γ .

0 1 2 3

x
4 5

(×10–5)

0.05
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Figure 12. Finest mesh (N1 = N2 = N3 = 618). Matching of the inner normal stress σnn = γ κ(x) on the free
surface to the outer normal stress at x = x0 (see (3.2)) at values 1, 0.1, 0.01 and 0.001 of the dimensionless
surface tension γ .

and numerical papers, although there is, admittedly, a paucity of such results available in
the literature.

5. Discussion and conclusions

We now draw some conclusions from the analysis of § 2.2 of this paper and the numerical
results that we have presented in § 4.2. In particular, in the light of our analysis and
numerical results, we try to state concisely what can be said about the planar free surface
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γ = 0.1
γ = 0.01
γ = 0.001

Figure 13. Finest mesh (N1 = N2 = N3 = 618). Log–log plot of the inner normal stress σnn = γ κ(r) on the
free surface at values 0.1, 0.01 and 0.001 of the dimensionless surface tension γ .

200 250 300 350 400
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5
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α – 180
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γ = 0.01
γ = 0.001

Figure 14. Meshes with N1 = N2 = N3 varying from 208 to 618. Separation angle α − 180◦ computed at
values 1, 0.1, 0.01 and 0.001 of the dimensionless surface tension γ .

assumed by Michael (1958), and the forms of the free surface both when the surface
tension γ = 0 and when γ > 0.

5.1. Planar free surface
A planar free surface, as assumed by Michael (1958), cannot be predicted by the analysis of
§ 2.2 since, assuming h1 = h2 = cp/γ = 0, (2.35), (2.38)–(2.42), (2.44) and (2.50) lead to
the conclusion that α = π, λ1 = 1/2 and λ2 = 3/2, which contradicts the assumptions that
p1 = λ1 and p1 = λ2 − λ1 (and hence that λ2 = 2λ1). When γ 
= 0, a planar free surface
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can be predicted by the theory of §§ 2.2.4–2.2.6 only when cp/γ = 0 (that is, when either
cp = 0 (as assumed by Michael) or γ → ∞, corresponding to ‘stick-slip’ flow (infinite
surface tension)) and either p1 
= λ2 − λ1 or p1 
= λ1.

5.2. Vanishing surface tension
Suppose that γ = 0. Then from (2.50) we have

(3λ2
1 + 1)f ′

1(α)+ f ′′′
1 (α) = 0, (5.1)

and this is equivalent to equation (5) of Michael (1958) and, as in that article, leads to the
conclusion that α = π and λ1 = 1/2. As explained in § 2.2.1 we require cp = cp(0) = 0.
Furthermore, from (2.53) (with either p1 
= λ1 or p1 
= λ2 − λ1, so that λ2 
= 2λ1 = 1) it
follows that

(3λ2
2 + 1)f ′

2(α)+ f ′′′
2 (α)

λ2(λ
2
2 − 1)

= 0, (5.2)

and this requires, given the form (2.22) for f2(θ) and the satisfaction of the wall conditions
(2.31), that either B2 = D2 = 0 or that cos(λ2π) = 0.

Suppose B2 = D2 = 0. Then f2(θ) = 2C2 sin(λ2θ) sin θ and therefore, since f2(π) = 0,
we have from (2.35) that h1 = 0.

Now suppose that cos(λ2π) = 0. Then this leads to the conclusion that

f ′′
2 (π) = (λ2

2 − 1)f2(π). (5.3)

If p1 = λ2 − λ1 then we would have from (2.43), (2.50) and (5.3) that

− 2h1λ1f ′
1(π)( p1 + λ1) = 0, (5.4)

so that (since f ′
1(π) 
= 0) either p1 = −λ1 ⇒ λ2 = 0 (which is not possible from (2.23))

or h1 = 0. However, if p1 
= λ2 − λ1 it follows from (2.35) that h1 = 0.
We conclude that γ = 0 leads to a separation angle equal to π and a surface that is

locally described by y = 1 + O(r2).

5.3. Non-zero surface tensions
For 0 < γ < ∞ and non-zero h1 and h2, (2.50) and (2.53) lead to the conclusion that
α 
= π and indeed will not even tend to π, however small the value of the surface tension.
This is because with both p1 = λ1 and p1 = λ2 − λ1, if α → π, λ1 → 1/2 and λ2 → 1
and the term on the right-hand side of (2.53)

(3λ2
2 + 1)f ′

2(α)+ f ′′′
2 (α)

λ2(λ
2
2 − 1)

∼ 2(B2 + D2), (5.5)

becomes unbounded (unless h1 is identically zero, but this means that α = π from (2.52)).
Thus we identify the case of α = π when γ = 0 to be a singular limit.

The values of α that we have computed for values of γ = 0.001, 0.01, 0.1 and 1,
fall well within the interval of values arising from previous experimental and numerical
papers. Our analysis in § 2.2 shows that for non-zero surface tensions the normal stress and
curvature are unbounded at the point of separation, consistent with the analysis and results
of Anderson & Davis (1993), Schultz & Gervasio (1990) and Salamon et al. (1995). The
numerical results presented in § 4.2 (where we determined h1, h2, α, λ1 and cp by matching
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the local solution (2.19) and its curvature to the corresponding values of the global solution
y = η(x) and satisfying (2.42), (2.50) and (2.53)) have pointed precisely to this scenario.
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Appendix A

LEMMA A.1. According to the theory of § 2.2 separation angles α 
= π ⇒ p1 = λ1 and
p1 = λ2 − λ1.

Proof . If p1 
= λ1 then both sides of (2.50) are equal to zero. Now

(3λ2
1 + 1)f ′

1(α)+ f ′′′
1 (α) = 0, (A1)

is equivalent to equation (5) of Michael (1958) (with his n replaced by λ1) and, as argued
there, together with (2.38)–(2.42), leads to the conclusion that α = π and λ1 = 1/2. Now
suppose that p1 
= λ2 − λ1 but p1 = λ1. Then from (2.35), (2.44) and (2.50) we conclude
that both sides of (2.50) are again equal to zero leading, as before, to α = π and λ1 =
1/2. �
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