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Transformation formulas in quantum cohomology

Prakash Belkale

Abstract

We discuss a natural action of the center of G on the Gromov–Witten numbers of G/B’s
and G/P ’s. This action is suggested by some problems in representation theory. The quan-
tum Schubert calculus of Grassmannians is an easy consequence of this action. We also
strengthen a theorem of Fulton and Woodward, in the case of Grasmannians.

Introduction

It is known [AW98, Bel01] that the problem of determining the conditions on conjugacy classes
Ā1, . . . , Ās in SU(n), so that these lift to elements A1, . . . , As ∈ SU(n) with A1A2 . . . As = 1, is
controlled by quantum Schubert calculus of Grassmannians. Teleman and Woodward [TW03] have
recently generalized this to an arbitrary simple simply connected compact group K. If G is the
complex simple subgroup (whose real points are K), then the role played by the Grassmanians is
replaced by the homogeneous spaces G/P for P a maximal parabolic subgroup.

In the case of SU(n) (and similarly for K), there is a natural ‘action’ of the center of SU(n) on
the representation theory side, namely if c1, . . . , cs are central elements with c1c2 . . . cs = 1, then
these act on the set of conjugacy classes Ā1, . . . , Ās in SU(n) liftable to elements A1, . . . , As ∈ SU(n)
with A1A2 . . . As = 1, the action being just multiplying Āi by ci. This action is well defined on the
level of conjugacy classes because the ci are central.

This suggests a natural transformation property of Gromov–Witten numbers of the Grassman-
nians under the action of the center. This property was proved in [AW98] as a consequence of the
known description of quantum Schubert calculus [Ber97]. Postnikov proved a similar property for
the complete flag manifold SLn/B [Pos00]. Our aim initially was to make clear that the numbers
coincide because if suitably interpreted they count points in the ‘same intersection’.

The aim of this article is twofold. The first aim is to prove the transformation formulas geomet-
rically and in complete generality (for any simple simply connected complex Lie group). The second
is to show that these formulas determine quantum Schubert calculus in the case of Grassmannians
(Bertram’s Schubert calculus). We also give a strengthening in the case of Grassmannians of a
theorem of Fulton and Woodward on the lowest power of q appearing in a (quantum) product of
Schubert classes in G/P , where P is a maximal parabolic subgroup.

Let us now describe these transformation formulas; see § 1 for the notation. Let G be a simple
simply connected complex algebraic group. We first construct a map φ : C → W , where C is the
center of G and W the Weyl group. Let Z be a homology class of G/P , where P is an arbitrary
parabolic subgroup (not necessarily maximal). Let c1, . . . , cs be central elements with product equal
to one. Let w1, . . . , ws be elements of a suitable right quotient of W , then the transformation
formulas take the shape

〈Xφ(c1)w1
, . . . ,Xφ(cs)ws

〉Z′ = 〈Xw1 , . . . ,Xws〉Z ,
where Z ′ is a homology class determined by Z and the rest of the data.

Received 2 May 2002, accepted in final form 2 April 2003.
2000 Mathematics Subject Classification 14N15 (primary), 14N35 (secondary).
Keywords: Grassmann variety, cohomology, parabolic subgroup.
This journal is c© Foundation Compositio Mathematica 2004.

https://doi.org/10.1112/S0010437X03000241 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X03000241


Transformation formulas in quantum cohomology

It happens that in some cases, Z ′ is a simpler homology class than Z; for instance, Z ′ could
be zero when Z is not. This allows for the reduction of the quantum terms to the classical ones.
This program works in the (ordinary) Grassmannian case.

There exist simple simply connected groups with trivial center. In this case, the transformation
formulas do not give any information. There may be an extension of these transformation formulas
to the non-miniscule case. Such an extension is not apparent from the representation theory side.
The transformation formulas give some information about quantum cohomology for G/P if G has
a center.

One final comment is that even in the classical case of cohomology, the transformation formulas
give vanishing statements. For example, if Z ′ turns out to be negative and Z = 0, then we get a
vanishing statement of certain intersection numbers.

Many of the results in this paper are new proofs of older results using methods which seem both
natural and elementary (to the author). It is perhaps worth pointing out what is essentially new in
this paper: the transformation formulas in the usual partial flag manifold case (that is SL(n,C)/P
where P �= B is a parabolic subgroup which is not maximal); the exact determination of the lowest
order terms in the quantum product of two Schubert cycles in (usual) Grassmannians; and the
natural extension of the transformation formulas to all groups.

There is recent literature on the quantum cohomology of G/P that should be mentioned: Kim
[Kim99] worked out the quantum cohomology of G/B (with generators and relations). Kresch and
Tamvakis computed the quantum Schubert calculus of the Lagrangian and Orthogonal Grasman-
nians [KT03, KT04]. There are also recent preprints by Mare [Mar02] on Schubert calculus for
the G/B case and by Woodward [Woo02] on reducing the general G/P case to the G/B case.
So, computationally we seem to be closing in on a complete picture.

For G/P there is already considerable information coming from usual cohomology and combined
with the transformation formulas (in some cases), one can hope that sufficiently many of the quan-
tum terms become classical (as is the case for Grassmannians). However, in practice, computation
of the entire quantum cohomology involves some vanishing statements too. For instance, to prove
that the Pieri formulas for Lagrangian Grassmannian do not involve q2 terms (which we managed
for the ordinary Grassmannian case) seems to require additional reasoning. Kresch and Tamvakis
achieve this by studying the Q̃ polynomials of Pragacz and Ratajski.

Buch [Buc03] has recently given new proofs of Bertram’s quantum Schubert calculus, using very
different methods.

1. Some representation theory

1.1 Notation
We review some basic representation theory in this section. For proofs refer to Bourbaki [Bou02].

Let G be a simple simply connected complex algebraic group. Let g be its Lie algebra. Let B be
a Borel subgroup, T ⊂ B a maximal torus and let

g = h
⊕

α

gα,

where the α’s belong to the subset of roots R in h∗. The set R is partitioned into the set of positive
roots R+ and negative roots R−, and the Lie algebra of B is

b = h
⊕

α

gα,

with the α’s in R+. Also, define ∆ to be the set of simple roots. The Weyl group W is defined to
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be N(T )/T , where N(T ) is the normalizer of T which acts on h and h∗. If α is a root, we have
elements wα ∈W , Hα ∈ h, so that wα acts on h∗ by

wα(β) = β − β(Hα)α

and this map preserves the roots, is a reflection and takes α to −α. The real vector space spanned
by Hα is denoted by hR.

The action of wα on h is given by

wα(H) = H − α(H)Hα.

It is also known that wα’s generate W . The affine Weyl group Waff is defined to be the set of
automorphisms of h generated by W and translations by Hα for α ∈ R.

1.2 Conjugacy classes
Let K be the maximal (connected) compact subgroup of G associated to the root data. If k is the
Lie algebra of K, then k

⊗
R

C = g. Let TK = T ∩K be the maximal torus in K, with Lie algebra
ihR. The following are standard facts.

1) TK → K induces a surjection on conjugacy classes.
2) x1, x2 ∈ TK are conjugate in K if and only if there exists w ∈W with Ad(w)x1 = x2.
3) Let Exp : hK → TK be the exponential map from the Lie algebra of TK to TK . The kernel of

this map is Γ(T ) = Z-span {2πiHα | α ∈ R}. This follows from the simply connectedness of G.
4) If t1, t2 ∈ hK , then Exp(t1) and Exp(t2) are conjugate in K if and only if there exists w ∈ W

with
w(t1) − t2 ∈ Γ(T ).

Putting this all together, we find that the map hR → TK given by t → Exp(2πit) induces an
isomorphism hR/Waff → conjugacy classes in K.

1.3 Fundamental chamber and the center
Let Lα,k = {x ∈ hR | α(x) = k}. The affine Weyl group is then the group generated by reflections
in Lα,k for k ∈ Z. Finally, let α̃ be the highest weight for the adjoint representation.

Theorem 1 (Fundamental chamber for affine Weyl group). Let C = {x ∈ hR | α(x) > 0 for
α ∈ R+, α̃(x) < 1}.

1) C is a connected component of hR −
⋃

α∈R,k∈Z Lα,k.

2) If C ′ is any other component, there is a unique w ∈Waff with w(C) = C ′.
3) Let C̄ be the closure of C, then the composite p : C̄ → hR/Waff → conjugacy classes in K is a

homeomorphism.

We now give the description of the center. For this, let S = {x ∈ C̄ | α(x) ∈ Z, for all α ∈ R}.
Finally, write α̃ =

∑
α∈∆ nαα.

Theorem 2.

1) The map p : C̄ → conjugacy classes in G, takes S to center(K).
2) Define xα for α ∈ ∆ by the formula β(xα) = δα,β for α, β ∈ ∆. Then, S = {0} ∪ {xα | α ∈

∆, nα = 1}.
Definition 1. For c ∈ center(K), define hc = p−1(c). Note that if c �= 1, hc = xα for some α ∈ ∆
and hc = 0 if c = 1.
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Transformation formulas in quantum cohomology

1.4 A map from the center to the Weyl group

Let c ∈ center(G) (= center(K)). Consider the set C ′ = C−hc (where hc was defined in Definition 1).
It is easy to see that this is a connected component of hR −

⋃
α∈R,k∈Z Lα,k. Therefore, we have

C − hc = w−1
c (C) + t,

where wc ∈W and t ∈ Z-span of Hβ, β ∈ R.
For x ∈ hR, define yc(x) = wc(x− hc − t). Then we have the equation

x− hc = w−1
c (yc(x)) + t

and also that x ∈ C ⇒ yc(x) ∈ C. Hence, x ∈ C̄ ⇒ yc(x) ∈ C̄.

Now put x = hc. We get w−1
c (yc(x)) = −t, this gives yc(x) is zero in hR/Waff and, by Theorem 1,

we get yc(x) = 0 so t = 0.
We therefore have the following.

Lemma 1 (Map from the center to the Weyl group). For c in center(K), let hc = p−1(c). Then there
exists a wc ∈W so that the equation C−hc = w−1

c (C) holds. Furthermore, the map center(G) →W
is an injective homomorphism of groups.

Proof. The only part not proved yet is that c 
→ wc is a homomorphism of groups. For this, let c1, c2
be central elements. Let hc1 , hc2 , hc1c2 correspond to c1, c2 and c1c2, respectively (where hc = p−1(c)
as before).

It is clear that hc1 + hc2 = hc1c2 + t with t ∈ Z-span of Hδ, δ ∈ R. hence

C − hc1c2 = C − hc1 − hc2 + t

= w−1
c1 (C − hc2) + (w−1

c1 (hc2) − hc2) + t

= w−1
c1 w

−1
c2 (C) + t1 + t,

where t1 and t are in Z-span of Hδ, δ ∈ R. The proof is therefore complete.

We can describe the element wc more concretely; for this, first note the following.

1) If x ∈ C then yc(x) ∈ C.

2) For β ∈ R, β ∈ R+ if and only if β(x) > 0 for any x ∈ C.

3) wc(β)(yc(x)) = β(w−1
c (yc(x))) = β(x) − β(hc).

We therefore have the following description of wc.

Lemma 2. In the situation above and with β ∈ R+:

1) if β(hc) = 0, then wc(β) ∈ R+;

2) if β(hc) = 1, then wc(β) ∈ R−.

Remark 1. From a computational point of view the above lemma determines wc completely.
We could have taken this as a definition, but then we would have had to connect it to the fun-
damental chamber.

1.5 Parabolics associated to central elements

Fix c1, c2 belonging to center(G) with c1c2 = 1, c1 �= 1, c2 �= 1. Let xα, xβ be their representatives
in C̄.
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Define parabolic subgroups P1, P2 ⊃ B by defining their Lie algebras

p1 = h
⊕

γ|γ(xα)�0

gγ

p2 = h
⊕

γ|γ(xβ)�0

gγ

and their Levi subgroups Q1, Q2 by defining their Lie algebras

q1 = h
⊕

γ|γ(xα)=0

gγ

q2 = h
⊕

γ|γ(xβ)=0

gγ .

The fact that these are closed subgroups follows from the P ’s being standard parabolics and Q’s
being the centralizers of xα, xβ.

These are related due to the relation c1c2 = 1.

Lemma 3. Q2 = Ad(wc1)(Q1) or γ(xα) = 0 if and only if (wc1(γ))(xβ) = 0.

Proof. This follows from −xα = w−1
c1 (xβ).

Lemma 4. (Ad(wc1)(P1)) ∩ P2 = Q2 and this is a transverse intersection.

Proof. The first statement follows from

(wc1(γ))(xβ) = −γ(xα).

The transversality statement follows from the same equation (counting dimensions).

Corollary 1. If g1, g2 are general elements of G, the set (wc1P1g1) ∩ (P2g2) is non-empty.

Proof. If g1 = w−1
c1 , g2 = 1, then this follows from the above lemma. Then apply standard intersec-

tion theory (local).

2. Algebraic geometry preliminaries on G/P

2.1 Line bundles on G/P and G/B

Let P be a parabolic containing B. We then have a natural surjection G/B → G/P . It is known
that this induces injections on the Picard groups. Our goal here is to recall the standard facts on
describing all the line bundles on G/B and those that descend to G/P .

Let WL = weight lattice of g. This is the subset of h∗ spanned by elements ω so that ω(Hα) ∈ Z

for all α ∈ R. It has a Z-basis {ωα | α ∈ ∆}, where

ωα(Hβ) = δα,β,

for all α, β ∈ ∆.
There is a natural isomorphism ψ : WL → Pic(G/B). The map is defined as follows: for each

ω ∈ WL+ there exists a representation ρ : G → GL(V ) with highest weight ω. Let the highest
weight vector be v ∈ V . Then there is a map G/B → Orb(Cv) ⊂ P(V ), where Orb(Cv) is the orbit
of the line Cv. The map then takes ω to pull back of O(1) by the map above.

The subset WLP of weights that descend to line bundles on G/P are just those elements ω
which satisfy if gα

⊕
g−α ⊂ p, then ω(Hα) = 0.
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Transformation formulas in quantum cohomology

The second homology group H2(G/P,Z) can be naturally considered as the dual Hom(WLP ,Z)
by Poincare duality. Note that the homology class of f∗([C]), where f : P

1 → G/P corresponds to
the map WLP → Z obtained by taking the ‘degree of the pullback bundle’.

Next we describe the first Chern classes of the tangent bundles of G/B and G/P .

1) First Chern class of TG/B : this is ψ(
∑

α∈R+ α).

2) First Chern class of TG/P : this is ψ(
∑

α∈R,gα⊂p α).

2.2 Cell decomposition and cohomology of G/P

Let P ⊃ B be a parabolic subgroup. Let RP be the set of roots α such that gα
⊕

g−α ⊂ p.
Let ∆P = RP ∩ ∆. Finally let WP be the subgroup of the Weyl group generated by the reflections
corresponding to elements of ∆P (or of RP ).

Theorem 3 (Bruhat decomposition). G/P is a disjoint union of the sets Λw for w ∈W/WP , where
Λw is defined to be BwP ⊂ G/P . Let Xw be the closure of Λw. The codimension of Xw is the
cardinality of the set

|{α ∈ R | gα �⊂ p, w(α) �∈ R+}|.

The proof is standard and is by examining the tangent space of w−1Λw at e ∈ G/P .
It is known that the subvarieties Xw generate the cohomology (additively) of G/P . Finally, recall

the definition of ‘relative position’ [g1, g2] of two elements g1, g2 ∈ G. We define w = [g1, g2] to be
the unique element of the Weyl group so that there exist b1, b2 ∈ B so that g1 = g2b1wb2 (Bruhat
decomposition).

Note the following three properties.

1) [g1, g2] = [gg1, gg2] for g1, g2 ∈ G.

2) [g1b, g2] = [g1, g2b] = [g1, g2] for b ∈ B.

3) h ∈ gΛw if and only if [h, g] = w.

Analogous definition of relative position can be made of [g1, g2] where this takes values in
W/WP , g1 ∈ G/P and g2 ∈ G.

We need one final lemma which relates the codimensions of Xw and Xwcw, where wc is an element
of the Weyl group constructed out of a central element c as in the previous section.

Lemma 5. Let c ∈ center(G), w ∈W with representative xα ∈ C. Then codim(Xwcw)− codim(Xw)
is equal to ∑

β∈R\RP

wβ(xα).

Proof. The quantity we are interested in is

|{α ∈ R\RP | w(α) ∈ R+}| − |{α ∈ R\RP | (wcw)(α) ∈ R+}|.
To evaluate the second quantity (using Lemma 2), divide into two cases namely

|{α ∈ R\RP | w(α) ∈ R+, wβ(xα) = 0}|
and

|{α ∈ R\RP | w(α) ∈ R−, wβ(xα) = −1}|.
Therefore, the quantity we are interested in becomes

|{α ∈ R\RP | w(α) ∈ R+, wβ(xα) = 1}| − |{α ∈ R\RP | w(α) ∈ R−, wβ(xα) = −1}|
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and that is what is displayed in the statement of the lemma. Note that our hypotheses imply that
if β ∈ R, then β(xα) is in the set {−1, 0, 1}.

2.3 Space of maps and Gromov–Witten invariants
For X ∈ H2(G/P,Z), let MX = space of maps f : P

1 → G/P so that f∗([P1]) = X. It is known
that MX can be given the structure of a smooth quasi-projective variety of dimension dX , where
dX = c1(TG/P ) ∩X + dim(G/P ).

Of central interest to us in this paper are Gromov–Witten invariants. Recall that we have fixed
three points p1, p2, p3 on P

1 (which we usually take to be 0,∞, 1).

Definition 2. Let Z ∈ H2(G/P,Z), w1, w2, w3 ∈W . Then,

〈Xw1 ,Xw2 ,Xw3〉Z
is defined to be the number of maps (zero if infinite) f ∈MZ so that f(pi) ∈ giXwi , i = 1, 2, 3 where
gi are ‘general’ points of G.

Note that the invariant above is zero unless∑
codim(Xwi) = c1(TG/P ) ∩ Z + dim(G/P ).

3. The transformation formula

Let c1, c2 ∈ center(G) with c1c2 = 1. Use the notation of § 1.5 associated with these elements.
Let x1 = hc1 , x2 = hc2 and w1 = wc1 , w2 = wc2.

Theorem 4. Let Z ∈ H2(G/P,Z), u1, u2, u3 ∈W , then

〈Xu1 ,Xu2 ,Xu3〉Z = 〈Xw1u1,Xw2u2 ,Xu3〉Z′ ,

where Z ′ as an element of Hom(WLP ,Z) is given by

Z ′(γ) = Z(γ) − γ(u−1
1 x1 − x1) − γ(u−1

2 x2 − w2x2).

We first check that the codimension condition∑
codim(Xui) = c1(TG/P ) ∩ Z + dim(G/P ),

for the left-hand side is the same as that for the right-hand side.
Recall that if c ∈ center(G), w ∈W with representative xα ∈ C, then codim(Xwcw)−codim(Xw)

is equal to ∑
β|gβ �⊂p

wβ(xα).

So we have to verify that ∑
β|gβ �⊂p

(u1β(x1) + u2β(x2))

equals

γ(Z ′) − γ(Z)

where

γ = −
∑

β|gβ �⊂p

β,

which has been proved in Lemma 5.

784

https://doi.org/10.1112/S0010437X03000241 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000241


Transformation formulas in quantum cohomology

Now fix g1, g2, g3 ∈ G, ‘elements in a general position’. Pick an element k ∈ (P1g
−1
1 )∩(w2P2g

−1
2 ).

There exists such a k because of Corollary 1.
Consider the map φ : G/P → G/P given by left multiplication by k. Let f ∈ MZ , we claim

f(pi) ∈ giXwi , i = 1, 2, 3, if and only if by setting g = φf , we have g(pi) ∈ kgiXwi , i = 1, 2, 3.
This claim is obvious but we also have k(g1) ∈ P1 and kg2 ∈ Ad(wc2)P2. So we might as well
assume g1 ∈ P1 and g2 ∈ wc2P2.

Now suppose f : P
1 → G/P . Let s be the map P

1 → G/P given by

s(z) = zx1f(z)

where for t ∈ T , z ∈ C, zt = Exp(ln(z)t) (a multivalued map). Note that the indeterminacy of s
is always central, so as a map to G/P it is well defined on the complement of {0, 1,∞}. We can
extend this to all of P

1, because all the functions involved are of bounded growth.
We have to study the effect on the degrees and also on the ‘positions’ of s(0), s(1), s(∞).

3.1 Position of s(0)
We have assumed that g1 is in P1 and P1 = Q1B. So let g1 = q1b. We claim that the element
g′1 = q1w

−1
1 is well defined in G/P (independent of choices). We need that if q′1 = q1b, then q1w

−1
1

and q1bw−1
1 give the same point in G/P . That is, w1bw

−1
1 ∈ B if b ∈ Q1 ∩B. However, this is clear

from Lemma 2.

Claim 1. [s(0), g′1] = w1[f(0), g1].

That is, [s(0), q1w−1
1 ] = w−1

1 [f(0), q1]. Let f(0) = q1b1wb2 and f = n(z)f(0) where n(0) = 1.
We therefore need to compare[

lim
z→0

zx1n(z)f(0), g′1
]

with [f(0), g1].

Or, if we set h = q−1
1 f(0), we want to relate[

lim
z→0

(Ad(q−1
1 )zx1)(Ad(q−1

1 )n(z))h,w−1
]

to [h, 1].

It is easy to see that Ad(q−1
1 )zx1 = zx1 . Setting r(z) = Ad(q−1

1 )n(z), we then want to relate[
lim
z→0

zx1r(z)h,w−1
]

to [h, 1],

where r(0) = 1. For this we need the following (and this proves the claim).

Lemma 6. If d(z) is a holomorphic map to G, with d(0) ∈ B then

k = lim
z→0

Ad(zx1)d(z)

exists with w1kw
−1
1 ∈ B.

Proof. G is generated by the one parameter groupsGα for α ∈ R and T . These groups are isomorphic
to C and with an action (Ad) of the torus with Ad(t)u = α(t)u.

If d(z) ∈ Gα = C given by d(z) = zm then Ad(zx1)d(z) = zα(x1)d(z). Hence, to verify the lemma
we need the following.

1) If α ∈ R+ then α(x1) = 0 implies w1(α) is a positive root, which is known. If α(x1) = 1, then
k = 1.

2) If α ∈ R− with α(x1) = 0, then clearly k = 1.
3) If α ∈ R− with α(x1) = −1, then clearly k exists and w1(α) is positive.
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3.2 Position of s(∞), s(1)

Note that we have chosen p2 = ∞ in order to simplify the notation.
We have g2 ∈ w2P2. Consider the map ψ : G/P → G/P by left multiplication by w−1

2 . Write g2 =
w2q2b for q2 ∈ Q2 and b ∈ B. Let g′2 = w2q2w

−1
2 b as before the G/P class of g′2 is well-defined. It is

then easy to see that w2[f(∞), g2] = [s(∞), g′2]. For this it is enough to note that zx1 = (1/z)w2x2.
Finally, let g′3 = g3. It is clear that [s(1), g′3] = [f(1), g3]. Next we have to compute the homology

class s∗([P1]).

Lemma 7. If Z is the element in Hom(WLP ,Z) corresponding to f , then the element Z ′ corre-
sponding to s is

Z ′(γ) = Z(γ) − γ(u−1
1 x1 − x1) − γ(u−1

2 x2 − w2x2)
= Z(γ) − u1γ(x1) − u2γ(x2).

Proof. It is enough to prove this in the case γ positive and integral. Let L be the line bundle on
G/P corresponding to γ. We construct the line bundle corresponding to γ in a different (equivalent)
manner first. First extend γ to a map Γ : P → C

∗. Then construct the total space of L as G×C/R,
where R is the equivalence relation (g, v) = (gp,Γ(p)v) for p ∈ P . The maps f, s give two line
bundles Lf = f∗(L), Ls = s∗(L). At a point other than 0,∞, construct the map ψ : Lf → Ls, by
(f̆(z), 1) to (zx1 f̆(z),Γ(zx1)) where f̆(z) is a local lifting of f to a map → G, and where the same
determination of zx1 is used in both zx1 f̆(z) and in Γ(zx1).

It is immediate to see that ψ is an isomorphism of bundles outside of {0,∞}. Let us analyze this
map first at z = 0. Lift f to a map f̆ to G. Then (f̆ , 1) is a local section of f and this is mapped
by ψ to (zx1 f̆ ,Γ(zx1)), a meromorphic section of Ls. To complete the analysis we have to display a
generating section of Ls. Let f̆(z) = q1b(z)u1p where (recall g1 = q1b1p ∈ P ) b(0) ∈ B. Now zx1q1 =
q1z

x1 and zx1b(z)z−x1 is holomorphic at z = 0. We therefore find that (zx1q1b(z)z−x1u1p1, 1) is a
holomorphic section of Ls. Therefore, the contribution at z = 0 to deg(Ls)−deg(Lf ) is γ(x1−u−1

1 x1).
The calculation at ∞ is similar and we arrive at the equation in the statement.

Proof of Theorem 4. Now consider the map which takes a map f : P
1 → G/P to the map s as above.

We have seen that if we choose generic gi to compute the left-hand side, then the s’s correspond
to the right-hand side computed with respect to g′i. The g′i depend only on the gi and the central
elements chosen. So computed with respect to g′i the right-hand side is a finite number and the
codimension computation therefore gives us an inequality:

〈Xu1 ,Xu2 ,Xu3〉Z � 〈Xwc1u1,Xwc2u2 ,Xu3〉Z′ .

Now apply the reasoning again, this time with c2, c1, to get the other inequality.

Corollary 2. Let Z ∈ H2(G/P,Z), u1, . . . , us ∈ W , c1, . . . , cs ∈ center(G), c1c2 . . . cs = 1.
Let xk = hck

. Then,

〈Xu1 , . . . ,Xus〉Z = 〈Xwc1u1 , . . . ,Xwcsus〉Z′ ,

where Z ′ as an element of Hom(WLP ,Z) is given by

Z ′(γ) = Z(γ) − γ(u−1
1 x1) − γ(u−1

2 x2) − · · · − γ(u−1
s xs).

Proof. Let us do the case s = 3, the general case is similiar. We write down the transformation
formulas (as in the theorem) for c1, c1−1, and then transform this on the second and third ‘variables’
by c1c2, (c1c2)−1; it is clear that (c1c2)−1 = c3. We just have to verify that the formula for Z ′ is the
one above. We leave this to the reader.
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4. Reformulation

Let P be a standard parabolic and Σ the set {α ∈ ∆ | g−α �⊂ p}. It is clear that {ωσ | σ ∈ Σ} is a
basis of WLP . Introduce variables qσ for σ ∈ Σ.

We need the following simple fact before we can describe the quantum cohomology of G/P .

Duals. The Poincare dual of the class Xw is the class Xw0w where w0 is the unique element in
the Weyl group, so that

B ∩ w0Bw0
−1 = T.

Definition 3. Define the following.

1) Xu1 � Xu2 =
∑

u∈W/WP ,Z∈Hom(WLP ,Z)(
∏

σ∈Σ qσ
Z(ωσ))〈Xu1 ,Xu2 ,Xu〉ZXw0u.

2) QH(G/P ) = H∗(G/P,C)
⊗

C[qσ : σ ∈ Σ] with the product given above.

3) For c in center ofG with wc the associated Weyl group element, let Tc : QH(G/P ) → QH(G/P )
by

Tc(Xw) =
(∏

σ

qσ
ωσ(w−1hc−hc)

)
Xwcw

with hc defined as in Definition 1.

Let us now try to compare Tc(Xu1 � Xu2) to T (Xu1) � Xu2 .

Lemma 8.

1) T1 = multiplication by one.

2) Tc(x � y) = Tc(x) � y.

3) For c1, c2 ∈ center(G), let x1 = hc1 , x2 = hc2 . Then,

Tc1Tc2 =
(∏

σ

qσ
ωσ(w−1

c1
x2−x2)

)
Tc1c2 =

(∏
σ

qσ
ωσ(w−1

c2
x1−x1)

)
Tc1c2

as operators.

5. The SLn case

Let us look at Gr(r, n). Here we have simple roots Li − Li+1 for i = n − 1, . . . , 1. For Gr(r, n), Σ
from the previous section is Lr − Lr+1. The center is the cyclic group of order n generated by the
diagonal matrix Θ with entries ζ, where ζ = e2πi/n.

The element in C̄ corresponding to Θk, k = 1, . . . , n− 1 is(
k

n
, . . . ,

k

n
,
k

n
− 1,

k

n
− 1

)
,

where there are (n−k) k/n’s. The element of the Weyl group corresponding to Θk is just ‘subtract k
modulo n, replacing zeros by n’ in the standard representation of the Weyl group as a permutation
group. Using these we can give a more explicit form of the transformation formulas.

Definition 4. Let I = {i1 < i2 < · · · < ir}. Let F• be a complete flag in an n-dimensional vector
space E. Now let ΩI(F•) = {L ∈ Gr(r,E) | dim(L ∩ Fit) � t for 1 � t � r}. We denote the
cohomology class of this subvariety by σ(I). The codimension of this subvariety is the number of
pairs (j, i) with j /∈ I, i ∈ I and j > i.
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The Gromov–Witten invariants in the Grassmannian case also have an interpretation in terms
of vector bundles on P

1. Let V = On
P1

. We have a universal sequence of vector bundles on Gr(r, n)

0 → S → V → Q → 0,

where S is the universal subbundle of rank r and Q the quotient. It is now easy to verify that
degree d maps ρ : P

1 → Gr(r, n) are in one-to-one correspondence with subbundles of rank r and
degree −d of V by pulling back the universal sequence via the map ρ. Also, the image of point
pi under this map is exactly the fiber of this subbundle at pi. It is useful to fix an n-dimensional
space T and identify all the fibers of the bundle V with T . To obtain the other direction of this
correspondence, note that subbundles S correspond to a family of r-dimensional subspaces of T
(over P

1).
Now fix s general flags on T = C

n: Fpi,•, i = 1, . . . , s, as well as s points p1, . . . , ps on P
1. Let

I1, . . . , Is be subsets of {1, . . . , n} of cardinality r each, the Gromov–Witten number

〈σ(I1), . . . , σ(Is)〉d,
therefore counts the number1 of subbundles S of V of degree −d and rank r such that the fiber Spi

as a subset of T lies in the Schubert variety ΩI(Fpi,•).

5.1 The Transformation property
Theorem 5. Let I1, . . . , Is be subsets of {1, . . . , n} of cardinality r each. Let n1, . . . , ns be natural
numbers summing to n. Define Ji = Ii − ni mod n. That is, subtract ni from the numbers in Ii,
reduce them modn and replace all zeros by n. Define di as the number of elements in Ii which are
less than or equal to ni, then

〈σ(I1), . . . , σ(Is)〉d = 〈σ(J1), . . . , σ(Js)〉d+r−∑ di
.

Remark. This property has been noted and proved in [AW98] as a consequence of the Schubert cal-
culus established in [Ber97]. The proof here is geometric and independent of [Ber97]. It is essentially
the same proof as that of the transformation formulas of the previous section.

Proof. First we verify that the codimension conditions on both sides are the same. That is
s∑

i=1

codim(σ(Ii)) = nd+ r(n− r),

is same as the condition
s∑

i=1

codim(σ(Ji)) = n

(
d+ r −

∑
di

)
+ r(n− r).

This follows easily from the observation

codim(σ(Ji)) = codim(σ(Ii)) + (ni − di)r − (n− r)di.

Now fix s general flags on V = C
n: Fpi,•, i = 1, . . . , s, as well as s points p1, . . . , ps on P

1.
Then 〈σ(I1), . . . , σ(Is)〉d is the number of subbundles (zero if there is an infinite family) of subbundles
E of V = V

⊗
C
O of degree −d and rank r such that the fiber Epi as a subset of C

n lies in the
Schubert variety ΩIi(Fpi,•). Let Vi = Fni

pi
. From the genericity of the flags, we have an equality⊕

Vi → C
n.

1It is defined to be zero if there is an infinite family of such subbundles.
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We define a new bundle on P
1 as follows (q is a new point on P

1).

V ′ =
⊕(

Vi

⊗
O(pi − q)

)
.

Note that we are given an isomorphism V → V ′ over the open set U = P
1 − {p1, . . . , ps, q}

and also that V ′ is isomorphic to On. From the theorem below we know that we have a one-to-one
correspondence between subbundles E of V and subbundles E ′ of V ′. We also have induced flags
F ′

pi,• on the fibers of V ′ at the points pi, so that if fiber Epi is in the Schubert variety ΩIi(Fpi,•),
then the fiber E ′

pi is in the Schubert variety ΩJi(F
′
pi,•). The theorem below also tells us that in this

correspondence, the degree of E ′ is equal to the degree of E − r +
∑
di.

This finishes the proof, but we have to deal with genericity questions. A more refined approach
can directly show that the induced flags on V ′ are generic too. However, we wish to avoid this line
of argument here. Instead we note that this argument proves (with the codimension computation)
that 〈σ(I1), . . . , σ(Is)〉 � 〈σ(J1), . . . , σ(Js)〉d+r−∑ di

.
We could then reverse this construction to get the other inequality. This proves that there are no

intersections at ‘infinity’ and also transversality without invoking the theory of Quot schemes.

Theorem 6 (Local theory). Let C be a smooth curve p a point on it and t a uniformising parameter
at p. Let V be a vector bundle on C and V = fiberVp. Also, suppose that we are given a complete flag
on V : V1 ⊂ V2 ⊂ · · · ⊂ Vn = V . Define V ′

k = {meromorphic sections s of V which are holomorphic
sections of V outside of p and such that ts extends to give a section of V near p with a fiber at p
in Vk}.

1) V ⊂ V ′
k with quotient supported at p of dimension k.

2) There is a one-to-one correspondence between subbundles E of V and subbundles E ′
k of V ′

k.
In this correspondence the quotient E ′

k/E is supported at p and has dimension dim(Ep ∩ Vk).
3) We have a sequence of inclusions

t(V ′
k) ⊂ t(V ′

k+1) ⊂ · · · ⊂ V ⊂ V ′
1 · · · ⊂ V ′

k,

which gives a complete flag on the fiber (V ′
k)p.

4) In the correspondence on the subbundles, if fiber Ep is in the Schubert variety ΩI(Fp,•), then
the fiber (E ′

k)p is in the Schubert variety ΩI−k(F ′
p,•).

The proofs are all fairly obvious and can be found in the appendix to [Bel01].

5.2 Quantum Schubert calculus
The objective of this section is to show how Pieri’s formula is an easy consequence of the relations
of the previous section. Namely for the intersections in the Pieri formula, the relations reduce to
the d = 0 case and are classically known by induction.

As in the classical approach of Hodge–Pedoe (see [GH78]), we can then prove the Giambelli
formula from Pieri. In [Ber97], Pieri is deduced from Giambelli.

Definition 5. Define a map T : QH(Gr(r, n)) → QH(Gr(r, n)) by the rule T (σ(I)) = qd1(σ(I−1)),
where d1 is the number of elements in I which are less than or equal to one. Note that if k � n,
T k(σ(I)) = qdkσ(I − k), where dk is the number of elements in I which are less than or equal to k.
This T is essentially TΘ of the previous section.

Theorem 7 (Reformulation of transformation property). The transformation property is equivalent
to the property

T (σ(I) � σ(J)) = T (σ(I)) � σ(J).
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The proof of Pieri is pure algebra beyond this point. We first note the following.

Lemma 9. Suppose σ(I) has codimension less than or equal to n − 1 and that σ(K) appears in
σ(I) � σ(J) with a q coefficient greater than or equal to one, then there exists k so that σ(K − k)
appears in σ(I) � σ(J − k) with q degree 0.

Proof. Suppose not, choose k so that the q degree is minimized and equals d. Let J ′ = J − k and
K ′ = K − k. Since we cannot minimize the q degree further, application of the operation T l tells
us that if dl is the number of elements in J ′ which are less than or equal to l, and cl is the similar
number for K ′, then dl � cl. This clearly implies that codim(J ′) � codim(K ′). However, we also
have

codim(I) + codim(J ′) = nd+ codim(K ′).
This yields a contradiction immediately if d � 1.

Pieri’s formula is usually written in cohomological notation. For this, we make the following
definition.

Definition 6. If I = {i1 < · · · < ir} is a subset of {1, . . . n}, then define a(I, k) = n − r + k − ik,
for k = 1, . . . , r.

Definition 7 (Special Schubert cells). If a � n− r define σa = σ(Ia) where

Ia = {n − r + 1 − a, n− r + 2, . . . , n− r}.
Theorem 8.

σa � σ(I) =
∑
K

σ(K) + q
∑
L

σ(L),

where the K sum is over all K satisfying

n− r � a(K, 1) � a(I, 1) � a(K, 2) � · · · � a(K, r) � a(I, r)

and

codim(I) + a = codim(K)
and the L sum is over all L satisfying

a(I, 1) − 1 � a(L, 1) � a(I, 2) − 1 � · · · � a(I, r) − 1 � a(L, r) � 0

and

codim(I) + a = codim(L) + n.

Note that there are no L terms if a(I, r) = 0.

Proof. The statement about the K terms is classical [GH78]. Let us first show that there are no
terms with q2 and higher. From the previous lemma there is then a k so that if I ′ = I + k and
L′ = L+ k, we have:

• σ(L′) appears with q degree 0 in σa � σ(I ′);
• dk � ck − 2, where dk is the number of elements in I ′ � k and ck is the number of elements in
L′ � k.

Let dk = j. Then a(L′, j + 2) � a(I ′, j + 1) tells us that if L′ = {l′1 � · · · � l′r} and I ′ = {i′1 �
· · · � i′r}, then

n− r + (j + 1) − l′j+2 � n− r + j − i′j+1,

or what is the same i′j+1 +1 � l′j+2, hence l′j+2 � i′j+1 +1. However, i′j+1 > k, therefore l′j+2 > k+1
which is in direct contradiction to dk � ck − 2.
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We now deal with the q1 terms. We find L′ and I ′ as before so that dk = ck − 1. Let dk = j, ck =
j + 1. Then contemplation of I = I ′ − k and J = J ′ − k gives the result. For example, let us only
verify a(I, r)− 1 � a(L, r). It is clear that lr = l′j+1− k+n and ir = i′j − k+n. So we need to verify
that

n− r + r − lr � n− r + r − ir − 1,
or that,

ir + 1 � lr,

or that,
i′j + 1 � l′j+1,

which is just
a(I ′, j) � a(L′, j + 1),

but this is already known classically.

The tediousness of the above proof is made up by the simplicity of the proof of Giambelli formula.
However, before that we need a definition.

Definition 8. Let ă = a1 � · · · � ar be given, then define I(ă) by il = n− r+ l− al. If this is not
a subset of {1, . . . , n} define σ(I(ă)) to be zero. Also denote σ(I(ă)) by σa1,...,ar and ignore zeros in
the subscript if they appear.

Theorem 9.

(−1)dσa1,...ad
=

d∑
j=1

(−1)jσa1,...,aj−1,aj+1−1,...,ad−1 � σaj+d−j.

Proof. Note that on the left-hand side the length of the string ă′ = {a1, . . . , aj−1, aj+1−1, . . . , ad−1}
is less than r. So a′r = 0. Hence no q1 terms are produced via Pieri, and the formula in q degree 0
is known classically [GH78, p. 205]. Hence there is really nothing (new) to prove. Iteration of this
gives the Giambelli formula as in [GH78].

Fulton and Woodward [FW] have proved a theorem on the smallest power of q in the quantum
product of Schubert subvarieties in the case of G/P , P maximal parabolic. We prove the Grassmann
case of their theorem in a slightly strengthened form.

Theorem 10 (Fulton–Woodward). The smallest power of q appearing in σ(I)�σ(J) is the number
d = max{di + d′j − r | i + j = n}, where di is the number of elements in I which are less than or
equal to i, d′j is the number of elements in J which are less than or equal to j. Moreover, if the max
is achieved for i, j : i+ j = n, then

σ(I) � σ(J) = qd(σ(I − i) ∪ σ(J − j)) + higher-order terms,

where the cup product ∪ on the right-hand side is the cup product in the usual cohomology.

Remark. The ‘strengthened’ part refers to identification of the lowest order terms which is curiously
a product in the ordinary cohomology. This may not be true for all G/P ’s. Also, the associativity
of quantum cohomology has not been used so far!

Proof. We know T n is equal to multiplication by qr, therefore if i+ j = n,

qr(σ(I) � σ(J)) = T n(σ(I) � σ(J))

= T i(σ(I)) � T j(σ(J))

= qdi+d′jσ(I − i) � σ(J − j).
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Therefore, if i+ j = n,

σ(I) � σ(J) = qdi+d′j−rσ(I − i) � σ(J − j).

Now choose i, j (with sum = n) so as to maximize di + d′j − r. Let I ′ = I − i and J ′ = J − j.
Define ck as the number of elements in I ′ which are less than or equal to k and c′k as the number
of elements in J ′ which are less than or equal to k.

We clearly have ck + c′n−k � r, for any k. This tells us that the dual of σ(I ′) is contained in
σ(J ′), for a choice of flags. Hence, by Kleiman’s Bertini theorem, we have σ(I ′) ∩ σ(J ′) �= 0.
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