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Abstract

We investigate the number and size of the maximal sublattices of a finite lattice. For any positive integer
k, there is a finite lattice L with more that \L\k sublattices. On the other hand, there are arbitrary large
finite lattices which contain a maximal sublattice with only 14 elements. It is shown that every finite
bounded lattice is isomorphic to the Frattini sublattice (the intersection of all maximal sublattices) of a
finite bounded lattice.

1991 Mathematics subject classification (Amer. Math. Soc): primary 06B05,06B20.

The Frattini sublattice <J>(L) of a lattice L is the intersection of all maximal (proper)
sublattices of L. In this note we are concerned with the following problems:

(1) How many maximal sublattices can a finite lattice of size n have?
(2) How small can a maximal sublattice of a finite lattice be?
(3) For which lattice varieties V is it true that every finite non-trivial lattice L e f

is isomorphic to O(L') for some finite lattice L' e ~f]

We will address these questions in order, and provide good partial answers, especially
for finite lattices which are bounded homomorphic images of a free lattice. Recall that
a finite lattice is bounded if and only if it can be obtained from the one element lattice
by a sequence of applications of Alan Day's doubling construction for intervals. In
particular, finite distributive lattices are bounded. On the other hand, we do not have
a complete solution for any of the above problems.

The main results of this paper can be summarized as follows.

(la) For any k > 0, there exists a finite lattice L which has more than \L\k maximal
sublattices.

The authors were supported in part by NSF Grants DMS 95-00752 (Freese) and DMS 94-00511 (Nation).
© 1997 Australian Mathematical Society 0263-6115/97 SA2.00 + 0.00

110

https://doi.org/10.1017/S1446788700000355 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000355


[2] Maximal sublattices of bounded lattices 111

(lb) A finite bounded lattice L has at most \L\ maximal sublattices.
(2a) There exist arbitrarily large finite (or even countably infinite) lattices with a

maximal sublattice isomorphic to the five element lattice M3.
(2b) For any e > 0, there exists a finite bounded lattice L with a maximal sublattice

S such that \S\ < e\L\.
(3a) There exist infinitely many lattice varieties Y such that every finite non-trivial

lattice L e y is isomorphic to <t>(L') for some finite lattice L' e V.
(3b) Every finite bounded lattice L can be represented as O(K) for some finite

bounded lattice K (not necessarily in y(L)).

0. Preliminaries

We need to recall some basic results and terminology for semidistributive and bounded
lattices. There is a relatively complete treatment of bounded lattices in the book [7],
to which we shall refer. The semidistributive laws are given by

(SDV) u = av b = a v c implies u = a v (b A C)

( S D A ) v=aAb = aAc i m p l i e s v=aA(b\'c).

For a finite lattice, (SDV) is equivalent to the property that every element has a
canonical join representation, that is, for every a e L there exists C c J(L) such
that a — \J C irredundantly, and a = \J B implies that for every c e C there exists
b e B with c < b; see [7, Theorem 2.24]. The elements of C are called the canonical
joinands of a, and we write C = CJ(a). Of course, (SDA) is equivalent to the dual
property, and the corresponding elements are called the canonical meetands of a, and
denoted by CM (a).

We will use a basic fact about semidistributive lattices. A finite lattice L satisfies
(SDA) if and only if for each join irreducible element p of L there is a unique element
K(P) in L which is maximal with respect to x > /?» and x ^ p, where /?» denotes
the unique lower cover of p. Moreover, the elements K(P) are precisely the meet
irreducible elements of L. (See [7, Theorem 2.54].)

Let L be a finite lattice and p e L. Any set Q such that p < V Q is called a
join cover o f p . A j o i n c o v e r i s non-trivial i f p ^ q f o r a l l qeQ.lt i s minimal i f

Q c J(L) and no element of Q can be deleted or replaced by a smaller element.
We can define subsets D*(L) c L for k e co as follows. D0(L) consists of the join

prime elements of L, that is, those elements with no non-trivial join cover. Inductively,
an element p is in Dk+i (L) if every minimal non-trivial join cover of p is contained
inD^(L). Note

D0(L) CD, (L)CD2(L)C . . . .
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The finite lattice L is bounded (in the sense of McKenzie [11]) if it is semidistributive
and Dt(L) = L for some k (combining Theorems 2.13 and 2.64 of [7]). Equivalently,
L is bounded if it can be obtained from a one element lattice by a sequence of doublings
of intervals; this result of Day [5] and [6] is Corollary 2.44 of [7]. The D-ranlc of an
element x in a bounded lattice is the least k such that x e D*(L).

A straightforward argument shows that if J(L) c Dn(L), then Dn+)(L) = L\ see
[7, Lemma 2.5]. The class of finite bounded lattices does not form a variety, but for
a fixed n, the finite semidistributive lattices such that J(L) c Dn(L) are the finite
members of a locally finite variety @Sn, described in more detail in Nation [12] (cf.
[7, Corollary 2.17]). For example, 3§Q is the variety of distributive lattices, while the
pentagon N5 is contained in 9&x. Clearly, a finite lattice is bounded if and only if it is
in 38n for some n.

Throughout we will use the convention that algebras or relational structures are
denoted by bold face capitals, for example L, while their carrier sets are denoted by
the corresponding plain letters, for example L.

1. The number of maximal sublattices

A relatively free lattice with n generators has exactly n maximal sublattices, each
obtained by removing one of the generators (which are doubly irreducible). Thus
there exist arbitrarily large finite lattices with only 3 maximal sublattices.

So let us turn our attention to finding finite lattices with lots of maximal sublattices.
In general, an algebra of cardinality n can have at most (,n

n
/2) maximal subalgebras,

the size of a maximal antichain in 2", and this can be achieved. We cannot expect to
do this well for lattices, but let us show that the number of maximal sublattices can
exceed \L\k for any k.

Let Sn be any set with n elements, n e N and n > 5. We define Ln, the Boolean
layer cake of degree n, to be the lattice - under set inclusion as order relation - of all
2 element and all 3 element subsets of Sn, together with 0 and Sn itself. Obviously,
\Ln | = (") + (") + 2, which for large n is approximately n3/6.

THEOREM 1. For any k e N, there exists an n such that Ln has more than \Ln\
k

maximal sublattices.

This is proven by counting some rather special maximal sublattices of Ln. For any
p e Sn, let Kp = {A c Sn : p £ A) U {Sn}. We will describe the maximal sublattices
containing Kp for some p.

LEMMA 2. Leta,b e Sn, a,b^ p. Then G := Kp U {{p, a], {p, b}} generates Ln.
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[4] Maximal sublattices of bounded lattices 113

PROOF. Considerx e S , , ^ p. Now{p,x} = ({p,a}U{a,x})n({p, b}U{b,x})
and {a, x} and [b, x} are both in Kp, so {p, x] belongs to the sublattice generated by
G. It follows that this sublattice contains all 2 element subsets of Sn and thus equals

LEMMA 3. Let a G Sn, a ^ p. Then M^ a :— Kp U {{p, a, x}; x e Sn] is a proper
maximal sublattice of Ln.

PROOF. It is obvious that M p a is a proper sublattice containing the 2 element set
[p, a}. By Lemma 2, adding a further 2 element set (necessarily containing p) would
already generate LM. Adding a further 3 element set means adding some {p, x, y)
with {x, y] n {p, a] = 0. But then {p, x] = {p, a, x] n {p, x, y} must also be added,
again generating Ln by Lemma 2.

LEMMA 4. Lef a be a maximal collection of pairwise disjoint 1 element subsets of

Sn — {p}- Then M p o := Kp U {{/?, x, y] : {x, y) e a} is a proper maximal sublattice

ofU-

PROOF. It is obvious that Mpa is a proper sublattice. Adding {p,a} with a ^ p
forces the addition of {p, a, x) = {p, a} U {a, x} for any x ^ p. Choose {x, y} e a
with a ^ x, y (this is possible since n > 5); then we must add {p, x] = {p, a, x] D
{p, x, y], so all of Ln would be generated by Lemma 2. If {p, u, v} is any 3 element
set not in M p o , at least one of u, v - say u - belongs to some {x, y} € a. But then
adding {p, u, v] means adding {p, u] = {p, u, v] n [p, x, y}, generating again Ln by
the first half of this proof.

Although we do not need it to the full extent in proving Theorem 1, we include the
following.

COROLLARY 5. Let M be any maximal proper sublattice extending Kp. Then either
M = Mp>a for some a ^ p orM = Mp<a for some maximal collection a of pairwise
disjoint 2 element subsets of Sn — {p}.

PROOF. If M contains some 2 element set {p, a} with a ^ p, M must be equal
to Mp,a by Lemma 3. So suppose M — Kp consists exclusively of 3 element sets
{p, x, y] and put a := {{x, y] : {p, x, y] e M). Any two distinct members of a
must be disjoint for otherwise the intersection {/?, x, y] n {p, x', y'} would produce a
2 element member {p, a] of M. Clearly, a will be a maximal collection of such sets
and we have M = Mp a by Lemma 4.
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LEMMA 6. For an even integer k = 11 > 0, let x (k) be the number of distinct
partitions of a k element set A into 2 element subsets. Then

r(k) = Y\ (27 - D-
1SJSi

PROOF. Remove an arbitrary point p from A and observe that each partition of A
into 2-blocks is uniquely determined by its restriction to A — {p}. Obviously, there are
(2; — 1) • T (2/ — 2) such traces, which by induction establishes the desired formula.

Assume now that n e N , n = 2i + l > 5 odd. We count the number of maximal
sublattices of type M p a of Ln. Note that if p ^ q or a ^ fi, then Mpa ^ M,i/3. For
each p e Sn, there are as many sublattices Mp,« as there are partitions of Sn — {p}
into 2 element subsets. Hence their total number in Ln is n • x(n — 1) = (2i + 1) •
FIi< <,(2y — l) = r(n + l) . We conclude that Ln has at least z(n + 1) maximal
sublattices. Now

x(n + 1) = 1 • 3 • • • (2/ + 1) > 2 • 4 • • • 2/ = 2'i\

while \Ln\ < «3/6 = (2i + l ) 3 /6 for n > 13, whence

* > ( 3 | L n | / 4 ) 1 / 3 - l / 2 > ( | L J / 2 ) 1 / 3 .

It follows in particular that, for any k e N, Ln has more than \Ln\
k maximal sublattices

if n is sufficiently large.
This suggests a natural problem.

PROBLEM A. Find an asymptotic upper bound for the number of maximal sublat-
tices in a lattice of size n.

Next let us consider the number of maximal sublattices of a modular lattice. Let
L be the lattice of subspaces of a projective plane of order n = pk over a finite field.
There are n2 + n + 1 points and n2 + n + 1 lines, so \L\ = 2n2 + 2n + 4. Now
L contains maximal sublattices isomorphic to Mn+1 n+, (the Hall-Dilworth gluing of
two copies of Mn+i over an edge); these are obtained by picking a line and a point
on it, so there are (n2 + n + 1)(« + 1) of them. There are also maximal sublattices
isomorphic to Mn+i x 2; these are obtained by picking a line and a point not on it,
yielding (n2+n + \)n2 of them. For a plane of prime order p, these are all the maximal
sublattices. So in this case the number of maximal sublattices is roughly \L\2/4.

For a desargean plane of order p2, we have in addition maximal sublattices iso-
morphic to a plane of order p. Indeed, any quadrangle (4 points, no 3 collinear)
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[6] Maximal sublattices of bounded lattices 115

generates a sublattice of this type. The number of ordered quadrangles in a plane of
order p2, divided by the number of ordered quadrangles in a plane of order p, is

{pA + P
2 + l)(p4 + p2)(p4)(p4 - 2p2 + 1)

(p2 + p + l)(p2 + p)(p2)(p2 - 2p + 1)

Thus L contains approximately p&, or \L\2/4, subplanes of order p. Counting those
given in the preceding paragraph, a projective plane of order p2 has roughly 2ps, or
|L|2/2, maximal sublattices.

The counting gets harder when you go to fields of order pk with k > 2, but there are
still approximately n4 = p%k maximal sublattices isomorphic to MH+, n+[ or Mn+1 x 2,
and roughly /?8 sublattices isomorphic to a subplane over a maximal subfield, and these
are all the maximal sublattices of L. On the other hand, we have been unable to find
examples of modular lattices with more than \L\2/2 maximal sublattices. Perhaps that
is about as many as you can have.

CONJECTURE B. The number of maximal sublattices of a finite modular lattice is
0(\L\2).

On the other hand, we will show below that finite bounded lattices (and thus
in particular distributive lattices) can have at most \L\ maximal sublattices. This
argument, and other later ones, depend on the following characterization theorem.

THEOREM 7. Let L be a finite bounded lattice. Ifu is a canonical meetand of v and
v is a canonical joinand of u, then L — [v, u] is a (not necessarily maximal) sublattice
of L. Moreover, every maximal sublattice o /L is of this form.

PROOF. First suppose u e CM(u) and v e CJ(M). If x v y e [v,u], then u =
x v y v Y ( C J ( M ) — {v}). The canonical representation refines this, so v < x < u or
v < y <u. Hence h — [v, u] is a sublattice. This part requires only semidistributivity.

Now assume that L is bounded and let S be a proper sublattice. We will find a pair
u, v of the above form with [v, u] D S = 0.

Let v0 be an element of minimal D-rank in L — S. Then v0 is join irreducible
or possibly zero. For if v0 were a proper join and in say D^(L), then its canonical
joinands would be in D*_i (L), and at least one of them would not be in S.

There is a canonical meetand V\ of v0 such that [u0, u,] D S = 0. We claim that
\ / C > D0 non-trivially implies V C 2- fi- For suppose that C is a non-trivial join
cover of v0. Since any non-trivial join cover can be refined to a minimal one, there
exists a minimal non-trivial join cover B of v0 with v0 <\J B <\J C. The elements
B all have lower D-rank than v0, and hence are in 5. Therefore their join is in S, which
is disjoint from [u0, v\]. Thus \J B -£v\, and a fortiori \JC •£ V\. In particular, the
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canonical join representation of vx is not a non-trivial join cover of v0, so there is a
canonical joinand v2 of V\ with v0 < v2 < V\.

For any set D with vi > / \ D > v0, we have v0 = / \ D A /\(CM(u0) - {ui }). The
canonical meet representation of v0 dually refines this, so i>i > d for some d e D. In
particular, i>i > u3 > u2 for some u3 e CM(u2).

Dually, there exists v4 e CJ(u3) with u3 > u4 > v2. Continuing in this way, by
finiteness we eventually get vi+2 — vt, which gives us the desired pair u,, vi+\.

It is natural to ask whether this characterization extends to finite semidistributive
lattices. We do not know.

Next we want to show that finite bounded lattices do not have too many maximal
sublattices. Call a sublattice of the form produced by Theorem 7 special.

THEOREM 8. If his a finite bounded lattice, then it has at most \L\ special sublat-
tices, and hence at most | L \ maximal sublattices.

The proof is by induction on \L\. We use the characterization of finite bounded
lattices as the lattices obtained from 1 by doubling intervals. Clearly the theorem
holds for 1.

If / is an interval in the lattice L, let L[/] denote the lattice obtained by doubling / .

LEMMA 9. Let L be a finite lattice with more than 1 element. If J is a join
irredundant subset of L and K is a meet irredundant subset, then \J\ + \K\ < \L\.

PROOF. Letm = max( | / | , |A"|). Then \L\ >2m >2m> \J\ + \K\ as desired.

Now let L = K[/] where / = [s, r], and assume that K has at most |A"| special
sublattices. The join irreducibles of L are of the form

(1) peJ(K)-/,or
(2) (p, 0) with p € J(K) n / , or
(3) (5,1).

The meet irreducibles of L are obtained dually.
Moreover, the canonical join representations of elements of L are obtained from

those in K as follows. For p € J(K), let

~ \ p p i
P \(p,0) if p e l .

If x = t i I or x = (f,0), then CJL(;t) = {p : p e CJK(O}- If * = (t, 1), then
CJL(x) = {(s, l)}U{p^: p e CJK(f) and p ^ s}. The canonical meet representations
in L are of course given dually.
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[8] Maximal sublattices of bounded lattices 117

We can describe the special sublattices of L as follows. Let S = L — [v, u] with
u e CM(u) and v e CJ(w).

(1) If v e J(K) - / and u e M(K) - /, then K - [v, u] is a special sublattice of K.
(2) If v € J(K) - / and u = (q, 1) with q e M(K) n /, then v ^ s and K - [v, q]

is a special sublattice of K. (If v < s and q e I, then K — [t>, q] may be special,
but L — [v, (q, 1)] will not be, as (5, 1) is a canonical joinand of (q, 1). So you
might lose some special sublattices.)

(3) If v € J(K) — /, then u ^ (r, 0) since the latter is not a canonical meetand of u.
(4) The case v = (p, 0) with p e J(K) n / and u e M(K) - / is the dual of (2), and

so yields no new sublattices.
(5) If v = (p, 0) with p e J(K) D / and u = (q, 1) with q e M(K) n /, then

K — [p, q] is a special sublattice of K. (If p = s or q = r, then K — [p, q] may
be special, but L — [(/?, 0), (q, 1)] will not be, as in (2).)

(6) If v = (p, 0) with /? e J(K) n / and u = (r, 0), then p is a canonical joinand of
r in K. Hence the number of special sublattices of this type is | CJ(r) n /1, which
is a join irredundant set.

(7) The case v = (s, 1) and u e M(K) — / is the dual of (3), and does not occur.
(8) The case v = (s, 1) and u = (q, 1) with q e M(K) n / is the dual of (6), and

yields | CM(s) n / | new sublattices.
(9) If v = (5, 1), then u ± (r, 0) because (s, 1) ^ (r, 0).

Thus the number of special sublattices in L is at most the number of those in K plus
|CJ(r) n / | + |CM(s) n / | . On the other hand, \L\ = \K\ + |/ |. So unless / is a
single point, we are done by the lemma applied to / .

If / consists of a doubly reducible point p, then cases (6) and (8) do not occur, and
we get no new special sublattices. If p is join irreducible only, then (6) yields one new
special sublattice and (8) does not occur. If p is meet irreducible only, then dually (8)
yields exactly one new special sublattice. If p is doubly irreducible, (6) and (8) give
two special sublattices where there was one before. So in every case we get at most
one more, and this completes the proof of the theorem.

Note that we also have the estimate that, for bounded lattices, the number of
maximal sublattices is at most | J(L)|| M(L)|, which can be either better or worse than
the bound \L\ given by Theorem 8.

2. The size of maximal sublattices

If S is a maximal sublattice of L, we know that \S\ can be as large as \L\ — 1.
At the other extreme, Figure 1 shows an infinite lattice which has a maximal sub-

lattice isomorphic to the five element modular, non-distributive lattice M3 (indicated
by solid points). An obvious modification shows that M3 is also a maximal sublattice
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of arbitrarily large finite lattices. Easy arguments show that no four element lattice
has these properties.

FIGURE 1

This leads to an interesting question.

PROBLEM C. Which finite lattices are isomorphic to a maximal sublattice of an
infinite lattice? of arbitrarily large finite lattices? Are these properties the same?

This problem will be addressed in [8]. For example, it is shown there that if the
five element nonmodular lattice N5 is isomorphic to a maximal sublattice of a lattice
L, then \L\ < 8.

However, note that if ~Y is a locally finite variety, L e ~V and S is a maximal
sublattice of L, then \L\ < |<^V(|S| + 1)|. Thus, for each k, there is an unbounded,
non-decreasing function crk(n) such that if L is a finite lattice in 3Sk (the variety
generated by the finite bounded lattices with J(L) c Dn(L)) and S is a maximal
sublattice of L, then \S\ >ok(\L\).

PROBLEM D. Find an asymptotic lower estimate for ok{n).
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For example, Rival proved in [13] that if S is a maximal sublattice of a distributive
lattice L with \L\ > 3, then |5 | > |L | /3 . This can be derived from Lemma 3 and
the fact that every special sublattice of a finite distributive lattice is maximal. Thus
ob(«) > 2«/3. On the other hand, for any lattice D, the direct product 3 x D has a
maximal sublattice

S = {(*<,,*,) e{0 , 1 , 2 } X D : J C 0 ^ 1}

with 2\D\ elements. Hence ao(3k) = 2k, and more generally ao(n) = [2n/3].
Let us show that this situation is rather special to distributive lattices: there exist

finite bounded lattices with maximal sublattices such that |5 | / |L | is arbitrarily small.

THEOREM 10. Let K be the lattice in Figure 2. For every e > 0 there exists a finite
lattice L € ^ ( K ) with a maximal sublattice S such that | 5 | / |L | < s.

Note that as K e S§\, every lattice in the variety Y{K) is also in 38\. Hence
limB_oo<Ti(«)/n = 0.

PROOF. There is a homomorphism of K onto the 3 element chain whose kernel K

has 3 blocks:

Bi={l,p,q), Br = {r,s,t,u], B0 = {v, w,0).

Let Ln be the subalgebra B% U Bn
r U Bn

x of the direct power K", that is,

Ln = [x 6 K" : Xj K Xj for all i, j}.
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We claim that Sn = B£ U Bn
x is a maximal sublattice of Ln. As \S,,\ = 2 • 3" and

\Ln\ = 2 • 3" + 4", this will prove the theorem.
Let x be any element of B", and let v be the element with T), = v for all i; similarly

r = (r,... ,r). Then u € £„ and TJ v x = r, so that r is in the sublattice generated by
Sn U {x}. Hence it suffices to prove that Sn U {7} generates Ln, that is, B" is contained
in the sublattice generated by Sn U {?}.

Again let x be any element of B", and let

R = {i : x, = r],

T = {i: x, = t),

Define elements y e B" and z € B£ by

1 if / e /?

yi = ip ifieS

q ifieTUU

5 = {/ : x, = s]

U = {i : x, = u).

v ifieR

w ifieSUT

0 i f / e f / .

Then x = (r Ay)vz, which is in the sublattice generated by Sn U {r}. By the preceding
reduction, this shows that Sn is a maximal sublattice of Ln.

3. Frattini sublattices and varieties

If C is a chain, then | <t> (C) | = 0. Otherwise, so long as | L \ > 4, we have

with the lower limit being obtained by Mn 's and the upper limit by relatively free
lattices, so there does not seem to be much more to say there.

We want to consider the third problem from the introduction: For which lattice
varieties V is it true that every finite non-trivial lattice L € V is isomorphic to <t>(L')
for some finite lattice L' e Y? It is useful to let 3>(^/) denote the set of all lattices
isomorphic to some <J>(K) where K is a finite lattice in Y.

The known results on this problem can be summarized as follows. If L is a
finite lattice and not a chain, then <J>(L) must contain the largest join reducible and
smallest meet reducible elements. Thus |<&(L)| ^ 1 when L is finite. Koh showed
that every finite lattice with \L\ > 1 is in O ( ^ ) where J£ is the variety of all
lattices [10]. Moreover, Adams and Sichler proved that every lattice L is isomorphic
to <J>(K) for some K e Y(L) with \K\ = \L\ + Ko, see [3]. However, Adams in [2],
and independently Chen, Koh and Tan in [4], showed that for distributive lattices
2 x 2 ^ <t>(@f). Eventually, Abad and Adams characterized the lattices in
though the characterization is necessarily a bit complicated; see [1].

https://doi.org/10.1017/S1446788700000355 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000355


[12] Maximal sublattices of bounded lattices 121

THEOREM 11. There exist infinitely many lattice varieties ff such that every finite
non-trivial lattice L e W is isomorphic to <$>(L,') for some finite lattice L' € c€, that
is, % C

PROOF. Koh's construction gives, for each finite non-trivial lattice L, a finite lattice
L' such that <t>(L') = L. This he does by replacing every covering relation of L
by 2 x 2. In fact, there are infinitely many varieties which are closed under Koh's
construction.

Let K be a primitive lattice, that is, a finite, subdirectly irreducible, projective lattice.
(Equivalently, K is finite, subdirectly irreducible, bounded, and satisfies Whitman's
condition (W).) Then the class of all lattices not containing a sublattice isomorphic
to K is a variety ^K- If further K contains no doubly irreducible elements, then it
is clear that ^ K is closed under Koh's construction. Thus for each finite non-trivial
lattice L e 4 there exists a finite lattice L' e tfK with <t>(L') = L.

Jezek and Slavik give three infinite lists of primitive lattices with no doubly irre-
ducible elements in [9].

Now recall that not every finite distributive lattice can be represented as <t (K) with
K e f | ( = 3§of). In fact, this is the only variety for which we know that ~fs <£ <t> (ff).
Repeated failed attempts to represent certain lattices have given us some faith in the
following conjecture.

CONJECTURE E. For every n > 0 there is a finite non-trivial lattice L e SSn which
cannot be represented as 4>(K) with K a finite lattice in SBn, that is, SSn}

However, let us show that B8n c

THEOREM 12. Every finite non-trivial lattice L e 38n can be represented as <J>(K)
for some finite lattice K e 3Bn+\-

PROOF. Let P be the ordered set of (nonzero) join irreducible elements of the finite
lattice L e ^ , . We may assume that |L| > 2, as we can represent 2 as <1>(2 x 2). We
may further assume that L is linearly indecomposable, for we can use either 2 x 2 or
the construction below for each linear summand of L. This means that P cannot be
written as the disjoint union of two nonempty sets, P = AUB, with a > b whenever
a e A and b € B.

It is useful before proceeding to identify a particular type of element in L. Let us
say that p is a splitting element for P if there exists a unique element r e P minimal
with respect to the property r ^ p. Every element of P is then either below p or
above r, so that p is the unique element which is maximal with respect to p ^ r. In
this case, we will say that {p, r) is a splitting pair for P, and write p = /x(r) and
r = v(p). According to this terminology, v(p) need not be a splitting element.
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An element p is doubly irreducible if it is in P (that is, join irreducible) and has a
unique upper cover p*. It is easy to see that splitting elements are doubly irreducible
in L, but unless L is distributive the converse need not hold.

We construct K as follows. Let Q be the ordered set consisting of all (p, 0),
(p, 1,0) and (p, 1, 1) for p e P, and (p, 1, 2) if p is a splitting element in P. Order
Q lexicographically. Then K is isomorphic to the join semilattice with zero generated
by Q subject to the relations

(I) (P, 1,0) < \fq€U(q, 1,0) ifp<\/UmU
(II) (p,l,D<(p,l,0)V(q,0) ifq£p,

(III) (p, 1, 2) < (p, 1, 0) v (v(p), 1, 0) if p is a splitting element.

This construction is partially illustrated in Figure 3. Since K is a finite join semilattice
with zero, it is a lattice.

FIGURE 3

Before proceeding, we need to work out some of the arithmetic of K (in terms
of that of L). Let us say that a set X c Q is closed if, for all q e Q, q < \J X
implies q e X. Clearly, X is closed if and only if there exists x e K such that
X = {q € Q : q < x}. We want to determine the closed subsets of Q.

As a matter of notation, for p G P let mp = 2 if p is a splitting element, and
mp = 1 otherwise. Also, for q e Q let q~ denote {u e Q : u < q}.

LEMMA 13. A subset X c. Q is closed if and only if it is of one of the following
forms.

(1) (p, 0) or (p, 1, 0) or (p, 1, 1) or (for splitting elements) (p, 1, 2).
(2) (p, 1, 1) U {(v(p), 0)} where p is a splitting element of P.
(3) For some a e L and R c P, \JpSa (p, \,mp) U {(r, 0) : r e R} where r

and r* < a for all r e R.
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Moreover, if X is closed and x = \J X in K, then x has one of the following canonical
join representations in K.

(4) (p, 0) or (p, 1, 0) or (p, 1, 1) or (for splitting elements) (p, 1, 2).
(5) (p, 1, 0) v (v(p), 0) where p is a splitting element of P.
(6) \/{(p, 1,0) : p € CJ(a) and p £ r for all r € R) V \J{(r, 0) : r € /?}.

In particular, since every element of K /zas a canonical join representation, K satisfies
(SDV).

It is not hard to see that the sets given in the Lemma 13 are closed. Conversely,
assume that X is closed, and let a = \/{p e P : (p, 1, 0) e X}. (Possibly a = 0.)
The case X = 0 is contained in (3), and the case when X has a unique maximal
element is (1). If X has at least two maximal elements, then (p, 1, 0) e X implies
(p, 1, mp) e X, with the exception given in case (2).

Let R = {r € P : (r, 0) e X but (r, 1, 0) £ X}. If r € /?, then by closure rule (I)
r •£ a, but for all p < r we have (p, 1, 0) < (r, 0), whence (p, 1, 0) e X and p < a;
thus r, < a. Thus every closed set has the form (1), (2) or (3).

Let C denote the set of joinands given in (4), (5) or (6). In each case we have
C c X and q e X implies q <\J C, whence V C = V X = x. To see that these
joins are canonical, we need to show that if U c Q and x = \J U, then each element
of C is below some element of U. (Certainly it suffices to consider the case when the
elements of U are join irreducible.)

The elements in case (1) are join irreducible, so they are their own canonical
joinands (4). For case (2), X — {(v(p),0)} = (p, 1, 1) is closed, so (v(p),0) is
needed for the join. On the other hand,

{q, \,mq) U {(p,0)} U [v(p), 0)}

As U is not contained in this set, but is contained in X, it must contain one of (p, 1,0)
or (p, 1,1).

In case (3), it is clear that X — {(r, 0)} is closed for each r e R. As U c X and
U g X - {(r, 0)} for every r e /?, we have {(r,0) : r e /?} c £/. So suppose
p e CJ(a) and that p ^ r for all r e R. Now *:(p) exists in L. We claim that

Y = LU<P) te.l.«,) U ((P. °)} U {(r< 0) : r € /?}

is a closed set which does not contain (p, 1, 0). Of course, p* < ic{p). If r e /?, then
p ^ r as p < a and r ^ a. However, r» < a, and every element below a is either
above p or below x{p), since p is a canonical joinand of a. As p ^ r*, we have
r* < K(P). Thus Y is indeed closed.
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Now U $? Y, so choose u e U — Y. Then u is either of the form (s, 1, ks) or
(5,0). In either case s < a and 5 ^ K(p), so p < s. Also u ^ (p,0). Thus
either u = (s,l, k5) with s > p, or u = (s, 0) with 5 > p. Regardless, we have
u > (p,l, 0), as desired. This proves Lemma 13.

Now let us verify that Q c Dn+1(K). It follows from the above proof that if U is
a minimal non-trivial join cover of an element q e Q, then every element of U is of
the form (s, 1,0). For certainly a minimal join cover of q consists of the canonical
joinands of V U. And if q e Up<a (p, 1, mp) U {(r, 0) : r e R} as above, and
q jz (r, 0) for all r e R, then g e UP<a (P' '̂ m/>)' s o f°r a m m i m a l non-trivial join
cover we must have R empty.

An easy induction now shows that if p e Dt(L), then (p, 0) and (p, 1, 0) are in
Dt(K). (Use the fact that (p, 1, 0) < \/seS(s, 1, 0) in K if and only if p < V S in
L.) Since P c Dn(L), all the elements (p, 1, 1) and (if /? is splitting) (p, 1, 2) are in
Dn+, (K), because all their minimal non-trivial join covers are contained in Dn(K).

To check that K is indeed in 8&n+\, it remains to prove that K satisfies (SDA). For
this, it suffices to show that K(q) exists in K for each q e Q. Since the elements
K{q) are precisely the meet irreducible elements of K, and we eventually want to find
all the special sublattices of K, we will also want to apply the Lemma 13 to find the
canonical join expressions of these elements.

A couple of cases are easy: K{{p, 1, 1)) = (p, 1,0) since (p, 1,0) is doubly
irreducible, and if p is a splitting element,

K((P, 1,2)) = (p, 1, 1) v (v(p), 0) = (p, 1, 0) v (v(p), 0)

with the latter expression being canonical. Moreover, if p is a splitting element,
K((v(p), 0)) = (p, 1,2). Thus it remains to find ic((p,0)) with p ^ v(q), and
K((p, 1,0)). The above cases cover the situations where ic(q) will have the form (1)
or (2) of the Lemma 13. (Recall that K is a one-to-one correspondence between join
and meet irreducibles in a finite semidistributive lattice.)

To find K((P, 0)), we note that

(q, 1, mq) U {(r, 0) : r 5C /c(p) and r* < AC(P) and r ^ p}

is a closed set which does not contain (p, 0), but does contain all w e Q properly
below (p, 0). Furthermore, if v e Q — U, then either v — (p, 0) or v > (s, 1, 0)
for some s ^ K(p). In the latter case we have p < pt v s, that is, there exist
4i< • • • ,<}k < P* such that p < s v \J qj. Then (^, 1, 0) < (p, 0) for all j , and

(p, 1,0) < (5, l , 0 ) v \ / | < ; < t ( % - , l , 0 ) < u v ( p , 0 ) t

so that U is the largest closed set containing {w e Q : w < (p, 0)} but not containing
(p, 0). Thus V U = K((p, 0)). By the Lemma 13, if we let

Rp — {(r € P : r ^ *:(p) and r* < ^r(p) and r ^ p}
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then we have canonically

*((/>, 0))

= \/{(q, 1, 0) : q € CJ(K(P)) and q £ r for all r e Rp] V \f{(r, 0) : r e /?„}.

The same argument shows that if we take V = U U {(p, 0)}, then V V —
K((p, 1,0)). Thus, with Sp = Rp U {/>}, we have the canonical join expression

«{(P, 1,0))

= \/{(<?, 1, 0) : ? e CJ(«(p)) and ^ ^ r for all r e S p | v \J{{r, 0) : r e Sp}.

Thus /c(g) exists for all q e Q, and K satisfies (SDA).
Recall that we are trying to find the pairs u,veK with u e C M ( D ) and v e CJ(M).

In order to do this, we must write each join irreducible as a canonical meet of meet
irreducible elements. However, since the elements (p, 1, 1) are not canonical joinands
of any meet irreducible K(q), we need not do those.

The elements of the form (p, 1, 0) or (p, 1, 2) are doubly irreducible.
This leaves the elements of the form (p,0). Since (p, 1,0) covers (p, 0), we have

(p, 0) = (p, 1, 0) A K((p, 1, 0)), so the canonical meetands of (p, 0) are n((p, 1, 0))
and some set T of meet irreducible elements above (p, 1,0). Now (p, 0) is a canonical
joinand of ic((p, 1,0)). We claim that (p, 0) is not a canonical joinand of any
member of T. So let f e I . If p = v(q) for some splitting element q, then
K((q, 1,2)) = (q, 1, 0) v (p, 0), but that is below K((p, 1, 0)) = (q, 1, 2) v (p, 0),
and thus is not in T. So we may assume that the canonical form of t is given by (6) of
the Lemma 13. As (p, 1, 0) < t, we have p < a, and hence (p, 0) is not a canonical
joinand of t.

Thus the special sublattices of K consist of the complements of the doubly irredu-
cible elements of the form (p, 1, 0) or (p, 1, 2), and the complements of the intervals
[(p, 0), K((p, 1, 0))]. We must check that none of these intervals contains a doubly
irreducible or another such interval, so that the special sublattices are indeed maximal.
If

(P, 0) <(q,l, j) < «{(P, 1,0)) = \J (t, 1, m,) V \/r,<«P)(r, 0)
r^K(p)

then p < q < ic(p), which is impossible. Thus the intervals contain no doubly
irreducible element. Now suppose

(/>, 0) < (q, 0) < K((q, 1, 0)) < K((p, 1, 0)).

Note that K((q, 1,0)) < ic((p, 1,0)) implies K{q) < ic(p), for if s < K(q) then
(s, 1, 1) < K((q, 1,0)), whence (s, 1, 1) < *:((/?, 1,0)) and s < ic(p). Thus the
above inclusions imply p < q and K(q) < ic(p). But if p and q are distinct, then
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K{q) ^ K(p), and so q < tc{q)* < K(P). Combining these inequalities yields
P < q < K(p), a contradiction. Thus the above inclusions hold only when p — q.

The interval [(/?, 0), ic((p, 1, 0))] consists of precisely the elements of K which
have (p, 0) as a canonical joinand. To see this, first suppose that (p, 0) is a canonical
joinand of x. Then, by the Lemma 13, either p = v(q) for some splitting element q
and x = (q, 1, 0) v (p, 0) < ic((p, 1, 0)), or * has the form given in (6) with p e R.
In the latter case, p* < a and p ^ a, so a < K(p). For any canonical joinand u of
x, either M = (s, 1, 0) with 5 < a < /c(/?), or u = (r, 0) with r •£ a and r* < a. In
the latter case, either r < /c(/?), and so (r, 1, 0) < ic((p, 1, 0)), or (r, 0) is a canonical
joinand of K((p, 1, 0)). Thus every canonical joinand of x, and hence x itself, is below
K((P, 1,0)). On the other hand* using the Lemma 13 and the observation above that
[(p, 0), K((P, 1,0))] contains no join irreducibles besides (p, 0), it is easy to see that
if x e [(/>, 0), K((p, 1, 0))], then (p, 0) is a canonical joinand of A; (either by (6) or
(5)).

We conclude that 4>(K) consists of those elements x e K such that for all p e P,
x ^ (p, 1,0), x / (p, 1, 2), and (p, 0) is not a canonical joinand of *. This last
condition means that if (p, 0) < x then (p, 1, 0) < x; since x ^ (/?, 1, 0), either
x = (p, 1, 1) or (<y, 0) < x for some q ^ p, and hence (p, 1, 1) < x. Moreover, if
(p, 1, 2) < X, then x ^ (/?, 1, 2) so (v(/?), 0) < x, whence (v(p), 1,0) < x; thus x
can be expressed as a join of elements not involving (p, 1, 2) by the relations.

Thus 4>(K) is the join subsemilattice (with zero) of K generated by the elements
(p, 1, 1) with p G P. It remains only to show that this is order isomorphic to L, since
<t>(K) is a sublattice of K. This is a straightforward consequence of our previous
calculations.

Thus if we could prove Conjecture E we would have that 88nf £ <t>(^n/), but
&nf £ 4>(=^n+i,/)- This would require some work and insight. Perhaps something
similar is true for n-distributive modular lattices. Indeed, it would be good to find any
more examples where Yf
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