A Note on the Capelli Operators associated with a Symmetric Matrix

By Andrew H. Wallace
(Received 20th December, 1949. Read 13th January, 1950. Revised MS. received 28th July, 1950.)

Introduction.
In the Proceedings of the Edinburgh Mathematical Society, 1948, there appear two papers by Lars Gårding and Turnbull respectively (Gårding [1], Turnbull [2]) which formulate the theory of Cayley and Capelli operators associated with symmetric matrices. Turnbull derives the modification, appropriate to symmetric matrices, of Capelli's Theorem, which states that (taking a third order operator for the sake of ease in writing)

$$
\left(x y z \left\lvert\, \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}\right.\right) \equiv \sum_{i, j, k}(x y z)_{i j k}\left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}\right)_{i j k}=\left|\begin{array}{ccc}
x \frac{\partial}{\partial x}+2 & x \frac{\partial}{\partial y} & x \frac{\partial}{\partial z} \\
y \frac{\partial}{\partial x} & y \frac{\partial}{\partial y}+1 & y \frac{\partial}{\partial z} \\
z \frac{\partial}{\partial x} & z \frac{\partial}{\partial y} & z \frac{\partial}{\partial z}
\end{array}\right|
$$

where the symbol $(x y z)_{i j k}$ stands for the determinant

$$
\left|\begin{array}{lll}
x_{i} & y_{i} & z_{i} \\
x_{j} & y_{j} & z_{j} \\
x_{k} & y_{k} & z_{k}
\end{array}\right|
$$

with a similar meaning for the determinantal differential operator, while the symbols $x \frac{\partial}{\partial x}, x \frac{\partial}{\partial y}, \ldots$ are polarisations (Capelli [1]; cf. Turnbull [1], p. 116). Gårding's theorem deals with the effect of such modified Capelli operators on powers of the determinant of the symmetric matrix in question. The subject of this note is an alternative derivation of the modified Capelli theorem and of Gårding's theorem.

§ 1. Factorisation of a Symmetric Matrix.

Let $X=\left[x_{i j}\right]$ be an arbitrary symmetric matrix of m rows whose elements are independent variables, apart from the condition $x_{i j}=x_{i j}$. It is always possible to find a square matrix Y of order $m \times m$ such that $Y^{\prime} Y=X$. In fact, if H is an orthogonal matrix such that $H^{\prime} X H=\Lambda$ is a diagonal matrix, the elements of H and Λ being algebraic functions of the $x_{i j}$, then
$Y=H M \sqrt{\Lambda} H^{\prime}$ is a matrix of the required form, where M is an arbitrary orthogonal matrix. The $y_{i j}$ are thus expressed as functions of the $\frac{m^{2}+m}{2}$ variables $x_{i j}$ along with the $m^{2}-\frac{m^{2}+m}{2}$ independent elements of M, m^{2} independent variables in all. Conversely the equations $X=Y^{\prime} Y$ and $M=H^{\prime} Y H \sqrt{\Lambda^{-1}}$ express the $x_{i j}$ and the independent elements of M as functions of the $y_{i j}$. The $y_{i j}$ are therefore m^{2} independent variables. $\S 2$ below will be concerned with the relation between partial differentiation with respect to the $x_{i j}$ and partial differentiation with respect to the $y_{i j}$. The matrix M does not come into the discussion again, having been introduced simply to check the independence of the $y_{i j}$.

Let $y_{m+1}, y_{m+2}, \ldots, y_{m+k}$ be a further set of m-ary vectors having as elements $m k$ further independent variables and suppose that the variables $x_{i j}(i, j=1,2, \ldots, m+k)$ are defined by the equations

$$
x_{i j}=\sum_{h=1}^{m} y_{h i} y_{h j}
$$

The $x_{i j}$ for i and j not greater than m are, of course, simply the elements of X, but it is obvious that the $x_{i j}$ for i and j exceeding m may not, in general, be treated as independent variables. For example

$$
\left|\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 r} \\
x_{21} & x_{22} & \ldots & x_{2 r} \\
\vdots & \vdots & \vdots \\
x_{r 1} & x_{r 2} & \ldots & x_{r r}
\end{array}\right|
$$

is a zero determinant if $r>m$, but would certainly not vanish if all the $x_{i j}$ appearing were independent variables.

On the other hand if $\phi(x)$ is a polynomial in the $x_{i j}$ which contains the elements of each vector y_{m+1}, \ldots, y_{m+k} linearly, then the vanishing of $\phi(x)$ identically in the $y_{i j}$ implies its vanishing identically in the $x_{i j}$, regarded as independent variables. To prove this, define the polar operations

$$
D_{i j}=\left(y_{i} \frac{\partial}{\partial y_{j}}\right)=\sum_{h=1}^{m} y_{h i} \frac{\partial}{\partial y_{h j}}
$$

and consider the expression

$$
\left|\begin{array}{lllll}
D_{11}+m+k-1 & D_{12} & D_{13} & \ldots & D_{1, m+k} \tag{1}\\
D_{21} & D_{22}+m+k-2 & D_{23} & \ldots & D_{2, m+k} \\
\vdots & \vdots & \vdots & & \vdots \\
D_{m+k, 1} & D_{m+k, 2} & D_{m+k, 3} & \ldots & D_{m+k, m+k}
\end{array}\right| \phi(x)
$$

(1) is, by Capelli's theorem, a linear combination with polynomials in the $x_{i j}$ as coefficients of $(m+k)$-rowed determinants of the form

$$
\left|\begin{array}{cccc}
x_{1 i} & x_{1 j} & \ldots & x_{1 h} \\
x_{2 i} & x_{2 j} & \ldots & x_{2 h} \\
\vdots & \vdots & & \vdots \\
x_{m+k, i} & x_{m+k, j} & \ldots & x_{m+k, h}
\end{array}\right|
$$

These determinants all vanish identically in the $y_{i j}$, since each $x_{i j}$ is an inner product of two m-ary vectors, but, as pointed out above, they do not vanish identically in the $x_{i j}$ unless, of course, they contain repeated columns. The only determinant of this form which does not have repeated columns is obtained by putting i, j, \ldots, h equal to $1,2, \ldots, m+k$. But the resulting determinant would be quadratic in the elements of y_{m+k}, whereas (1) is certainly linear in these variables, and so this determinant must have zero coefficient. The expression (1) therefore vanishes identically in the $x_{i j}$.

Now expand the determinantal operator in (1), keeping the individual operators in the same order from left to right as the columns from which they are selected. The effect of the leading term

$$
\left(D_{11}+m+k-1\right)\left(D_{22}+m+k-2\right) \ldots\left(D_{m+k-1, m+k-1}+1\right) D_{m+k, m+k}
$$

on $\phi(x)$ is simply to multiply it by a non-zero numerical factor. The other terms in the expansion all have as last factor to the right (ignoring elements from the main diagonal, which are equivalent in effect to numerical factors) an operator $D_{i j}$ from above the diagonal, which decreases the degree to which the suffix j occurs in $\phi(x)$ by one, while increasing the degree to which i occurs by one. Thus the statement that (1) vanishes identically in the $x_{i j}$ is equivalent to the statement that $\phi(x)$ is equal, identically in the $x_{i j}$, to a linear combination of polynomials in the $x_{i j}$, and each of these new polynomials has the property that the degree to which a certain suffix j occurs is less than that to which it occurs in $\phi(x)$, while the degree of occurrence of an earlier suffix i is higher than in $\phi(x)$. The new polynomials, having been derived from $\phi(x)$ by polarisation, must vanish when $\phi(x)$ vanishes. If the Capelli theorem is now applied to these new polynomials, and then to the further polynomials so introduced, and so on, a stage will finally be reached where $\phi(x)$ will be expressed as an aggregate of polars of polynomials in the $x_{i j}(i, j=1,2, \ldots, m)$, i.e. in the elements of X, each of which is itself a polar of $\phi(x)$, and so each of which vanishes when $\phi(x)$ vanishes. But polynomials in the elements of X which vanish must do so identically in the $x_{i j}$, and since, moreover, the new expression for $\phi(x)$ has been obtained by a step by step process in each step of which the trans-
formation holds identically in the $x_{i j}$, it follows that if $\phi(x)$ vanishes, it does so identically in the $x_{i j}$.

The foregoing proof is really a special case of the proof of the second fundamental theorem for orthogonal invariants (cf. Weyl [1], p. 75). And so the result which has been explicitly derived above could be regarded as a consequence of this theorem.

§2. Differential Operators Associated with a Symmetric Matrix.

Let X be an arbitrary m-rowed symmetric matrix written as $Y^{\prime} Y$, and let f be a polynomial in its elements $x_{i j}=\Sigma y_{n i} y_{h j}$. Then

$$
\begin{align*}
\frac{\partial f}{\partial y_{p q}} & =\sum_{i \leqslant j} \frac{\partial f}{\partial x_{i j}} \frac{\partial x_{i j}}{\partial y_{p q}}=\sum_{i<q} \frac{\partial f}{\partial x_{i q}} y_{p i}+\sum_{j>q} \frac{\partial f}{\partial x_{q j}} y_{p j}+2 \frac{\partial f}{\partial x_{q q}} y_{p q} \\
& =\sum_{i=1}^{m} y_{p i}\left(1+\delta_{q i}\right) \frac{\partial f}{\partial x_{q i}} \tag{2}
\end{align*}
$$

where $\delta_{q i}$ is the Kronecker δ. Define the operator $\frac{\bar{\partial}}{\partial x_{i j}}$ by the equation

$$
\frac{\bar{\partial}}{\partial x_{i j}}=\frac{1}{2}\left(1+\delta_{i j}\right) \frac{\partial}{\partial x_{i j}}
$$

Then (2) can be put in the form

$$
\frac{\partial}{\partial y_{p q}}=2 \Sigma_{i} y_{p i} \frac{\partial}{\partial x_{i q}}
$$

If $p \neq r, q \neq s$, then a second differentiation gives

$$
\frac{\partial^{2}}{\partial y_{p q} \partial y_{r_{s}}}=4 \sum_{i, j} y_{p i} y_{r j} \frac{\bar{\partial}^{2}}{\partial x_{g i} \partial x_{s j}}
$$

and forming the determinant

$$
\left(\frac{\partial}{\partial y_{q}} \frac{\partial}{\partial y_{s}}\right)_{p, r} \equiv \frac{\partial^{2}}{\partial y_{p q} \partial y_{r s}}-\frac{\partial^{2}}{\partial y_{p s} \partial y_{r q}}
$$

we find that

$$
\begin{equation*}
\left(\frac{\partial}{\partial y_{q}} \frac{\partial}{\partial y_{8}}\right)_{p, r}=4 \sum_{i, j}\left(y_{i} y_{j}\right)_{p, r}\left(\frac{\bar{\partial}}{\partial x_{q}} \frac{\bar{\partial}}{\partial x_{\delta}}\right)_{i, j} \tag{3}
\end{equation*}
$$

Multiply by the determinant $\left(y_{h} y_{k}\right)_{p, r}$ and sum with respect to the pair p, r :
i.e. in the usual bi-determinant notation

$$
\left(y_{h} y_{k} \left\lvert\, \frac{\partial}{\partial y_{q}} \frac{\partial}{\partial y_{s}}\right.\right)=2^{2}\left(x_{h} x_{k} \left\lvert\, \frac{\bar{\partial}}{\partial x_{q}} \frac{\bar{\partial}}{\partial x_{q}}\right.\right) .
$$

Similarly the equation for the third order operators is

$$
\left(y_{i} y_{j} y_{k} \left\lvert\, \frac{\partial}{\partial y_{q}} \frac{\partial}{\partial y_{r}} \frac{\partial}{\partial y_{s}}\right.\right)=2^{3}\left(x_{i} x_{j} x_{k} \left\lvert\, \frac{\bar{\partial}}{\partial x_{q}} \frac{\bar{\partial}}{\partial x_{r}} \frac{\bar{\partial}}{\partial x_{g}}\right.\right),
$$

and so on for any order, the equation for the operators of r-th order involving the numerical factor 2^{r} on the right-hand side. In particular the first order case is

$$
D_{h q}=2 \bar{D}_{h q}
$$

where $D_{h q}$ is defined as $\sum_{p=1}^{m} y_{p h} \frac{\partial}{\partial y_{p q}}$ and $\bar{D}_{h q}$ as $\sum_{p=1}^{m} x_{p h} \frac{\bar{\partial}}{\partial x_{p q}}$.

§3. The Modified Capelli Theorem.

Capelli's theorem, taking the case of third order operators for simplicity, states that

$$
\left(y_{1} y_{2} y_{3} \left\lvert\, \frac{\partial}{\partial y_{1}} \frac{\partial}{\partial y_{2}} \frac{\partial}{\partial y_{3}}\right.\right)=\left|\begin{array}{lll}
D_{11}+2 & D_{12} & D_{13} \\
D_{21} & D_{22}+1 & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{array}\right|
$$

Expressing these differential operators in terms of the $x_{i j}$ and using the results of $\S 2$, we have

$$
\left(x_{1} x_{2} x_{3} \left\lvert\, \frac{\bar{\partial}}{\partial x_{1}} \frac{\bar{\partial}}{\partial x_{2}} \frac{\bar{\partial}}{\partial x_{3}}\right.\right)=\left|\begin{array}{lll}
\bar{D}_{11}+1 & \bar{D}_{12} & \bar{D}_{13} \\
\bar{D}_{21} & \bar{D}_{22}+\frac{1}{2} & \bar{D}_{23} \\
\bar{D}_{31} & \bar{D}_{32} & \bar{D}_{33}
\end{array}\right|
$$

and this is the modified Capelli theorem as required; in general, for a Capelli operator of r-th order, the numbers $\frac{r-1}{2}, \frac{r-2}{2}, \ldots, \frac{3}{2}, 1, \frac{1}{2}$ are to be added to the 1 st, 2 nd, $\ldots,(r-1)$-th diagonal elements, respectively, in the determinant on the right.
§4. Gårding's Theorem.
To establish Gairding's Theorem, I shall work out the proof for a fourth order determinant operated on by a second order operator: this makes quite clear the general principle. Let X be an arbitrary 4 -rowed symmetric matrix, and let $X=Y^{\prime} Y$ where Y is an arbitrary matrix of order 4×4 whose elements are independent variables. Let

$$
|X|=\left(x_{1} x_{2} x_{3} x_{4}\right), \quad|Y|=\left(y_{1} y_{2} y_{3} y_{4}\right)
$$

It is required to evaluate $\left(\frac{\bar{\partial}}{\partial x_{1}} \frac{\bar{\partial}}{\partial x_{2}}\right)_{i, j}\left(x_{1} x_{2} x_{3} x_{4}\right)^{r}$, where i, j are any two distinct numbers from the set $1,2,3,4$. Introduce two new quaternary
column vectors whose elements are independent variables, namely
and define

$$
\begin{gathered}
z_{1}=\left\{z_{11} z_{21} z_{31} z_{41}\right\}, \quad z_{2}=\left\{z_{12} z_{22} z_{32} z_{42}\right\} \\
t_{i j}=\sum_{h=1}^{4} y_{h i} z_{h j}
\end{gathered}
$$

Then, multiplying (3) by $\left(z_{1} z_{2}\right)_{p, r}$ and summing with respect to the pairs p, r, we find that

$$
\left(z_{1} z_{2} \left\lvert\, \frac{\partial}{\partial y_{q}} \frac{\partial}{\partial y_{8}}\right.\right)=2^{2}\left(t_{1} t_{2} \left\lvert\, \frac{\bar{\partial}}{\partial x_{q}} \frac{\bar{\partial}}{\partial x_{8}}\right.\right) .
$$

Hence

$$
\begin{align*}
2^{2}\left(t_{1} t_{2}\right. & \left.\left\lvert\, \frac{\bar{\partial}}{\partial x_{1}} \frac{\bar{\partial}}{\partial x_{2}}\right.\right)\left(x_{1} x_{2} x_{3} x_{4}\right)^{r}=\left(z_{1} z_{2} \left\lvert\, \frac{\partial}{\partial y_{1}} \frac{\partial}{\partial y_{2}}\right.\right)\left(y_{1} y_{2} y_{3} y_{4}\right)^{2 r} \\
& =2 r(2 r+1)\left(y_{1} y_{2} y_{3} y_{4}\right)^{2 r-1}\left(z_{1} z_{2} y_{3} y_{4}\right) \text { (Turnbull [1], p. 115, ex. 2) } \\
& =2 r(2 r+1)\left(x_{1} x_{2} x_{3} x_{4}\right)^{r-1}\left(y_{1} y_{2} y_{3} y_{4}\right)\left(z_{1} z_{2} y_{3} y_{4}\right) \\
& =2 r(2 r+1)\left(x_{1} x_{2} x_{3} x_{4}\right)^{r-1}\left(t_{1} t_{2} x_{3} x_{4}\right) \tag{4}
\end{align*}
$$

Since (4) is linear in the elements of each of the vectors z_{i}, which here correspond to the vectors y_{m+1}, \ldots, y_{m+k} of $\S 1$, it follows from the reasoning in that paragraph that the $t_{i j}$ may be treated as independent variables in (4). Equate the coefficients of the minor $\left(t_{1} t_{2}\right)_{i, j}$ on both sides of (4):

$$
\left(\frac{\bar{\partial}}{\partial x_{1}} \frac{\bar{\partial}}{\partial x_{2}}\right)_{i, j}\left(x_{1} x_{2} x_{3} x_{4}\right)^{r}=r\left(r+\frac{1}{2}\right)\left(x_{1} x_{2} x_{3} x_{4}\right)^{r-1}\left(x_{3} x_{4}\right)_{h, k}
$$

where $\left(x_{3} x_{4}\right)_{h, k}$ is the Laplacian cofactor of $\left(x_{1} x_{2}\right)_{i, j}$ in $\left(x_{1} x_{2} x_{3} x_{4}\right)$.
The general result for an arbitrary m-rowed symmetric matrix X is

$$
\left(\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \cdots \frac{\bar{\partial}}{\partial x_{k}}\right)_{p, q, \ldots, s}|X|^{r}=r\left(r+\frac{1}{2}\right)(r+1) \ldots\left(r+\frac{l-1}{2}\right)|X|^{r-1} . \Delta
$$

where the differential operator is an l-rowed determinant $(l \leqslant m)$, and Δ is the Laplacian cofactor in $|X|$ of $\left(x_{i} x_{j} \ldots x_{k}\right)_{p, q}, \ldots, s$; this last equation is the statement of Gairding's Theorem.

REFERENCES.

Capelli [1]: "Über die Zurückführung des Cayleyschen Operatoren Ω auf gewöhnliche Polaroperatoren ", Math. Ann., 29 (1887), 331-338.
Gårdîng [1]: "Extension of a Formula by Cayley to Symmetric Determinants", Proc. Edinburgh Math. Soc. (2), 8 (1948), 73-75.
Turnbull [1] : Theory of Determinants, Matrices and Invariants (Second Edition, 1945).
[2]: "Symmetric Determinants and the Cayley and Capelli Operators", Proc. Edinburgh Math. Soc. (2), 8 (1948), 76-86.
Weyl [1]: The Classical Groups (Princeton, 1939).
University College, Dundee
(University of St. Andrews).

