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Introduction.
In the Proceedings of the Edinburgh Mathematical Society, 1948, there

appear two papers by Lars Garding and Turnbull respectively (Gavding [1],
Turnbull [2]) which formulate the theory of Cayley and Capelli operators
associated with symmetric matrices. Turnbull derives the modification,
appropriate to symmetric matrices, of Capelli's Theorem, which states
that (taking a third order operator for the sake of ease in writing)
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with a similar meaning for the determinantal differential operator, while

the symbols x - - , x-~-, ... are polarisations (Capelli [1]; cf. Turnbull [1],

p. 116). Garding's theorem deals with the effect of such modified Capelli
operators on powers of the determinant of the symmetric matrix in question.
The subject of this note is an alternative derivation of the modified Capelli
theorem and of Garding's theorem.

§ 1. Factorisation of a Symmetric Matrix.
Let X = [Xij] be an arbitrary symmetric matrix of m rows whose elements

are independent variables, apart from the condition xit = xjt. It is always
possible to find a square matrix Y of order mxm such that Y'Y = X.
In fact, if H is an orthogonal matrix such that H' XH = A is a diagonal
matrix, the elements of H and A being algebraic functions of the xti, then
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Y = HM\/KH' is a matrix of the required form, where M is an arbitrary

orthogonal matrix. The y(j are thus expressed as functions of the —^—

variables xu along with the m2 ^— independent elements of M, m2

independent variables in all. Conversely the equations X = Y' Y and
M = H' YHy^Ar1 express the x(j and the independent elements of M as
functions of the yir The yu are therefore m2 independent variables.
§ 2 below will be concerned with the relation between partial differentiation
with respect to the xtj and partial differentiation with respect to the y(i.
The matrix M does not come into the discussion again, having been intro-
duced simply to check the independence of the yu.

Let ym+1, ym+2, •••> ym+k be a further set of ra-ary vectors having as
elements mk further independent variables and suppose that the variables
xa (*> 3 = 1> 2> •••> W+&) are denned by the equations

The xtj for i and j not greater than m are, of course, simply the elements of
X, but it is obvious that the xti for i and j exceeding m may not, in general,
be treated as independent variables. For example

xrl xr2... xrr

is a zero determinant if r > m, but would certainly not vanish if all the re-
appearing were independent variables.

On the other hand if <f>{x) is a polynomial in the xu which contains the
elements of each vector ym+1, ..., ym+u linearly, then the vanishing of <j>{x)
identically in the y(j implies its vanishing identically in the xti, regarded as
independent variables. To prove this, define the polar operations

d \ » a

and consider the expression

D 13

D9 D22+m+k—2 D,23 D 2, m+k

D,m+k. 1 D,m+k,2 D.m+k, 3 D,m+k, m+k

H*)- (i)
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(1) is, by Capelli's theorem, a linear combination with polynomials in the
xtj as coefficients of (ra+&)-rowed determinants of the form

xu xu ... xlh

xm+k,i xm+k,i ••• xm+k,h

These determinants all vanish identically in the yip since each % is an inner
product of two m-ary vectors, but, as pointed out above, they do not vanish
identically in the xtj unless, of course, they contain repeated columns. The
only determinant of this form which does not have repeated columns is
obtained by putting i, j , ..., h equal to 1, 2, ..., m-\-h. But the resulting
determinant would be quadratic in the elements of ym+k, whereas (1) is
certainly linear in these variables, and so this determinant must have zero
coefficient. The expression (1) therefore vanishes identically in the xu.

Now expand the determinantal operator in (1), keeping the individual
operators in the same order from left to right as the columns from which
they are selected. The effect of the leading term

(D11+m+k-l)(D22+m+1c~2)... (Bm+k_l!n+k_x+l)Dm+ktm+k

on <f>(x) is simply to multiply it by a non-zero numerical factor. The other
terms in the expansion all have as last factor to the right (ignoring elements
from the main diagonal, which are equivalent in effect to numerical factors)
an operator Dtj from above the diagonal, which decreases the degree to
which the suffix j occurs in <j>(x) by one, while increasing the degree to which
i occurs by one. Thus the statement that (1) vanishes identically in the
xtj is equivalent to the statement that <j){x) is equal, identically in the x{j,
to a linear combination of polynomials in the x,,-; and each of these new
polynomials has the property that the degree to which a certain suffix j
occurs is less than that to which it occurs in <f>(x), while the degree of occur-
rence of an earlier suffix i is higher than in <f>(x). The new polynomials,
having been derived from <j>(x) by polarisation, must vanish when <f>(x)
vanishes. If the Capelli theorem is now applied to these new polynomials,
and then to the further polynomials so introduced, and so on, a stage will
finally be reached where (f>(x) will be expressed as an aggregate of polars of
polynomials in the x(j (i, j = 1 , 2 , . . . , m), i.e. in the elements of X, each of
which is itself a polar of </>(#), and so each of which vanishes when <f>(x)
vanishes. But polynomials in the elements of X which vanish must do so
identically in the x(j, and since, moreover, the new expression for <f>(x) has
been obtained by a step by step process in each step of which the trans-
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formation holds identically in the xu, it follows that if <j>(x) vanishes, it
does so identically in the xu.

The foregoing proof is really a special case of the proof of the second
fundamental theorem for orthogonal invariants (cf. Weyl [1], p. 75).
And so the result which has been explicitly derived above could be regarded
as a consequence of this theorem.

§2. Differential Operators Associated with a Symmetric Matrix.

Let X be an arbitrary m-rowed symmetric matrix written as Y' Y,
and let / be a polynomial in its elements x{i = £ VhiVhi- Then

(2)

where Sqi is the Kronecker 8. Define the operator =— by the equation

Then (2) can be put in the form

If p z£ r, q y£s, then a second differentiation gives

a2 a2

and forming the determinant

a a(JLJL\ _
\dyg dys I P r ~- fy*> P, r fypq fyr* dyvs dyrg

we find that

Multiply by the determinant (yh y^)v r and sum with respect to the pair p, r:

7 s r l = 4 ? (a***),,,
p, r ^"i/Q "its' p,r i,j

i.e. in the usual bi-determinant notation

dx. dxj'
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Similarly the equation for the third order operators is

d d dd d d\
dxq dxr dx.)>

and so on for any order, the equation for the operators of r-th order involving
the numerical factor 2r on the right-hand side. In particular the first order

case is

m d ~ m 3
where Dhq is defined as 2 yph 5— and D^ as S xph •=—

I dy i oX
§3. The Modified Capelli Theorem.

Capelli's theorem, taking the case of third order operators for simplicity,
states that

Du+2 D12 D
d d 9 N *>« A 2 + I A

Expressing these differential operators in terms of the xti and using the
results of §2, we have

'21a a

and this is the modified Capelli theorem as required; in general, for a Capelli

operator of r-th order, the numbers —jr—, —̂z—, ..., ~, 1, -5- are to be
Z £ "Z Z

added to the 1st, 2nd, ..., (r— l)-th diagonal elements, respectively, in the
determinant on the right.

§4! Garding's Theorem.
To establish Garding's Theorem, I shall work out the proof for a fourth

order determinant operated on by a second order operator: this makes quite
clear the general principle. Let X be an arbitrary 4-rowed symmetric
matrix, and let X = Y' Y where Y is an arbitrary matrix of order 4x4
whose elements are independent variables. Let

It is required to evaluate (~— 5—) (x1xzx3xi)
r', where i, j are any two

distinct numbers from the set 1, 2, 3, 4. Introduce two new quaternary

https://doi.org/10.1017/S0013091500013961 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500013961


12 ANDREW H. WALLACE

column vectors whose elements are independent variables, namely

Zl = = {Zll Z21 Z31 24l}> Z2 = = {Z12 Z22 Z32 Z42/>

4

and define ttj = S y^z^j.

Then, multiplying (3) by {z-^z2)vr and summing with respect to the pairs
p, r, we find that

Z1Z2 V2
Q

Hence

= 2r(2r+l)(yiy2y3yir-i (z^y^y,) (Turnbull [1], p. 115, ex. 2)

= 2r(2r+1) (Xl x2 x3 x ^ {yx y2 ya Vi)(z1 z2 y3 y^

= 2r(2r+l)(x1x2x3xiy-i (t^x^. (4)

Since (4) is linear in the elements of each of the vectors z,-, which here corres-
pond to the vectors ym+1, ..., ym+k of §1, it follows from the reasoning
in that paragraph that the ttj may be treated as independent variables in (4).
Equate the coefficients of the minor {tx t2)(i t on both sides of (4):

)

where (x3 x^}^ % is the Laplacian cofactor of (xx x2\ 3- in (x1 x2 xz a;4).
The general result for an arbitrary m-rowed symmetric matrix X is

dx dx~).

where the differential operator is an Z-rowed determinant (I ̂ m), and A
is the Laplacian cofactor in \X\ of (x^j ...xk)PiQt...,,; this last equation
is the statement of Garding's Theorem.
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