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Abstract. We consider the action of the subgroup of the mapping class group con-
sisting of homeomorphisms that extend to the handlebody on Thurston’s sphere
of measured foliations. Properties of the limit set and domain of discontinuity are
described and for genus two it is shown the limit set has measure zero.

0. In this paper we initiate a study of the action of the mapping class group of a
handlebody on Thurston’s sphere of foliations. The action is very different from
that of the full mapping class group. It is a fundamental result of Thurston’s that
the simple closed curves are dense in the sphere of foliations. From that it follows
[1] that the mapping class group acts minimally and even ergodically [6]. For the
subgroup of diffeomorphisms that extend to the handlebody there is a domain of
discontinuity and a nowhere dense limit set. The latter consists of foliations approxi-
mated by simple curves on the surface bounding discs in the handlebody.

In the first section we consider properties of this set and the domain of discon-
tinuity, in particular geometric conditions on a foliation which determine which set
it lies in. In the second part we consider the special case of genus two where much
more can be said. It turns out that the limit set is a kind of Sierpinski set derived
by successively removing canonically defined open sets, each a group image of a
fixed set. By placing the problem in the context of train tracks we associate to each
minimal foliation in the limit set a simplicial process in the sense of Kerckhoff {4]
and by directly applying his results on simplicial processes show the limit set has
measure Zero.

This study had its genesis in Thurston’s manuscript [8]. A Heegaard decomposition
of genus g of a 3-manifold is determined by a system of g curves and thus a point
in the sphere of foliations. Thurston asked whether the closure of the set of points
determining a given manifold has measure zero. Since equivalent points under the
handlebody group determine homeomorphic manifolds, Thurston’s question is
related to the measure of the limit set. A related question is which Heegaard
decompositions give hyperbolic manifolds. Floyd considered this problem in [2]
and has given the answer in terms of the limit set.
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The handlebody group also arises in the study of Schottky groups. Maskit [5]
proved that the space of marked Schottky groups of genus g is the quotient of the
Teichmuller space of genus g by the subgroup of the handlebody group consisting
of homeomorphisms inducing the identity on ;. Since the sphere of foliations is
a natural boundary for Teichmuller space, the action of this subgroup on the sphere
serves as a model for deformations at infinity of Schottky groups.

This paper is organized as follows. We assume the reader is familiar with the
basic theory of measured foliations found in [1]. § 1 is a discussion of simple curves
and is the foundation for the discussion of the domain of discontinuity and limit
set found in §§ 2, 3. In § 4 we consider the case of genus two and in § 5 prove the
measure is zero in that case. This last section contains a review of train tracks and
the machinery needed to apply the results of [4].

I would like to thank William Thurston, Nat Kuhn, and William Veech for many
helpful suggestions and Steve Kerckhoff for suggesting that the use of train tracks
would greatly simplify the measure zero proof given in an earlier version. I would
also like to thank the Institute for Advanced Study for their hospitality and support,
and the Sloan Foundation for their support during the time this research was
conducted.

This research was supported in part by NSF.

1. We begin with notation:

H, is a handlebody of genus g =2 with boundary;

M a C* surface of genus g;

MF is the space of equivalence classes of measured foliations on M;

PF is the space of projective measured foliations homeomorphic to S%77;

S are the isotopy classes of simple closed curves on M;

S, < S are the classes of curves that bound discs in H,;

m is the natural measure class on 2%.
We refer to curves in S, as H,-trivial. Mod (g) is the mapping class group of genus
g, Mod (H,) is the subgroup of Mod (g) of the homeomorphisms that extend to
homeomorphisms of H,. Mod, (H,) is the subgroup of Mod ( H,} of homeomorph-
isms that induce the identity on m,( H,). A disjoint system & = (a,, . .., a,) of curves
in S, is admissible if they cut M into a sphere with 2g holes. Recall also the basic
notion of the intersection number. For v,, y,€ S, i(vy,, v,) denotes the geometric
intersection, the minimal number of intersections in the isotopy classes. One defines
for reR., i(ry;, v2) = ri(%y;, v2). Now for any F e MZ, i(F, v) is the minimal trans-
verse length with respect to the measure of F of any vy in the isotopy class. This
generalizes the geometric intersection.

THEOREM A [7]. i(F, ry) = ri( F, v) extends to a continuous function i(-,-) on MF x
MF which is linear in each factor and i(f(F), f(G))=i(F, G) for all F,G and
feMod (g). If F has no saddle connections (F arational) and i(F, G) =0, then G is
topologically conjugate to F.
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LeEMMA 1.1. Suppose B € S. Then B € S, if and only if for any admissible & either:

(i) i(B,a;)=0 alli; or

(ii) i(B, a;) #0 some i, and for some w;, B successively intersects a; in opposite
directions. ( There are no intersections with any other «, in between these two.)

Proof. Suppose first Be S, and i(B, a;) #0 some i Choose B,,...,B,€S with
i(B;, a;) = 8; and B; free generators for m,(H,). As a word in B; and B, B is trivial
since B € S,. Allowing for cyclic permutations, there must be a juxtaposition 8;8;"
or BJ_IB,» somewhere in the word. But this means precisely that 8 crosses «; and
then next crosses «; in the opposite direction before crossing any a;.

For the sufficiency suppose for some a that i(8, a;) =0 all ;. The discs bounded
by the «; cut H, into a 3-ball. Since i(B, ;) =0, B is a simple curve on the bounding
sphere which thus bounds a disc in the 3-ball. The proof then proceeds by induction
on i(a B)=Y?¢ ,i(B, a;). Suppose condition (ii) is satisfied for some a;. In figure
1 consider the two curves a; and a;.
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FIGURE 1

Since the two indicated intersections of B with «; are successive, a; and «] are
disjoint from all other «;; hence they are in S,. Moreover, neither is homotopic to
a; since i(B, a)) <i(B, a;) and i(B, o) <i(B, a;). Since @ cuts M into a sphere with
2g holes, exactly one of the two curves a; or a;, say a;, will separate the two sides
of a; in the sphere.
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FIGURE 2
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The new system of curves &' =(ay,...q;,... a,) with ] replacing «; is admissible.
If not, then the curves are dependent in homology. Since (a, ... a,) is admissible,
they are independent. But «] was chosen so that «}, a; and some of the a; bound.
Thus e, is a linear combination of a;, and the other «; and thus a linear combination
of just the a,. This is a contradiction. But now i(a’, B) <i(a, 8), completing the
induction step. O

THEOREM 1.2. Let L be the closure of S, in PF. Then L is the unique limit set for
both the action of Mod (H,) and Mod, (H;) on PF. It is connected and has empty
interior.

Remark. By limit set we mean closed, invariant, minimal set.

Proof. L is obviously invariant since S, is invariant under both groups. We show L
is minimal for Mod, (H,). Let F, Ge L where G =lim, . V., ¥, €S, convergence
in the topology of #%. Let U be a neighbourhood of G in P%. If i(F, v,)# 0 for
some y, € U then lim;, *r’;"(F )= 7. where 7, is the Dehn twist about 7,. Then
7, (F) € U for large j and 7, € Mod, (H,). If i(F, v,) =0 all large n, find B€ S, so
that i(F, B) # 0 and i(B, v,) # 0 some y, € U. Then B, = T';n(B)G U for large k and
i(F, B,«)=i(F,B)#0. Thus rgn_k(F)e U for large I This proves the Mod, (H,)
orbit of F enters every neighbourhood of G, so the groups act minimally. L is
clearly unique since any limit set must contain S,

To show L is connected it is enough to show any two points in S, can be connected
by a path in L. Suppose then a,, a, € S,. The proof is by induction on i(«;, «,) and
follows the ideas in lemma 1.1. If i(,, a;) = 0 then the path of foliations is F, where
F; has closed leaves in the homotopy classes of a, and «, with weights 1 —s and s
respectively. That is: for any B € S,

i(F;, B) = (1= 5)i(B, a,) +si(B, a3).

To show F,eL let BeS be a curve satisfying i(B, a;) =i(B, a;) =1. Choose a
sequence (n,, ny)eZ,xXZ, with lim,,on,/n,=(1~s)/s. The map f,=771o722
satisfies lim, . f,,(8) = F,. Then F, € L since it is in the derived set of an orbit.

If i(e,, @) #0, fill out a, to an admissible system &. By lemma 1.1 a, satisfies
(ii) for some a; € @. As in that lemma replace a; with a; so that i(a,, a’) <i(a,, @).
But a] can be joined by a path in L to any curve in a. The induction step is
complete.

Next fix an admissible system @ and find a curve B with the property that if o
is any segment that leaves an o; and then returns to that «; in the opposite direction,
on B #J. That such a B exists one can see as follows. Complete & to a system of
3g —3 disjoint curves in S, that divide M into 2g —2 ‘pairs of pants’. Find a foliation
F such that for any three curves that bound a pair of pants, the transverse length
of one is always less than the sum of the other two. This is the triangle inequality
situation in [1].
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FIGURE 3

Since S is dense in PF we can certainly find a curve B8 with the same property.
Now if o' is any segment leaving one of these boundary components and returning
as shown, then ¢'n B # . Any o must contain such a o' as a subset. Any B,
sufficiently close to B8 has the same property and thus by lemma 1.1 no sufficiently
close B, can be in L. For if B, left and returned to «; as in that lemma, it would be
disjoint from a segment that did the same. Thus B¢ L, L # P% and we have some
open set U disjoint from L. We can assume i(F, «,) # 0 for all Fe U. If L contains
any open U’, find a non-dividing curve a€ S,n U’ and fe Mod (H,) such that
fla)=a,. Then f(U’) is a neighbourhood of «, in #%. But =, (U,)<= f(U’) for
large n. Thus /™75, (U)< U'. This contradicts the invariance of L. |

2. Theorem 1.2 and its proof suggest which foliations should be in the domain of
discontinuity. This section makes that precise. We first recall some definitions.

A foliation is arational if no simple curve is represented by critical leaves. This
implies all leaves not hitting a critical point are dense. A foliation F is uniquely
ergodic if it is arational and any topologically conjugate foliation is measure
equivalent to a multiple of F.

THeEOREM B [6]. Almost all foliations in PF are uniquely ergodic.

‘Almost all’ refers to the canonically defined measure class m in P%. Let T=
{G|i(F, G)=0 some Fe L} - L.

CoroLLARY. m(T)=0.

The following example for g =2 shows T = (. The foliation G has B as a closed
singular leaf. By definition i(G, 8) =0 and B e L. We show G ¢ L by showing that
for any simple y near G, y£ S,

FIGURE 4
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Let ay, a,, as€ S, satisfy i(B, a,) =2, i(B, &;) =0, i=2,3 and a; bound two pairs of
pants. The foliation G in terms of the pants is given by figure 5.

FIGURE 5

The leaf A is joined to A’ and B is joined to B’ across a, to form 8. Now if ye S, y
is represented by a foliation as in figure 6. The width of the strips are equal in the
two pairs of pants, and for y near G, the widths are small.

B
e
A D B’ c’
B c A’ D’
] A -
FIGURE 6

Now A and D must cross a, near A" and D’. If for instance A next crosses a, after
crossing «,, as in figure 6, then B either next crosses «, again or next crosses a;
after crossing a, as in figure 6. It is easy to check in either case that if «, is removed,
there is no leaf for either @, or a, satisfying (ii) of lemma 1.1. Thus y can’t be in
S.. The case of D next crossing «; after «, is similar.

Now fix & admissible and consider foliations on X —{e,, ..., a,}. We assume
i(F,a;)#0 all i so a; is taken to be transverse to F. Let A; ={F[i(F, a;)#0 all i
and there is no leaf crossing a; in one direction and then a; in the oppsoite direction.}
An example is given in figure 7.
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@,

FIGURE 7

This is the generalization to a 2g-holed sphere of the triangle inequality condition
on a pair of pants.

A system |a|= (e, ..., as_s) of curves in S, is complete if

(i) no «; is dividing;

(ii) ay,..., a3,_; divide M into pants;

(iil) (@, aj_34-3) =2; i(a;, ar) =0 for j=3g—2, k=3g—-3, k#j-3g-3.
For any F and |a| let

.

i(Flal)="S i(Fa)

i=1
and
Dy ={Fli(F, |a|)si(F,|Bl) all complete |B}.
Let
O0={F: Fe A; some @ and i(F, G)#0 for all Ge L}.
Notice O~ (T w L) = (. Part of § 3 is devoted to showing Ou Tu L=2%.

THEOREM 2.1. Mod (H,) and Mod, (H,) act properly discontinuously on € which is
a non-empty open set. In fact D, n O is a fundamental domain for the action of
Mod (H,) on O in the sense that any F e O is Mod (H,) equivalent to a point in D,
and any F € D\, n O is equivalent to only finitely many others.

Proof. Since L is closed and i(-, -) is continuous, T U L is also closed. Since L has
empty interior and T has measure zero, T U L has empty interior. Each A; is open
and non-empty so A; — (T u L) is also. Thus 0 is non-empty. Let F € 0 and suppose
Fg D, for any |a|. Then there is an infinite sequence of |a,| with i(F,la,|)
decreasing. For some sequence a, of curves belonging to |a,|, @, is unbounded in
MF. Since PF is compact this means there exists a subsequence again denoted «,
and a sequence r, € R* with lim,_, r, = 0 such that

lim r,a, =G, Ge L.
But now i(F, a,) bounded so i(F, G) =0 and we have a contradiction. Essentially
the same argument shows that a compact set K < O intersects only finitely many D,,;.
Now suppose f,(K)n K # for infinitely many f, e Mod (H,) where K< 0
compact in 2%. Choosing subsequences we have F, € K converging in 2% to F;e K
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such that f,(F,) € K converges to G,. Again choosing further subsequences we can
assume F, e Dy, and f,(F,) &€ Dy Then

i(f,(F,), |B) < i(fi(F), fu(la])) = i(F,, |a])
=<i(F, f2(IB)) = i(f.(F.), |BD.

Since F, € K, this implies |a| = £, || for infinitely many n. But there are only finitely
many f mapping one complete system to another. This shows Mod (H, ), hence also
Mod, (H,), act discontinuously on .

Suppose F € 0 n Dyg|. There exists f € Mod ( H,) such that f(|8() = |a|. Then f(F) e
D, Finally if Fe D, and f,(F) € D, for infinitely many n,

i(f,(F),le])<i(f,(F), f.(la])) = i(F, |a|)
<i(F, £, (|la])) = i(f,(F), |a|).

This implies i(F, |a|) = i(F, f;'(l«|)) and since i(F, G)#0 for all Ge L, f,'(|a|)
cannot represent an infinite sequence as before. This finishes the proof. O

The next lemma shows that at least at some points of T, Mod, (H,) does not act
discontinuously.

LEMMA 2.2. If i(F, a)=0 for some a € S,, then Mod, (H,) hence Mod (g) do not
act discontinuously at F € PZ.

Proof. Let 7, be the Dehn twist about a. If i(8, @) =0 then 7,'(8) =8 so
i(1,(F), B)=i(F, 7,'(B)) = i(F, B).

If i(B, @) #0, i(F, B) is realized by a curve transverse to a, 7,'(8) is realized by
the same transverse arcs together with arcs of @ which have zero transverse length

SO
i(1,(F), B) = i(F, .(B)) = i(F, B).
Thus 7, fixes F and has infinite order and the lemma follows. O

Remark. The example of figure 4 thus shows that L # closure of the set of foliations
fixed by infinite cyclic subgroups of Mod (H,) since that foliation G is fixed by the
Dehn twist about 8.

3. We next analyze the limit set L. The key is the reduction step in lemma 1.1. We
will apply this to a generic foliation in L.

Suppose again the system a={(ai,...,a,) is admissible and consider X =
M —{a,,..., a.}. Let p be a segment which leaves a side say, a7, of X and crosses
to « again. Let B, ={F| when restricted to X, F has a leaf in the homotopy class
of p}. Here homotopy is relative to the boundary. The leaf may consist of segments
from a] to singularities together with saddle connections. Such leaves we call
returning.

It is clear that modulo the action of Diff, (X)/Diff, (X) there are only finitely
many homotopy classes of p (for fixed @) and thus finitely many B;,. These are
called basic sets. Figure 8 illustrates an example in genus 2.
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FIGURE 8

Lemma 3.1. Fix @ and let B;=\_J, B;, the union over all foliations with some
returning leaf. Then B; U {F|i(F, a;) =0 some a;} is closed.

Proof. Its complement is the set A, defined in the last section which is clearly open.
O

Define L'c #MF to be the set of foliations F such that either

(i) i(F, a)=0 for some a € S,; or

(ii) if i(F, a) #0 for all « € S,, then for any admissible &, F € B;.
Note again L' is well-defined as a subset of ?%.

ProrosiTiON 3.2. L L’

Proof. The proof is essentially that of lemma 1.1. If y € S, then y € L' since i(vy, y) =0.
Next suppose Fy=1lim, .o V., ¥n € S,, convergence in PF. Suppose i(Fy, a) # 0 for
all o and @ =(a,, ... @,) admissible. We have i(y,, a;) # 0 for large n. By lemma
1.1, y, € B;. By lemma 3.1 either F,€ B; or i(F, a;) =0 for some i. By hypothesis
the first possibility must occur, and the proposition follows. O

Now suppose F,e L’ satisfies (ii) of the definition. Say a7 has a returning leaf. We
look for the smallest subset of the set of homotopy classes of returning leaves for
a; with the property that any segment in X from a] to a; that does not intersect
a homotopy class in this subset also does not intersect any of the other returning
leaves from «a7. Figure 9 depicts two possibilities with the elements of the subset
denoted *.

FIGURE 9

https://doi.org/10.1017/5014338570000331X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000331X

108 H. Masur

Let a¥ be the closed curve homotopic to the union of these distinguished leaves
and one or two segments of «, as indicated in figure 9. In either case we have a
lemma whose proof is identical to the one given in § 1.

LEMMA 3.2. i(Fy,, af)<i(F,, a,). Replace a, with af. The new system of curves &*
is admissible.

Now since F,€ L', Fy€ B;+ ,» for a non-empty finite set of p*. Choose one returning
class and repeat the procedure to find a sequence @' and for each n, a finite set

pi™, ..., piih such that Fye By . The sequence @™ may depend on choices.

ProprosiTION 3.3. Suppose Fye L’ satisfies (ii) of the definition. Then for each sequence

(n)
pi”:

M Bz ={F: i(F, Fp) =0},

n=1
and the intersection of this set with L is non-empty. If F, is uniquely ergodic, then this
intersection equals F, and F,c L.

Proof. Itis obvious the sequence @™ is not finite; there is a subsequence of (" e @™

for some i and a sequence r, € R going to zero with

lim r,a{”=GeL.

n-—>oo

But lim,,« r.i(Fp, ™) =0 since i(F,, a'™) is non-increasing. By the continuity of
i(+,+), i(F,, G)=0. Now infinitely often some p{"*" is a proper subset of a p{™
which is a returning leaf for a curve being replaced. This means there is a sequence
p{™ whose length goes to infinity with n. These leaves must eventually intersect
every curve and this implies that any @ which occurs in an admissible system is
eventually replaced. Thus all sequences pi”’ have lengths going to infinity.

Now for a sequence p\™ and any homotopy class 8 € S, consider the minimal
number of intersections of transverse B € S with p!™. This must go to infinity with
n since the length of p{™ goes to infinity and F, is arational. This minimal number
is an invariant of B;» . This shows that for any Fe (),_, Bz ,(, the lengths
of p{™ go to infinity and F arational. If i(F, {"’) were bounded below away from
zero we would have a sequence of leaves, leaving segments with transverse length
bounded away from zero travelling distances going to infinity before returning to
the segments. This is impossible in an arational foliation. Thus lim,, .., i(F, a{”)=0
which implies i( F, G) = 0 and hence i(F, F,) =0. On the other hand, if i(F, Fy) =0, F
is topologically equivalent to F,. Thus F e Bz ,m for each such set. O

CoroLLARY 34. L'c LUT,m(L'—L)y=0,0ULuT=2P%

Proof. If Fye L' satisfies (i) of the definition, then Fye L u T. If F, satisfies (ii), then
i(F, F;) =0 for some Fe L by proposition 3.3 so again Fye Lu T. The second
statement of the corollary follows from the fact that m(T)=0. Finally, if F,¢ O,
then either i(F, F,) =0 for some F e L or Fy€ B; for each admissible a. Therefore,
FeLuTul'=LuUT. a
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COROLLARY 3.5. Each B;, contains an open set 0 ,< 0.
Proof. Lu T has empty interior and P¥F=00U LU T. O

We summarize our results in this section as:

THEOREM 3.6. For given & admissible there exist sets B;, and Oz, cOnB;,,
i=1,..., k such that given £ >0, there is a cover of the uniquely ergodic part of L
which is almost all of L by Mod (H,) images of B, of diameter less than . Each
such image contains the image of 0, which is in O.

Proof. The only part that remains to be proved is that the sets B . are images
of a finite set of B, ,. But this follows from the fact that there is f€ Mod (H,) such
that f(a) = @a'™. Then by composing f~' with twists about a; one can place f~'(p{")
in one of a finite set of returning classes for a. d

4. For the rest of the paper we restrict to g = 2. Label the curves of & as «,, a, and
suppose there is a returning leaf p from ] to itself as in figure 10.

1
)
]
'
' 1
PN :
|
X '
]
1
1

-

FIGURE 10

Consider the dotted curve o uniquely determined by p. Then a,, af, and a bound
a pair of pants and
i(F, &) > i(F, ) +i(F, af).

This implies a = a,. The other pair of pants bounded by «,, af, and a, must satisfy
the same inequality so there must be a returning leaf from «; to itself as well.

]

(5]

Q_

7y

[

FIGURE 11
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The segments o, and o, which join ai and a; respectively to singularities are
defined up to a Dehn twist about a¥.

For given & the sets B;, are disjoint for different p. This is not true if g=3 and
is the reason the picture developed in this section does not work for g =3.

Replace a; with af to form a* = (a¥, a,). Then B, is a union of sets B« - for
different p*, Az«, and a subset of the set of positive codimension defined by
i(F, a;) =0; Bs« ,» and A;« are disjoint and A;«< 0} Bs» ,« is the Mod (H,) image
of B;, and A;- is the image of A;. Thus together with theorem 3.6 we have:

THEOREM 4.1. For g =2, the limit set L is up to measure zero the result of removing
successively disjoint Mod (H,) images of a given A; from P%.

5. The description of L in § 4 allows us to prove:
THEOREM 5.1. m(L)=0 for g =2.

At each stage of the construction of L we have sets B and A< Bn 0. We would
like to show m(A)/m(B)=c>0 for some ¢>0 independent of the stage. This
however appears not to be true. However it is enough to show such an inequality
is true infinitely often for almost all F.

PROPOSITION 5.2. Suppose there exists a set E < PF and ¢ > 0 with the property that
given € >0 there is a disjoint cover of E except for a set of measure 0 by sets V; of
diameter <& such that each V; contains a set U, disjoint from E and m(U,}/ m(V;) =c.
Then m(E) =0.

Proof. Suppose m(E)= m,>0. Take the disjoint cover small enough so its union
V satisfies

(%—1) m(V—E)<my/2.

Let U be the union of the corresponding U. Then m(U)/m(V)=c. However
Uc V—E. Thus

m0=m(E)Sm(V)—m(U)Sm(U)(%—1>

sm(V—E)(%—l)smo/Z

and we have a contradiction. O

Denote by X the standard simplex in R" defined by Y'7_, A, =1, A, =0. If A:R" >R"
is a matrix with non-negative entries denote by A: = - X the corresponding projective
linear map. The Jacobian of A at x is |Ax|™". Following [4] we say A is C distributed
if the columns A; of A satisfy |A;|/|A;|= C. If the columns of A are C distributed
it is easy to see that the ratio of the Jacobian of A at any two points is bounded by
cn

We will find the desired cover of L in the context of train tracks. As we will see
each set in the cover will be a subset of a set of the form B, ,,.
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At this point we recall the basic concept of a train track. Our exposition is taken
from [3] and [4]. The original ideas appear in [9]. A train track 7 on a surface X
is a connected one dimensional cell complex made up of vertices called switches
and edges called branches disjointly embedded in X. We require that

(1) at each switch 7 is trivalent;

(2) 7is C' away from the switches;

(3) for each switch v the tangent lines to 7 at v using one-sided limits agree along
branches incident to v. One branch at the switch has the property that a curve on
7 through v and that branch is C' at the switch. We call it the larger branch at v.

(4) Each component of the complement of 7 is a 3-gon, an open 2-disc with 3

discontinuities in the tangent lines to FrD.
Train tracks satisfying (1)-(4) are called complete. We say 7 carries a foliation F if
there is a map ¢: (X-singularities F) onto 7 homotopic to the identity such that
dd)pl (tangent line to F) is non-zero for every p. A complete track carries an open
set of foliations in M#Z.

We will consider two train tracks to be equivalent if one can get to the other by
a series of shifts as in figure 12.

NN
—

FIGURE 12
Shift equivalent tracks carry the same foliations.

A track with weights assigns to each branch a positive number such that at the
vertices the switch condition is satisfied: the weight of the larger branch equals the
sum of the other two.

A train track 7 with weights satisfying the switch condition uniquely determines
a measured foliation carried by 7. One thinks of running leaves along the branches
with transverse measure given by the weights. The set of weights, projectivized,
satisfying the switch conditions defines a polyhedral surface in the simplex 3. It is
also clear that there are only finitely many combinatorial types of tracks, defining
polyhedra H,, ..., H,.

The basic operation on weighted train tracks is the splitting operation. A branch
which is the larger edge at each switch we call a winged branch, see figure 13. If
a>c in figure 13 (d > b because of the switch condition) the operation is to split
the winged branch as follows.

—

FIGURE 13
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If a <c(b> d) the splitting is:

FIGURE 14

The weights of 7', 7" are related to the weights of 7 by

e=e'+a+d,

e=e"+b+c, (%)
resp. As indicated in [4] one thinks of 7/, 7" as embedded in a regular neighbourhood
of 7. The formulae are realized geometrically by mapping the new tracks onto 7.
Every foliation carried by +' or 7" is carried by 7 and every foliation carried by 7
is carried by either 7' or 7. (We ignore the possibility of a = c as these foliations
form a set of measure zero.) The choice of which way to alter the track is determined
by the topological condition of whether the foliation has a leaf going from a to d
or b to c. The formulae give (projective) linear maps from a pair H, H; into X and
the two images divide the original subset H, satisfying the switch conditions on 7
into two pieces.

For any minimal F carried by 7 we repeat this procedure and get what Kerckhoft
calls a simplicial system for F. This consists of a finite number of states, the
combinatorial types of tracks together with a numbering of the branches, and an
infinite sequence of symbols where each symbol is a projective linear map of X
which is a product (*) of two elementary matrices. Let A, be the product of the
first n symbols. The sequence of A, is called the expansion of F. The idea of
associating a matrix expansion to the closely related interval exchange is due to
Veech [10].

The special nature of foliations in L indicates that we should be interested only
in certain kinds of tracks 7. We require that there be an admissible system & = (a,, a,)
such that each «; is embedded in 7 and has exactly two switches on it with one
branch leaving from each side. We do not require the embedding to be C' but we
do require that if it is not C' embedded, it have two corners. This means any leaf
running along a branch to «; will actually cross «;

We say 7 is admissible for a. There are three types of tracks admissible for a
given a.

(I) Every foliation carried by 7 has a return leaf to either «, or a,.

(I1) No foliation carried by 7 has a return leaf to either a, or a,.

(III) 7 carries a foliation with a returning leaf and a foliation with no return leaf.
The foliations carried by tracks of type (I) are in B;, for some p and those carried
by tracks of type (II) are in A;.
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We will assign a simplicial system to every minimal Fe L and will need two
lemmas to show that only these tracks (I)-(III) need by considered.

LEMMA 5.3. Suppose 7 is type (111) with respect to a. Then there exists a winged
branch o joining two distinct switches neither of which is on either a,.

Proof. Since  is type (III) it carries a foliation with returning leaves to both sides
of a, say. Pick one side. There is therefore a C' arc 8 in 7 beginning and ending
at the same switch on a,; not otherwise intersecting either «, Since there is only
one branch leaving each side of «,, by assumption, 8 must travel along a maximal
connected set of branches p leaving «,, then travel around a loop y and then return

along p.
Y
p
p
p
a,
FIGURE 15

Call p the switch on p incident to y. The branch on p must be larger at p so that
B forms a C' curve from p to y and back to p. If there is a branch on p between
a, and p which is larger at a switch closer to a; but not on «,, we are done, for
then there must be a winged branch on p. Suppose there is no such branch. Then
every leaf from any point on p travelling toward «, must cross «;.

Orient the loop y with a + and — direction. Travelling in the + direction along
v, consider the set of branches ¥ on y with the property that any C' curve through
a point of ¥ in the + direction must cross a,. The last branch of vy in the + direction
has this property so the set is non-empty. Let vy, be the first branch in the + direction
in this set. Similarly find y_.

Travelling in the + direction, y, cannot come before y_ for at the switch at the
end of y., the branch on vy following y., must be larger. This contradicts the definition
of y_. If y, = y_then any C' curve through a point of v, in either direction returns
to a, and since there are exactly two switches on a,, actually crosses «,. This means
every foliation carried by 7 has a return leaf contradicting the definition of 7. Thus
v, comes after y_ along vy. The branch preceding vy, in the + direction is larger at
the common switch since v, is the first branch to satisfy the given condition. Similarly
the branch preceding y_ is larger at the common switch. Either one of these two is
a winged branch or there is one between them on y which is and we are done.

a

Suppose 7 is type (I) carrying foliations with returning leaves to both sides of a;.
As we have seen, this means there are arcs p,, p, from «, to switches p,, p, and
loops v,, v, based at p,, p, respectively. The loops v; are disjoint from «, and a,
and are not homotopic to «a;.
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LemmMma 5.4. If 7 is type (1), p, is disjoint from both p, and vy, and p, is disjoint from
Y. If v, v, # & we can split the track along a branch of the intersection, giving new
type (1) tracks for which vy, vy, = as well.

Proof. We claim that there cannot be a branch on p, which is larger at a switch not
on «, but which is at the end of the branch closer to «,. If there were such a switch,
consider a system of weights that puts much more weight on the branch g, not on
p; incident to the switch than on the smaller branch on p, and otherwise concentrates
most weights along p,. Any leaf from «, that travels along p, past this switch and
around vy, must follow g, at the switch. This gives a foliation carried by 7 without
returning leaves to «,. The contradiction proves the claim. In particular, this means
p, is disjoint from p,. If p, has a branch in common with vy,, there is a winged
branch in p, larger at a switch not on «, but at the end of the branch closer to a,
and we have the same contradiction as above with p, in place of p,. Thus p, is
disjoint from both p, and v, and similarly p, and vy, are disjoint.

If v, ~ vy, # O they have a winged branch in common. Further, y, and vy, do not
cross for otherwise there would not be returning leaves to both sides of ;. Thus

we can split the track along v, and ¥y, so they become disjoint, proving the lemma.
O

Suppose now the track 7 satisfies the conclusion of lemma 5.4, We form a new
homotopy class a* out of each v, If v, is not homotopic to a,, let a* be y,. If v,
is homotopic to a,, let a™ be the simple closed curve homotopic to the curve found
by following v,, then p,, then @, and then p, again. In either case, a* has zero
geometric intersection with both ¢, and «, and is homotopic to neither. We similarly
construct the curve from 1v,; it has zero geometric intersection with a*, so it must
be homotopic to a*. These two copies a¥, af of the homotopy class of a* bound
an embedded open annulus A by the disjointness of lemma 5.4.

LEMMA 5.5. There is either an embedding of a™ in T with exactly two switches on a*
and one branch leaving on each side or 7 is shift equivalent to such a track.

Proof. Consider the component of Fr A formed by a¥. If «* is homotopic to v,
there is a singularity on Fr A at the switch p,. If a* is homotopic to the union of
curves, there is a singularity on Fr A on «,. In either case we have accounted for
a singularity on the component of Fr A formed by a¥. Similarly, there is a singularity
on the other component. Since 7 is complete, there must be an arc ¢ in A joining
the two components so that all complements of 7 are simply connected. Since both
v; and the path p; followed by ¥; and then p; again are C' paths, there are two
additional singularities from the joining of o to the two components of Fr A giving
a total of four in this component. Since each component of the complement of 7
must have three singularities, one of two possibilities must occur. Either there is a
branch from o to itself creating two 3-gons as desired, or there is a second branch
joining the boundaries creating two 3-gons. It is not difficult to see that any of the
latter tracks is equivalent to one of the former. For example, the tracks in figure 16
are shift equivalent. This completes the proof of the lemma. O
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%1

' " .

FIGURE 16

Lemmas 5.3 and 5.5 allow us to define a simplicial system to any minimal Fe L
using tracks of type (I) or (III). No Fe L can be carried by a track type (II) since
these are in the domain of discontinuity. Start with an admissible system & and a
track 7 admissible for & carrying a minimal Fe L. If 7 is of type (I) split along a
common branch of vy, and v, if necessary so the conclusions of lemma 5.4 hold.
Then replace a, with a* found in lemma 5.5. Now 7 is of type (III) with respect
to (a*, a,). Now split the track away from the embedded curves so the track is
either type (I) or (III). If the latter, split again; if the former, split if necessary
along the loops, change the admissible system and continue. With this prescription
the states of our simplicial process are tracks of type (I) and (III) and the symbols
the sequence of projective linear maps (*).

Now let H,cX i=1,..., n, be polyhedra defined by the allowable weights on
these tracks and G;< H;~ 0 some open set which exists since Lu T has empty
interior. After n stages we have a track 7™ whose allowable weights form one of
the H, If the weights of F with respect to 7" are A‘™, then the weights of F with
respect to 7T are

A=A,
where A, is the product of the n matrices given by the splittings (*). Thus A, (H;)
parametrizes, with respect to weights on 7, all foliations carried by 7™ and A,(G;)
parametrizes foliations in O carried by 7. The sets A,(H;) form the cover of L
by sets V; required in proposition 5.2 and the A,(G;) are the subsets U, in the
hypothesis of that proposition.

Remark. Each time a track becomes type (I) and the admissible system is changed,
the set A,(H,) is a subset of some B, ,~. Then successive A,,ﬂ-(H,-) are further
nested subsets of this B,« .« until a new system occurs.

We also note that this approach fails for g =3 since the analogue of the lemmas
is false. In particular there is not a number k so that for any admissible «, one of
k combinatorial tracks appears. This reflects the fact that the cover of theorem 3.6
is not disjoint.

To show that the hypotheses of proposition 5.2 are satisfied, we need only apply
Kerckhoff’s results [4] to our situation. We will recall a couple of concepts and
definitions appearing in [4].
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In the process of forming A, ., = A,E, E, where E, E, is the product of elementary
matrices (*) we can think of A,., as derived from A, by twice adding a column of
A, to another column of A,

Consider a block of matrices in the expansion of some F. Take any subset of two
or more columns and assume in this block each column in the subset has been
added to some member of the subset and has had some member of the subset added
toit. It is called isolated if no member has been added to a column outside the subset.

A simplicial process for which there is no non-trivial isolated collection of columns
starting and ending with the same state is connected.

ProrosiTiON 5.5 (Kerckhoft). The simplicial process for a complete train track is
connected.

ProrposiTiON 5.6 (Kerckhoff). For any connected simplicial process, for all F except
Jor a set of measure 0, the columns of the matrices in the expansion of F are C-distributed
infinitely often for some C > 0.

Proof of theorem 5.1. Suppose my= m(L)>0. Since the columns in the expansion
of F are C-distributed infinitely often, the ratio of the Jacobian of A, is bounded
at any two points infinitely often for a set of measure m,. This means for the cover
A,(H;) and A,(G;) < A,(H,) the hypotheses of proposition 5.2 are satisfied and we
have a contradiction. O
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