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HARMONIC MAPPINGS OF NEGATIVELY 
CURVED MANIFOLDS 

ZVI HAR'EL 

1. Introduction. Volume decreasing properties of harmonic mappings of 
space forms were investigated by S. S. Chern and S. I. Goldberg [3] and the 
author. In a previous paper [6], a step toward generalization of the results 
was made proving the following theorem: 

THEOREM. Let f: M —> N be a harmonic mapping of n-dimensional Rieman-
nian manifolds, with C ^ 0. Suppose the scalar curvature of M is not less than 
— S, and the Ricci curvature of N is not greater than —S/n, where S ^ 0 and 
S > 0 are constants. Then, if u has a maximum on M, 

u ^ (S/S)n 

i.e. j fis volume decreasing up to a constant. 

In this theorem, u is the square of the ratio of volume elements of N and M, 
and C is a scalar invariant of the mapping (cf. [3]). 

In the present paper, the case in which M is a complete manifold with non-
positive sectional curvature is considered by exhausting M with concentric 
geodesic balls carrying certain convex functions. These functions are used to 
define metrics in which the squared ratio of volume elements has a maximum, 
as the last theorem requires. In this way it is shown that harmonic mappings 
of negatively curved manifolds are volume decreasing, thus generalizing Chern 
and Goldberg's result for the ball. We thank the referee for mentioning that a 
similar result follows using methods developed by S. T. Yau [8]. 

2. The geodesic radius. 

Definition. Let M be a Riemannian manifold, and p0 be a fixed point in M. 
The geodesic radius on M (relative to the origin p0) is the function r: M —> R 
defined by 

rip) = d(p,p0), 

where d is the Riemannian distance on M. 
It is well known that r is differentiate in M — 12 — {p0}, where 12 is the cut 

locus of po. In the case that M is complete and simply connected and has non-
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positive sectional curvature , £1 = 0 and r is differentiable in M — {po}> Ac
cording to Bishop-O'Neill [2], r is also convex there, i.e., its Hessian V 2 r is 
positive semi-definite. As a result, the inequali ty AT ^ 0 holds in M — {po}. 

Better bounds on AT, the Laplacian of r, which are valid in the general case, 
are given in the following theorem. 

T H E O R E M 1. Let M be a complete Riemannian manifold, and let 12 be the cut 

locus of po Ç M. Then, on M — 12 — {po}, 

(a) if the Ricci curvature of M is ^ (n — 1 )K, 

AT ^ (n - l)VKcotVKT; 

(b) if the sectional curvatures of M are ^ K, 

AT ^ (n - 1)\/K cot\ZKT (CS/KT < TT). 

In the above formulas, y/K cot \/KT should be read y/ — K coth -\/—KT for 

K < 0 and 1/V for K = 0. T h e restriction S/KT < TT should be omit ted for 

K ^ 0. 
For a proof, see Aubin [1], al though a proof which doesn ' t involve the 

second variat ion of arclength is also available (cf. [7]). 

3. H a r m o n i c m a p s . In this section, we review some properties of harmonic 
maps as found in [3] and [6], which will be required later. 

Let M and N be Riemannian manifolds, and / : M —> N a smooth mapping. 
Let \Xi) and {Xa} be (local) or thonormal frames in T(M), T(N) respectively!. 
Let {sa} be the frame in the vector bundle E = f~1T(N) induced from {Xa}-
Let {oôi}, {wa}, {/*côa} be the corresponding coframes. A matr ix (aai) is defined 
by the equation 

j œa — aai03i. 

Consider the differential of the mapping, /* , as a section of f~lT(N) <g) 
T(M)*, t ha t is an E-valued differential form on M. Then , 

/ * = CLaiSa 0 C0<. 

Let V be the covariant differentiation operator of E-valued differential forms 
defined by 

V(sa ® $ a ) = Dsa ® $ a + sa ® V$ a 

where the $ a are real forms, V is the covariant differential in M, and D is the 
linear connection in E induced from the Riemannian connection in T(N). 
Then, 

V / * = ClaijSa ® Wj ® 00 i 

fLatin indices have the range 1 S h j , k, . . . S dim M, while Greek ones have the range 
1 ^ (x, |3, y, . . . S dim N. Quantities on N are distinguished by an upper bar. The Einstein 
summation convention is used. 
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where the components aaij satisfy 

(1) aaijù)j = daai + dajUji + apif*ûpa> 

Here cjj t and ûpa are the connection forms in M and N respectively. 
In the same way, we have 

VV/* = aaijksa ® wk ® coj ® cot 

where 

(2) aaijkœk = daaij + aaikœkj + aakjwki + a^jf*^, 

and so forth. 
A m a p p i n g / : i f —> iV is called harmonic, if 

tr (Vf*) = aaiisa = 0. 

Suppose M and N are w-dimensional Riemannian manifolds. Let vM — 
coi A . . . A cow and vN = côi A . . . A wn be their respective volume elements. 
Let A = f*vN/vM be the ratio of volume elements. Then 

A = det (««*)• 

Let (Btf) be the adjoint matrix of (aai), i.e., Biaaaj = htjA. Finally let u = A2. 
Then we have the formula 

(3) lAu = (dA, dA) + %u(R — apkaykR$y) — \{CUjCUj — ABiaaajji), 

where R is the scalar curvature of M, R$y is the Ricci tensor in N, and Cuj = 
Biadaij. I f / is harmonic, aajji = 0 and therefore 

(4) lAu = (dA,dA) + %u(R - a0kaykR0y) - \C, 

where C — CUJCHJ. 

4. T h e e x h a u s t i o n m e t h o d . L e t / : M —> N be a harmonic mapping of 
w-dimensional Riemannian manifolds. We suppose tha t M is complete and 
simply connected and has nonnegative sectional curvature. 

Let p be an arbi t rary positive constant . Consider the open submanifold 

Mp = {p G M\r(p) < p}. 

As .expp0 is a diffeomorphism by Hadamand-Car tan theorem, Mp (the closure 
of Mp) is compact. Define on Mp the conformai metric 

(5) dsp = elpds 

where 

https://doi.org/10.4153/CJM-1978-054-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-054-4


634 zvi HAR'EL 

I t is easy to check tha t the function vp is C°° and strictly convex on Mp, 

and has the properties 

(a) vp ^ 0 on Mp, 
(b) vp —» oo on dMp, the boundary of Mp, 
(c) for a fixed p Ç M, vp(p) —> 0 for p —> oo. 

Let / p be the restriction of / : M —> TV to ifp. / p is not harmonic with respect 
to the metric (5). Nevertheless, we consider the square of the ratio of volume 
elements 

up = e-2nvPU 

where the superscript p denotes quant i t ies which are related to fp in the same 
way as the quant i t ies wi thout the superscript are related to / . T h e function up 

is nonnegative and continuous on Mp and vanishes on dMp, thus a t ta in ing a 
maximum on Mp. 

Consider the scalar curvature on Mp (cf. [4, p. 115]): 

Rp = e-
2vp{R - (n - l)(2Avp + (n - 2) (dvp,dvp))} 

IP - T 1 D 4 ( n ~ l ) ( / 2 2 N A , 2 , / - , x 2 } 

= I - — 2 — ) R - — — 4 {(P - T )TAT + p + (n - 1 ) T 
\ p / p 

where we have used the identities 

Avp = VP'AT + VP"<<*T, dr) = vp
rAr + v/f 

(dvp,dvp) = ( V ) 2 ( ^ T , ^ r ) = « ) 2 . 

Suppose tha t R ^ —5 where S, is a nonnegative constant . If M has non-
positive curvature , its Ricci curvature is ^ —S also, and from Theorem 1 

(p2 — T 2 )TAT ^ (n — 1)P2KT coth KT ^ (n — l)p2/cp coth Kp, 

where 5 = (n — 1)K2 . Also 

p2 + (w — l ) r 2 ^ np2 

and so 

(6) R> = ( ^ ~ ) ^ - «, 

where ep is a function on ifp satisfying 

(7) 0 < ep g 4(w - 1){(» - l ^ p ^ c o t h /ep + ^ p - 2 } . 

Now wp satisfies the following identi ty, which is identical to (3): 

up 

(8) \Aup = (dAp, dAp) + -- (Rp - a^ay/Rfr) - \C\ 

where 

(9) Cp = CHj
pCUj

p - ApBia
paajji

p, 
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and 
CUJP = Bla

paaij
p. 

The second term in (9) appears due to the fact that fp is not harmonic. 

The following lemma has been essentially furnished to me by S. I. Goldberg 
(cf. [5]) 

LEMMA. At the maximum point of up on Mp, 

CP = g-2(»+i)«P{C _ (n _ 2)u{kvp + (n - 1) (dvp, dvp))}. 

Proof. Let (dsp)2 = J2i(ù)ip)2i where co/ = evPœt are fundamental forms on 
(Mp, dsp). The appropriate connection forms are 

« < / = Ma + VpiUj — VpjUi. 

Furthermore, 

aaip = e-vmaif Bia
p = e-(n-l)v<>Bia, and Ap = e~nv<>A. 

We then have from (1) and (2), 

& dccij O'aij ~t~ OijQ>a]cVp}c Clai^pj O'a'ppU 

e3t)paajji
p = aajji — 2aajjvpi + (n — 2)aaijvpj 

+ (n - 2)aajvpji - 2(n - 2)aajvpjvpi. 
Therefore, 

(10) Clij
pCilj

p = e-(2»+2)»p(c - (w - 2)w<<fop> <fop», 

(11) ^ ' ^ a ^ / = (« - 2)e-<2n+2>''(4£toaa<ii;Pi + ziAz;p - 2u(dvp, dvp)). 

On the other hand, the components u/ of dup, 

uf = 2ApBia
paai/ = 2e-{2n-l)vp{AB1txaaij - nuvpj), 

vanish at the maximum point of up. Substituting in (11) gives 

(12) ApBia?aajji
pUx u

p = (n- 2)e~^^vm(Avp + (n - 2){dvp, dvp)). 

Substituting (10) and (12) in (9), the lemma follows. 

All the preparations completed, we arrive at our goal. 

THEOREM 2. Let f: M —> TV be a harmonic mapping of n-dimensional Rieman-
nian manifolds, with C ^ 0. Suppose that M is complete with nonpositive sec
tional curvature. If the scalar curvature of M is not less than — S, and the Ricci 
curvature of N is not greater than —S/n, where 5 ^ 0 and S > 0 are constants, 
then 

u g (S/S)n, 

i.e., fis volume decreasing up to a constant. 
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Proof. We assume tha t M is simply connected, for otherwise, we may take 
its simply connected covering, and use the fact t ha t the covering map is an 
isometric immersion. Define Mp as above, and choose an a rb i t ra ry e > 0. 
From (6) and (7), there exists a constant p0, 0 < p0 < oo , such t ha t on Mp, 

for any p > p0 

(13) Rp ^ -S - e. 

From the lemma, the convexity of vp implies t ha t Cp ^ 0 a t the maximum 
point of up. At the same point, we also have Aup :§ 0 and dup = 0, and (8) 
reduces to the inequality 

(14) Rp S apk
payk

pRpy. 

Fur thermore , 

(15) an\/R,y è -(S/n) E (V) 2 ^ -S(i01/n. 

Hence, from (13), (14) and (15), 

up £ ((S+e)/Sy 

at the maximum point of tip, so obviously everywhere in Tfp. 
But , u = e2nvnip. Let p be a fixed point of M, then for p large enough (greater 

than po and r (p), where the lat ter condition ensures p G M p) 

„ ^ C2^P ( (5 + e)/5)w . 

Let t ing p —> oo , z;p —> 0, so 

u û((S+ 0/5)». 

As the last inequality is valid for an arbi t rary e, the theorem follows. 

Note. Since almost complex maps of almost Kaehler manifolds are harmonic, 
it might be interesting to interpret the above result in this case. Fur thermore , 
it can be shown tha t Theorem 2 holds for holomorphic maps of hermit ian 
manifolds (not necessarily Kaehlerian) with the same curva ture conditions. 
(In this case, the scalar C does not appear . ) Details will appear elsewhere. 
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