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Summary

The importance of variance modelling is now widely known for the analysis of microarray data.
In particular the power and accuracy of statistical tests for differential gene expressions are highly
dependent on variance modelling. The aim of this paper is to use a structural model on the
variances, which includes a condition effect and a random gene effect, and to propose a simple
estimation procedure for these parameters by working on the empirical variances. The proposed
variance model was compared with various methods on both real and simulated data. It proved to
be more powerful than the gene-by-gene analysis and more robust to the number of false positives
than the homogeneous variance model. It performed well compared with recently proposed
approaches such as SAM and VarMixt even for a small number of replicates, and performed
similarly to Limma. The main advantage of the structural model is that, thanks to the use of a
linear mixed model on the logarithm of the variances, various factors of variation can easily be
incorporated in the model, which is not the case for previously proposed empirical Bayes methods.
It is also very fast to compute and is adapted to the comparison of more than two conditions.

1. Introduction

Detection of differentially expressed genes relies on
statistical tests, typically t-tests. A key and critical
aspect of these tests is the modelling of the residual
variances. The most commonly used approach is to
test for differential gene expression one gene at a time.
This approach has, in general, low power due to the
lack of information on each individual gene (Callow
et al., 2000). On the other hand, assuming that all the
variances are equal and using a common variance
estimator can increase the power (Kerr et al., 2000)
but generates a high rate of false positives when the
assumption of homoskedasticity is not true (Cui et al.,
2005). A number of papers have been devoted to the
problem of choosing a suitable variance model for
microarray data. In the SAM t-test (Tusher et al.,
2001) a small constant is added to the gene-specific
variance estimates in order to stabilize the small
variances. Kerr et al. (2002) proposed an intensity-
dependent variance model where the gene-specific

residual variances are modelled as a non-parametric
function of the log-intensity. Delmar et al. (2005a)
proposed a mixture model on the gene-variance
distributions to identify clusters of genes with
equal variances. Cui et al. (2005) presented a shrink-
age estimator of variance components, using the
James–Stein shrinkage concept. Several authors have
also proposed hierarchical Bayesian methods, in-
cluding Lewin et al. (2006), Newton et al. (2001),
Baldi & Long (2001), Lönnstedt & Speed (2002),
Wright & Simon (2003), Smyth (2004) and Feng
et al. (2006).

The aim of this paper is to propose a simple and
biologically interpretable model for the variances.
The idea is to consider a structural model (Foulley
et al., 1992) which includes a condition effect and a
random gene effect. This model will allow estimation
of gene-specific residual variances that will take into
account information from all the genes in the data set
in a simple and parsimonious way. Two estimation
procedures are considered in this paper to estimate
the variance parameters : a stochastic approach based* Corresponding author. e-mail : florence.jaffrezic@jouy.inra.fr
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on MCMC techniques and a simple approximate
method.

In a simulation study, our method was compared
with five other approaches for variance modelling:
gene-specific variances, common variance model,
SAM (Tusher et al., 2001), VarMixt (Delmar et al.,
2005b) and Limma (Smyth, 2004). The proposed
structural model was also applied to a real functional
genomics study on bovine embryos before implan-
tation to find differentially expressed genes according
to the reproduction mode, and to a microarray ex-
periment to study the response of the mouse spleen to
in vivo whole body irradiation.

2. Materials and methods

(i) Hierarchical model

Let yijk be the expression level for gene i (i=1, …, N),
replicate j (j=1, …, ni) and condition k (k=1, …, K).
Data are assumed to have been previously normal-
ized. Observations yijk are modelled with the simple
linear model (Delmar et al., 2005a) :

yijk=mik+eijk: (1)

The residual terms eijk are assumed to be independent
and normally distributed with mean zero and a
variance which can vary both by gene and condition:
eijkyN (0, sik

2 ).
Estimating one residual variance for each gene

within each condition is often not possible due to the
lack of replications within each interaction cell. The
second step of the proposed hierarchical modelling
is therefore to consider a model on the variances
that will retain flexibility while keeping the number of
parameters reasonably low. As suggested by Foulley
et al. (1992), a structural model is therefore assumed
on the logarithm of the residual variances:

ln (s2
ik)=mk+dik, (2)

where mk is a condition effect (assumed fixed) and dik
is the gene effect in condition k. Here we will assume
that the gene effects are independent and normally
distributed with mean zero and variance tk

2 , i.e.
dikyN (0, tk

2). Considering the gene effects as random
allows us to take into account this source of variation
parsimoniously and leads, as shown later, to a shrunk
estimator of the variance.

(ii) Simple estimation procedure

Analytical forms of the likelihood function are diffi-
cult to obtain in the model presented above, and
estimation of the parameters in such a structural
model for the variances usually requires the use of
stochastic estimation procedures based on MCMC

methods. Lewin et al. (2006), for example, proposed
using Gibbs sampling and estimated the parameters in
a Bayesian framework. These stochastic estimation
procedures are, however, quite time-consuming due
to the large number of simulations required to obtain
accurate estimates of the parameters.

Here we propose a simple and efficient approximate
method to obtain estimates of the parameters in the
structural model for the variances. These estimates
were compared with those obtained with Gibbs sam-
pling using the software WINBUGS (Spiegelhalter
et al., 2004). The idea of the proposed estimation
procedure is to base inference of the variance par-
ameters on the empirical variances.

For each gene i, let sik
2 be the empirical variance

defined as

s2ik=
1

nikx1
g
nik

j=1
(yijkxyik:)

2, (3)

where yijk represents the expression level for replicate
j of gene i in condition k. Let yik. be the average
expression level for gene i over all replicates in
condition k : yik:= 1

nik
gnik

j=1yijk: For the proposed esti-

mation procedure, the structural model is assumed on
the logarithm of the empirical variances :

ln (s2ik)=mk+dik+eik, (4)

where eik is a sampling error due to the estimation
of the true variances sik

2 by the empirical variances
sik
2 . Residuals eik are assumed independent and
normally distributed with mean zero and variance
vik

2 : eikyN (0, vik
2 ). According to the asymptotic

theory (Layard, 1973), the sampling variances vik
2 can

be estimated by vik
2 =2/dik, where dik corresponds to

the degrees of freedom for gene i in condition k.
Usually dik=nikx1, where nik represents the number
of replicates for gene i in condition k. As previously,
dik is assumed to be a random gene effect in condition
k : dikyN (0, tk

2 ), and mk is a fixed effect which rep-
resents the condition effect. Both parameters tk

2 and
mk can be estimated by classical linear mixed model
estimation procedures.

Due to the use of normal conjugate distributions –
ln sik

2 |ln sik2 yN (ln sik
2 , vik

2 ) and ln sik
2 yN (mk, tk

2) – it
follows that the best predictor of ln sik

2 is

dln s2
ikln s2
ik=mk+lik( ln s

2
ikxmk), (5)

where lik=tk
2/(tk

2+vik
2 ) is a shrinkage factor of ln sik

2

towards mk. When parameters tk
2 tend to zero, we ob-

tain a pooled estimator and a common variance for all
genes within each condition: m̂k =g

i
(dik ln s

2
ik)=gi

dik.

On the other hand, if parameters tk
2 tend to infinity,

the shrinkage factors lik become 1. There is no
shrinkage, and one variance is estimated for each gene

in each condition as: dln s2
ikln s2
ik= ln s2ik.
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(iii) Degrees of freedom of the T statistic

To test whether gene i is differentially expressed
between condition k and condition l the test statistic is

ti, kl=
mikxmilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ 2
ik=nik+ ŝ 2

il=nil

q , (6)

where ŝ 2
ik and ŝ 2

il are estimations under the proposed
structural model presented above. The exact distri-
bution of this test statistic under the null hypothesis
is unknown and determination of the p values can be
obtained by permutations. As pointed out by Cui
et al. (2005) permutations are, however, very time-
consuming, especially when a large number of genes
are analysed. To obtain a fast and efficient procedure,
we therefore propose considering an approximate
Student distribution. In fact, under the structural
model, the test statistic corresponds to the so-called
Welch’s statistic which follows approximately a
Student distribution (Moser & Stevens, 1992) with
ni degrees of freedom. For each gene, we propose
calculating the degrees of freedom of the T statistic
by the classically used Satterthwaite’s method, as
follows:

ni=
2(ŝ 2

ik+ŝ 2
il)

2

Var(ŝ 2
ik)+Var( ŝ 2

il )
, (7)

where ŝ 2
ik and ŝ 2

il are the variance parameter esti-
mations obtained with the structural model and the
variances of these estimations can be calculated

as: Var(ŝ 2
ik)=(ŝ 2

ik)
2Var( dln s2

ikln s2
ik), where Var( dln s2

ikln s2
ik) �

(1=t2k+dik=2)
x1 with dik=(nikx1) for condition k.

An R function ‘SMVar’ implementing the struc-
tural model for the detection of differentially ex-
pressed genes is available upon request from the first
or second author.

3. Application

The proposed structural model was applied here to
two sets of real data to find differentially expressed
genes in bovine embryos according to the repro-
ductive mode and in mice to study the spleen response
to irradiation.

(i) Reproductive mode in bovine embryos

(a) Presentation of the data. This variance modelling
was applied to a functional genomics study on bov-
ine embryos before implantation. The experimental
protocol is described in detail by Degrelle (2006).
The aim of this study was to find differentially
expressed genes in the embryos according to the
reproductive mode. Three reproductive modes were
investigated: artificial insemination (AI), in vitro
fertilization (IVF) and cloning (somatic cell nuclear

transfer, SCNT). Three different lines of clones were
studied. They were established from ear skin biopsies
of three Holstein heifers. In total, 10 Holstein
embryos were available for AI, IVF and each of
the three lines of clones. In total, 10 214 unique
cDNA were spotted onto Nylon N+ membranes
(Amersham Biosciences) at the CRB GADIE
platform (INRA, Jouy-en-Josas). The bovine 10K
array will be fully described in a forthcoming paper
(Degrelle et al., unpublished). For each embryo
(n=50), RNA was isolated, amplified (MessageAmp
aRNA Kit, Ambion) and hybridized onto the
array. The membranes were exposed to phosphor
screens for 7 days. The hybridization signals
were quantified using Imagene 5.5 software (Bio-
Discovery) on the PICT platform (INRA, Jouy-
en-Josas). Gene expression data were log2 transformed.
Data were centred by membrane and by gene. No
further normalization was needed on this bovine
data set.

(b) Variance parameter estimations. For the struc-
tural model, the list of differentially expressed genes
found with the approximated estimation method
was compared with the list obtained with the exact
MCMC estimations using Gibbs sampling with
WINBUGS software (Spiegelhalter et al., 2004). As
the posterior distributions of the variance parameters
were highly asymmetrical, we chose the posterior
mode with a uniform prior on the standard devi-
ations (Gelman, 2005) as a point estimate of the
variance parameters, which is close to the REML
estimation of the variance parameters. The structural
model was compared with the mixture model
approaches proposed by Delmar et al. (2005b) : VM
and VM2. In VM2, each gene is assigned to one of
the groups of homogeneous variance determined by
the mixture model. VM is more flexible as it does
a partial assignment of genes to variance groups,
taking into account the probabilities of belonging
to each group. Classical methods such as Limma
(Smyth, 2004), SAM (Tusher et al., 2001), gene-by-
gene analysis and the homogeneous variance model
were also applied to this data set. To make each
method comparable, a Benjamini & Hochberg (1995)
correction (BH correction) was performed on the
raw p values to correct for multiple tests.

The proposed structural model is similar in spirit
to that of Baldi & Long (2001), except that the use
of log-normal distributions instead of Gamma gives
the possibility of directly estimating the shrinkage
parameter, which is a crucial parameter for the
variance estimations, whereas it has to be specified a
priori by the user in Cyber-T. Moreover, the struc-
tural model allows the easy incorporation of factors
of variation other than the gene and condition
effects. Analyses performed here will therefore not be
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compared with the method presented by Baldi &
Long (2001).

(c) Results. The Venn diagram presented in Fig. 1
illustrates the list of differentially expressed genes
found with the different methods at a 10% BH
threshold. With the structural model and the pro-
posed approximate estimation method, 11 genes
were found which were all included in the 12 genes
found with Gibbs sampling estimations using pos-
terior mode estimates.

The SAM approach detected 8 genes at 10% which
were all included in the 11 genes detected with the
structural model. In this analysis, VM and VM2 were
found to lack power as no gene was detected with VM
and only 3 genes were detected with VM2. This may
be due to the fact that the VarMixt methods were
designed for comparing only two conditions as the
variance of the gene expression difference is modelled,
whereas in this example five conditions were com-
pared. In contrast, the structural approach models the
variances in each condition and can therefore readily
be applied to the comparison of more than two
conditions. At a 30% BH threshold, 9 genes were
detected with VM and 6 with VM2. All of them were
included in the 11 genes detected with the structural
model. Similarly, Limma detected only 1 differentially
expressed gene at a BH threshold of 10% as well
as 30%.

The homogeneous variance model found far more
genes than other methods, but a histogram of the
p values showed that the assumption of a common
variance is not appropriate for these data, as shown in
Fig. 2. In fact, the distribution of the p values was not
uniform under the null hypothesis. It is therefore

expected that a large proportion of the detected genes
are false positives.

(ii) Mouse spleen data

(a) Presentation of the data. These data were pres-
ented and analysed by Delmar et al. (2005a), and
are publicly available in the R VarMixt package
(Delmar et al., 2005b). The goal of this experiment
was to study the response of the mouse spleen to
in vivo whole-body irradiation. Experimental data
were generated with two-colour complementary
DNA microarray assays comparing the spleen of
irradiated (treated) and normal (control) mice. The
data consist of three dye-swaps. The ‘treated’ sam-
ples were obtained from three independent mice (one
mouse per swap) 3 hours after irradiation at 1 Gy.
The ‘control ’ sample was obtained from pooling
several normal mice. The same control sample was
used in all the hybridization experiments. There are
4360 genes in each array. Composition of the arrays
is described in Preisser et al. (2004). Data were pre-
viously normalized as described by Delmar et al.
(2005a).

(b) Results. Three methods have been applied to
find differentially expressed genes in these data,
namely Limma (Smyth, 2004), VM (Delmar et al.,
2005b) and the structural model proposed here. The
Benjamini & Hochberg (1995) procedure at a 5%
threshold was used to correct for multiple tests. In
total 112 genes were detected with Limma, 113 with
VM and 125 with the structural model. Among
them, 104 genes were found by all three methods, as
shown in the Venn diagram in Fig. 3.

4. Simulation study

A simulation study was performed to compare the
proposed structural model with the variance model-
ling implemented in Limma (Smyth, 2004), SAM
(Tusher et al., 2001) and VarMixt (Delmar et al.,
2005b), as well as with the simple gene-by-gene
analyis and homogenenous variance model. In the
first simulation, paired data were studied from the
‘two-colour’ experiment in mice presented by Delmar
et al. (2005a) and analysed in the previous section.
The second simulation study is based on the real
bovine data presented above; these are therefore un-
paired data. For each of the methods, a BH correction
was performed on the raw p values to account for
multiple tests.

(i) Simulation 1

(a) Data. The first simulation was performed with
the same parameters as used by Delmar et al.

Structural (mode)

Structural (approx)

SAM

VM2
3 genes

1 gene

3 genes

5 genes

Fig. 1. Venn diagram for the differentially expressed genes
detected at a 10% BH threshold in the real bovine data set
with four methods: structural model using the posterior
mode in the Gibbs sampling estimations, structural model
with the approximate method, SAM and VM2.
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(2005a), which were obtained from the real mouse
data set analysed above. The simulated data had
4360 genes which were assumed normally dis-
tributed. One per cent of the genes were simulated
with a non-zero mean log-ratio. These 43 genes were
simulated with a mean log-ratio ranging uniformly
from 0.25 to 0.9. Gene variances were estimated
from the real data by a gene-by-gene analysis and
were randomly assigned to the differentially ex-
pressed genes in each simulated data set as in
Delmar et al. (2005a).

(b) Model fitting. In this data set, each array is
hybridized with both a control and a treated sample.
Therefore, for each gene the two observations from
the same array were treated as paired data. Each
model was fitted on the logarithm of the ratio of
observed intensity (log-ratio). Let yij be the log-ratio
for gene i in replicate j. It is modelled by

yij=mi+eij, (8)

where eijyN (0, si
2). For the structural model, the

residual variances are now modelled as: ln si
2=m+di,

where diyN (0, t2). For these paired data, the
measure of differential expression for gene i between
the two conditions is now defined as the mean log-
ratio for gene i :

Di=
1

ni
g
ni

j=1
yij: (9)

In this first simulation study, the paired Limma, VM,
VM2, SAM, gene-by-gene and homoskedastic models
were also used. The results were averaged over 100
simulated data sets and are presented in Table 1 for a
5% BH threshold.

(c) Results. It was found that for relatively large
numbers of replicates (eight or more), all four
methods (Limma, SAM, VarMixt and structural
model) perform quite well. The homogeneous model,

Common variance model
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Fig. 2. Histogram of the raw p values for the real bovine data analysis with four different models : the common variance
model, the proposed structural model, VM and SAM.

Fig. 3. Venn diagram for the differentially expressed genes
detected at a 5% BH threshold in the real mouse data set
with three methods: structural model, VM and Limma.
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however, had a very large rate of false positives,
which shows that this assumption is here highly
unrealistic. The structural model still performs quite
well for fewer replicates (five replicates), even with
the approximate estimation method based on empiri-
cal variances. As already observed by Delmar et al.
(2005a), however, the paired SAM method performs
very poorly for five replicates as it detects no differ-
entially expressed genes. As expected, the gene-by-
gene analysis showed a lack of power with this small
number of replicates and the homogeneous variance
model still had a large number of false positives.

(ii) Simulation 2

(a) Data. This second simulation was based on the
parameters estimated on the real data set presented
above on bovine embryos. Due to the required com-
puting time, only three conditions among the five
were considered and 5000 genes among the 10 214.
Among them, 100 genes were simulated to be differ-
entially expressed for one of the conditions com-
pared with the two others. For these genes, the mean
log-ratio was simulated according to a Gamma
(10.8,0.07). These parameters were determined from
the real data set. Gene variances used for the simu-
lations were estimated from the real data by a gene-by-
gene analysis and were randomly distributed within
the set of differentially expressed genes for each
simulation. In this study, only unpaired methods
were used as the real data came from a membrane

experiment and not a ‘two-colour’ experiment.
Results were averaged over 100 simulated data
sets and are presented in Table 2 for a 10% BH
threshold.

(b) Results. In the case of the comparison of more
than two conditions, as already observed in the real
data analysis, the structural model had more power
than VM and SAM, especially in the case of a small
number of replicates (five replicates here). In fact,
19 true positives were detected on average with the
structural model at a 10% BH threshold, whereas
fewer than seven genes were detected with VM2,
fewer than 11 with VM and 12 with SAM. This is
due to the fact that the structural approach models
directly the variance of each gene within each
condition, whereas the VarMixt methods model the
variance of the difference in gene expression in two
conditions. On the other hand, the Limma approach
also works quite well in this case with 18 true posi-
tives detected. In the case of 10 replicates the same
pattern is oberved, although the differences between
methods are slightly smaller than for five replicates.

5. Discussion

The first simulation study showed that the proposed
structural model for paired data performed similarly
to the VarMixt approach. The paired SAM method,
however, showed a considerable lack of power in this

Table 1. Results of the simulations based on the
mouse paired data set at a 5% BH threshold

No. of replicatesa

5 8 10

No. of true positives
Structural model 29.4 (3.1) 39.8 (1.6) 41.4 (1.2)
VM 33.7 (2.4) 40.2 (1.4) 41.6 (1.1)
VM2 32.5 (2.7) 39.7 (1.7) 41.3 (1.3)
SAM 0.0 (0.0) 39.9 (1.7) 40.9 (1.5)
Limma 33.0 (2.5) 40.0 (1.6) 41.4 (1.2)
Gene-specific 13.8 (4.2) 37.1 (2.2) 39.9 (1.7)
Homoskedastic 39.9 (1.4) 42.4 (0.8) 42.8 (0.5)

No. of false positives
Structural model 1.7 (1.5) 2.0 (1.3) 2.2 (1.8)
VM 2.0 (1.6) 2.3 (1.6) 2.4 (1.8)
VM2 2.0 (1.7) 2.2 (1.4) 2.1 (1.7)
SAM 0.0 (0.0) 1.7 (1.5) 2.1 (1.7)
Limma 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Gene-specific 0.8 (1.0) 1.9 (1.2) 2.4 (1.8)
Homoskedastic 49.8 (7.9) 50.0 (7.9) 51.7 (8.7)

Values are the mean (SD) over 100 simulations.
a Replicates correspond to the number of measurements for
each gene within each condition.

Table 2. Results of the simulations based on a subset
of the bovine reproductive data set at a 10% BH
threshold

No. of replicatesa

5 8 10

No. of true positives
Structural model 18.7 (6.6) 53.9 (5.6) 56.2 (4.6)
VM 10.4 (5.5) 47.7 (5.2) 60.2 (4.7)
VM2 6.4 (5.1) 43.1 (5.5) 58.2 (4.8)
SAM 11.5 (5.5) 50.6 (5.5) 63.3 (4.8)
Limma 17.8 (6.0) 49.3 (5.0) 61.2 (4.4)
Gene-specific 6.2 (4.1) 39.2 (5.0) 54.1 (4.4)
Homoskedastic 37.5 (4.43) 63.2 (4.4) 73.5 (3.9)

No. of false positives
Structural model 6.2 (4.2) 14.8 (5.3) 16.8 (5.1)
VM 2.0 (1.9) 8.7 (3.7) 11.6 (4.0)
VM2 1.3 (1.7) 7.3 (3.6) 10.3 (3.7)
SAM 2.3 (2.2) 11.2 (4.5) 13.7 (4.6)
Limma 5.0 (3.4) 14.0 (4.9) 16.8 (5.0)
Gene-specific 1.2 (1.5) 7.9 (3.6) 11.3 (4.3)
Homoskedastic 89.1 (11.7) 102.1 (10.6) 104.5 (11.2)

Values are the mean (SD) over 100 simulations.
a Replicates correspond to the number of measurements for
each gene within each condition.
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analysis when the number of replicates was small.
As expected, the structural model clearly out-
performed the homogeneous variance model and the
gene-by-gene analysis. The proposed approximate
estimation procedure, based on empirical variances,
still performed well for a small number of replicates
(five replicates).

In the first real data analysis and the second simu-
lation study, the structural model was found to be
more powerful than VM, VM2 and SAM. This was
due to the fact that more than two conditions were
compared whereas VM and VM2 were initially de-
veloped for the comparison of only two conditions.
In fact, the mixture model is based directly on the
variance of the gene expression difference instead of
modelling the variance in each condition.

The structural model was found here to perform
similarly to the Limma approach (Smyth, 2004). The
main advantage of the structural model is, however,
that the use of a linear mixed model on the log of the
variances provides a larger modelling flexibility. In
fact, here a condition and gene effects were included in
the model, but it could easily be extended to other
mixed models including, for example, a sex effect or
even functions of time. This is much more difficult to
achieve when considering an inverse chi-square dis-
tribution on the variances, as proposed by Smyth
(2004).
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