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Abstract

We discuss some of the work of Laci Kovács on representation theory and related topics.
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1. Introduction
The work of (Laci) Kovács on representation theory is wide and varied. An article
of this nature necessitates some selectivity, so I hope that the choices I have made
leave a representative account, doing proper justice to his work, and that of his many
collaborators. It was my privilege to be one of those collaborators, and I record here
that I learned and gained much from this experience. I saw at first hand the breadth and
depth of his mathematical knowledge. I also saw how he would allow ideas to gestate
after taking a fresh and original approach to a problem often taking several steps back
to rethink the proper and most general context in which to view the problem. Laci
always strove for definitiveness, as well as clarity and accuracy. If he wanted to bound
a quantity, he would aim for the best possible bound, providing examples to illustrate
that this bound could not be improved upon. If he was involved in some classification
project, he would insist that the classification was as comprehensive as possible, and
totally reliable for future users. If he was involved in the proof of a theorem, he
liked to probe the boundaries of validity, and often gave examples to demonstrate how
weakening the hypotheses would invalidate the conclusion.

Nothing should be inferred from the order in which the material below is presented.
It seems more appropriate to group the results discussed according to subject matter,
rather than chronological order, since some themes recur several times throughout
Laci’s research career.
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2. Characteristic-free proofs

There are several recurring themes in Laci’s work on representation theory: often,
he would take a result which was known in characteristic zero, and then provide a
characteristic-free approach to prove a more general result. One example of this was
the 1971 paper [8] with Roger Bryant, in which it is proved that if α is a difference of
characters (that is, trace functions afforded by finite-dimensional representations) of
a (not necessarily finite) group G, and n is an integer, then the function α(n) given by
α(n)(g) = α(gn) is also a difference of such characters. One motivation for this result
was a conjecture of Ballew and Higgins concerning the behaviour of the function
counting the number of n-roots of elements of a finite group G. The characteristic-
zero version of the main result would have been sufficient to settle that conjecture,
but, typically, the necessary result on generalized characters was placed in a more
general context. The proper context is when G = GL(n, F) for a field F and α is the
character afforded by its natural module V . The necessary result is then derived by
short and elegant argument by decomposing the n-fold tensor power of V as a module
for G × S n. The use of eigenvalues is avoided altogether.

Another example is furnished by a letter to Curtis, which appeared verbatim as
the article [21], and became quite well known among specialists, partly due to the
unusual mode of its publication, apparently at the suggestion of Peter Neumann. The
very fact that a letter to another mathematician was already written with sufficient care
and clarity to be published in a journal as it stood says much about the precision of
Laci’s mathematical writing in any context. The letter is about a page and a half, so
is written with economy, yet it is liberally sprinkled with references and background
information.

The mathematical issue addressed in the letter is this: Brauer [6] had published
a proof that if P and Q are permutation matrices with P−1MQ = M for some M ∈
GL(n,C), then the permutations associated to P and Q, say σ and τ, have the same
cycle structure. This result was known to Burnside, and Brauer was partly motivated
by the case that M is the complex character table of some group (or the table of Brauer
characters). Brauer has left a footnote in [6] indicating that the same result was true
(with a modified proof, not given) replacing C by any field.

Brauer’s proof (which works for any field of characteristic zero) used the fact that
MQM−1 = P, from which it follows that trace(Pk) = trace(Qk) for every integer k,
so permutation equivalence readily follows. The key point is that in this setting, the
trace of a permutation matrix reveals the number of fixed points of the associated
permutation, a fact which is no longer true in characteristic p > 0. Brauer’s proof
would carry over (with minor modifications using Brauer characters) to characteristic
p for permutation matrices of multiplicative order prime to p, but not for general
permutations (consider the case when P and Q have order pm for some m).

Laci made the observation that (in any characteristic) we can easily count the
number of orbits (including those of length 1) of σ and τ (and likewise for all their
powers) from the matrix similarity of P and Q, for there is one dimension of fixed
points on the underlying vector space for each orbit of σ, including orbits of length 1,
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while the dimension of the fixed point space is clearly invariant under matrix similarity.
He then used a Möbius inversion type argument, citing a (never-vanishing) determinant
introduced in the nineteenth century by Smith, to deduce in a clean, characteristic-free,
manner that σ and τ have the same cycle type.

A further notable example occurs in the joint paper [9], again with Bryant, where a
substantial strengthening of earlier results of Blichfeldt [2] and Brauer [7] is obtained
by a very direct and short argument. Let G be a finite group, say G = {g1, g2, . . . , gn},
where g1 = 1G. Let K be a field and, for each i, let Vi be a KG-module on which gi

does not act as a scalar. Then the free KG-module of rank 1 is a direct summand of the
tensor product

⊗n
i=2 Vi. This readily implies that if we have KG-modules Wi such that

gi acts nontrivially on Wi for 2 ≤ i ≤ n, then the KG-module
⊕

J⊆{2,...,n}WJ has a free
summand of rank 1, where WJ =

⊗
j∈J W j. The Krull–Schmidt theorem then implies

that each projective indecomposable KG-module is isomorphic to a direct summand
of some WJ (in fact, somewhat stronger statements are proved later in the paper).
The transition between the two results is simple and neat. It is noted that g ∈ G acts
nontrivially on U if and only if g does not act as a scalar on K ⊕ U, where K is the
trivial KG-module.

This may be compared with results of Blichfeldt and Brauer at the level of complex
characters: if G is a finite group, and χ is a faithful complex character of G which takes
t different values on nonidentity elements of G, then each irreducible character µ of G
occurs with nonzero multiplicity in χr for some integer r with 1 ≤ r ≤ t + 1. There
is a fairly complicated proof of a weaker version of this result in Burnside’s book
[12], but Brauer gives a shorter proof by a Van der Monde determinant argument, and
Blichfeldt’s proof is a rather short argument using characters.

The proof of the rather stronger result in the paper under discussion is extremely
elegant and short: it is clear that for 2 ≤ i ≤ n, we can find a nonzero vi ∈ Vi which is
not an eigenvector of gi (in its action on Vi). Setting w = v2 ⊗ v3 · · · ⊗ vn, it is quickly
demonstrated that {wgi : 1 ≤ i ≤ n} is linearly independent, so these vectors span a
KG-submodule isomorphic to the regular module.

3. Number of generators of permutation groups and linear groups

Laci always maintained an interest in the question of how many elements it took
to generate particular kinds of groups. When attempting to bound the number of
generators of permutation groups it is often necessary to bound the number of
generators of linear groups along the way (and vice versa), so representation theoretic
questions naturally arise.

In the paper [26], joint with Newman, it was proved that there is a constant c
such that every nilpotent transitive subgroup of Sd can be generated by b(cd)/

√
log dc

elements and that this general type of bound cannot be improved.
The paper [15], joint with Dixon, considered the minimum number of generators

of finite p-groups P with a faithful irreducible representation of degree d over a
field F of characteristic different from p. It is shown that there are constants a, b
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which both depend on F and p, and a constant c (independent of F and p), such
that P can be generated by ad + bb(cd)/

√
log dc + 2 elements. It is also noted that

no bound of the form b(c′d)/
√

log dc could be improved upon, essentially in view of
the Kovács–Newman result. It is interesting to note that the behaviour of the integral∫ π/2

0 (sin(px)/(p sin x))n dx plays a role in the proof.
In the paper [11], joint with Bryant and the present author, the result with Dixon is

improved from p-groups to the wider class of groups which are the central product
of a solvable normal subgroup and various components (quasi-simple subnormal
subgroups). This allows a similar generalization of the above result of Kovács and
Newman on transitive permutation groups. Along the way, analogues of both the
Kovács–Newman permutation group result and the Dixon–Kovács linear group result
are proved for solvable groups (with bounds of the form b(c′d)/

√
log dc, where d is the

degree). It is interesting that this result, and the results of the earlier papers discussed,
depend on a (previously known) upper bound for the length of an antichain in a poset
which is a Cartesian product of d ≥ 2 chains. This is the origin of the appearance of
the quantity d/

√
log d.

In a somewhat different direction, the paper [27], joint with the present author,
proved that every finite completely reducible linear group of degree d can be generated
by b3d/2c or fewer elements. Such a result had previously been proved for finite
p-groups by Isaacs in [20], and already in the case of 2-groups it is not generally
possible to improve the b3d/2c bound. The proof of the result for the general finite
group uses Clifford theoretic results proved in a rather more general context than usual
for finite group theory, and some of these are proved separately in Laci’s paper [23],
to be discussed below.

4. Bounding the number of conjugacy classes of linear groups and
permutation groups

A classical theorem of Jordan bounds the index of an Abelian normal subgroup of
a finite complex linear group of degree d as a function of d. Evidence suggests that
if we content ourselves with bounding the number of conjugacy classes, as opposed
to the order, somewhat sharper and more uniform bounds should be attainable (again,
modulo Abelian normal subgroups). Laci became interested in this question.

The number of conjugacy classes of a finite group G will be denoted by k(G). In the
paper [28], joint with the present author, bounds were obtained on k(G) when G is a
finite permutation group of degree d or a completely reducible linear group of degree
d, the two questions being inextricably intertwined.

These results were motivated, in part at least, by the p-solvable case of Brauer’s
k(B)-problem from modular representation theory (which, in general, is to bound,
given a prime p, the number of irreducible characters in a p-block B by the order of its
defect group. In the particular case of p-solvable groups, this question was shown by
Nagao to be equivalent to proving that when V is a minimal normal p-subgroup of a
finite group H with [H : V] coprime to p, then k(H) ≤ |V |. The latter problem became
known as the k(GV)-problem).
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One difficulty with the k(GV)-problem is that it is does not seem directly amenable
to an inductive treatment, particular problems being caused when V is an imprimitive
module. In the paper under discussion, a strategy is developed to try to circumvent
this difficulty. While the strategy, as it stood, would not, in itself, directly lead to a
solution of the problem, it did enable partial progress and led to new types of bound
for the various quantities under discussion.

It was proved in this paper that when G is a solvable subgroup of the symmetric
group Sd, we have k(G) ≤ 3(d−1)/2 and that, if G is a solvable completely reducible
subgroup of GL(V) for V a d-dimensional vector space over the field of p elements,
then k(GV) ≤ 3d−1 pd. As a consequence of these results, it was proved that if B is a
p-block of defect d of a finite solvable group, then k(B) ≤ 3d−1 pd. It was also proved
that when G is an arbitrary subgroup of the symmetric group Sd, then k(G) ≤ 5d−1 and
that there is a constant c, independent of p, such that if B is a p-block of defect d of a
finite p-solvable group, then k(B) ≤ cd−1 pd. Also, a reduction was given of the proof
that k(G) ≤ 2d−1 for each subgroup G of Sd to the case that G was almost simple, and
this was later proved (and improved upon) by later authors (see, for example, Maróti
[33], where the 3(d−1)/2 bound is established for all subgroups of Sd). These results
depended on another result on linear groups, proved in the paper (and dependent on
the classification of the finite simple groups for nonsolvable groups) that there is a
constant c such that whenever G is a finite subgroup of GL(n,C), we have k(H) ≤ cn−1

for each subgroup H of G/F(G), and that the constant c may be replaced by 3 for
solvable G.

The k(GV)-problem was finally solved in 2004 [18], and refinements of the results
of the paper presently under discussion, and some of the techniques introduced there,
played a role in several of the papers written in final stages of that solution, particularly
for smaller primes (the k(GV)-problem was first solved for very large primes in [34]
in ‘generic’ style, but the verification for smaller primes turned out to be extremely
delicate).

5. Action on polynomial algebras, semigroup representations

In the paper [1], joint with Alperin, the action of G = SL(2, k) on the polynomial
algebra k[x, y] is considered when k is a finite field of characteristic p and cardinality q.
Then Vn is the kG-module afforded by homogeneous polynomials of degree n, and is
the dual of a Weyl module for G. The interesting point noted here, which improved a
result of Glover [17], treating the case q = p, is that the sequence (Wn) is periodic of
period q(q − 1), where Wn is the maximal projective-free summand of Vn.

The proof is short: it is proved that Wn = 0 whenever n > 0 is divisible by q and that
Wq(q−1)+1 is the trivial module. From this, and the exact sequence

0→ Vn−1 ⊗ Vm−1 → Vn ⊗ Vn → Vm+n−1 → 0,

valid for all m,n > 1, which is due to G. E. Wall, the result follows. This exact sequence
is also employed in the inductive proof that Wmq = 0, having established that Vq is the
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Steinberg module, which is isomorphic to the tensor product of the first r Frobenius
twists of Vp, where q = pr.

In the article [21], Laci considered the (graded) module structure of the polynomial
algebra U = F[x1, x2, . . . , xr], where F is a field of prime characteristic p having the
(possibly infinite) field Fq as a subfield. The algebra U is considered as a module
for any of M, the multiplicative semigroup of r × r matrices with entries in Fq,
G = GL(r, Fq) or S = SL(r, Fq). It had become apparent from work of Krop [30, 31]
that considering representations of semigroups, rather than groups, was sometimes
advantageous in this context, and Laci had taken much interest in Krop’s work.

The main result of [22] considered the module V = U/U pe
U and so the quotient of

U modulo the ideal generated by peth powers, where pe ≤ q, with its inherited grading.
A natural grading is placed on the monomials forming the most obvious basis for the
dth graded component Vd. After a careful and detailed analysis, Laci proved that the
S -endomorphisms generate a subalgebra of EndF(Vd) spanned by endomorphisms
(b, b′), where b and b′ are basis elements such that b dominates b′ in the partial order,
and (b, b′) sends b to B′ and annihilates the other basis elements. Furthermore, it is
proved that this subalgebra contains the full image of M in the endomorphism ring.

In a later paper [24], Laci considered the semigroup algebra K[M], where M is the
multiplicative semigroup Mn(F), F being a finite field, and K being a commutative
ring with identity such that |F| is a unit in K. In what he calls Faddeev’s proposition,
he proved that K[M] is the direct sum of n + 1 algebras, the rth of which is a full
mr × mr matrix algebra over the group ring K[GL(r, F)], where mr is the number of
r-dimensional subspaces of an n-dimensional vector space over F.

A complete and self-contained proof is given, and it is noted that this is a more
general version of a result announced by Faddeev, a proof of which had not previously
been published.

This result has recently been used by Kuhn [32] to determine the structure of the
category Rep(F; K) of functors from finite-dimensional F-vector spaces to K-modules,
which is of some interest in algebraic topology.

6. Factoring group algebras

The paper [14], joint with Carlson, considered natural ‘factorization’ questions
related to algebras and to regular modules for groups. It is proved that if G is a finite
Abelian p-group and the group algebra FG may be expressed in the form A ⊗ B for
subalgebras A and B, then there are subgroups X and Y of G such that A � FX and
B � FY .

A result of similar nature (stated in somewhat more precise form in Theorem 3.1 of
the paper under discussion) is that if F is any field and G is a finite Abelian group such
that the regular matrix representation is equivalent to the Kronecker product of two
matrix representations, then FG admits an algebra factorization FG = B ⊗C such that
the regular representation of G is equivalent to the Kronecker product of the regular
matrix representations of the algebras B and C.
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7. Other work

In the paper [23], Laci proved that if a finite-dimensional faithful irreducible
representation ρ over a field F of a group G admits no proper tensor factorization (when
viewed as a projective representation) and G contains a subgroup K which commutes
with all its other G-conjugates such that some irreducible component of ResG

K( ρ) is
absolutely irreducible, then the representation ρ (viewed as a projective representation)
is tensor induced from a representation of H = NG(K). Results of this nature are useful
in Clifford theory, though, as remarked earlier, this theorem is stated in a greater than
usual degree of generality, which is exploited in the paper [27] discussed earlier.

In the paper [16], joint with Glasby, it is proved that if H is a normal subgroup
of prime index in a finite group G, and F is a field not of characteristic zero and
not algebraically closed, then there are generally six possibilities when an irreducible
FH-module is induced to G. This is in contrast to the usual two possibilities when F
is either algebraically closed or of characteristic zero.

In the paper [25], joint with Leedham-Green, a class of p-groups is exhibited
which demonstrates that there can be no bound on the derived length of finite groups
whose complex irreducible characters are all induced from linear characters of normal
subgroups (so-called nM-groups).

In the paper [10], joint with Bryant, it is proved that whenever p is a prime and
H is a subgroup of GL(d, p), then there is a d-generator finite p-group P such that
Aut(P) � H in its action on the Frattini factor P/Φ(P).

In the paper [19], joint with Howlett, it is proved that dimF H1(G, V) ≤
dimF H1(N,U) whenever V is an irreducible FG-module for a field F, N is a subnormal
subgroup acting nontrivially on V and U is an irreducible FN-submodule of V . Such
results are useful in the study of maximal subgroups of finite groups.

Laci wrote three joint papers (see [3–5] with Bovdi, Bovdi and Mihovski and
Bovdi and Sehgal, respectively) concerned with units in modular group algebras. He
also wrote a joint paper [13], with Butler and Campbell, on infinite-rank integral
representations of groups and orders, as well as a joint paper [29] with Sim giving
a rather precise classification of certain finite metacyclic linear groups.

I do not discuss Laci’s several papers about group representations associated to
action on Lie powers with various coauthors, since these are discussed in the article by
Marianne Johnson.
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[8] The work of L. G. Kovács on representation theory 41
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[28] L. G. Kovács and G. R. Robinson, ‘On the number of conjugacy classes of a finite group’,
J. Algebra 160(2) (1993), 441–460.
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