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1. Introduction and notation
In this paper we study a property which we call residual £-commutativity.

This idea was kindled by a paper of Ayoub (1) and one of Stanley (6). Durbin
has denned a similar property in (2) which has also been studied by Slotterbeck
in (4). Durbin's property implies residual 3£-commutativity but we have not
been able to decide if they are equivalent. However, we have shown that they
coincide in certain circumstances. The notation, unless otherwise stated, is that
of Robinson (3).

Let X be any class of groups. We define the family JV(G : X) of normal
subgroups of G by

and the X-residual of a group G by

p*(G) = n{N\NeJP(G:X)}.
Following Stanley (5), we define the jE-centre Ht(G : X) of a group G by

H^G : X) = {xeG \ (3Netf(G : X))[x, iV] = 1}
so if X is a variety, for example, Ht(G : X) is the centraliser of the 3£-verbal
subgroup in G. We say that G is £-abelian if G = H^G : X).

We say that £1 = { Wa, Va \ a e E} is a normal X-factor covering of a group G if
(i) for all a e S, Wa<tG, V^G and Va ^ Wa,

(ii) whenever 1 # g e G, there exists a e £ such that g e Wa—Va and
(iii) for all a e E, WJVa e X.

We denote by 3Ef the class of groups which have a normal 3E-factor covering.
If, in addition to (i), (ii) and (iii) above, we have

(iv) whenever X<a, Wx ^ Va

we say that Q is a normal X-series for G and denote by Pj£ the class of groups
which have a normal 3£-series.

We shall use the following closure properties of a class X:
a class X is H-closed if and only if every homomorphic image of an 3E-group

is an X-group and we write X = HX;
a class X is Sn-closed\f and only if every normal subgroup of an X-group is an

£-group and we write X = 5n3E.
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The property introduced by Ayoub in (1), which we shall call residual
commutativity, is defined by

a group G is residually commutative if and only if whenever a and b are
non-trivial elements of G, there exists M normal in G such that M
contains [a, b] but not both a and b.

Following Stanley in (6) we say that a group G is residually X-central if
and only if whenever 1 # g e G, there exists H normal in G such that H does
not contain g but gHe H^G/H : X). We denote by 3£* the class of residually
3£-central groups.

We now define the relation ^(g, h, M) on elements g and A of a group G
and a normal subgroup M of G by

%>($, h, M) if and only if M contains [g, ft] but not both g and h

and the relation 0l{g, H, N) on the element g of G, a normal subgroup # of
G and Nejf(H:X) by

^(<7, /f, iV) if and only if g e H and whenever 1 i= h e N there exists M
normal in G such that ^{g, h, M).

We are now able to define the classes £ ( 0 ) and £( 1 ) by

G e X(0) if and only if for all 1 ¥= g e G, there exists N e ^f (G : X) such that
M{g,G,N);

Ge3E(1) if and only if for all \ ^ g eG, there exist H normal in G and
Ne je(H : X) such that M(g, H, N);

and we say that G is residually X-commutative if and only if G e 3E(1). Finally,
we define 9Ji^ to be the class of groups which possess the minimal condition
on normal subgroups.

2. Statement of theorems

Theorem A. Let G be a group which possesses the minimal condition on
normal subgroups and let X = SnX = HX. The following conditions are
equivalent:

(i) G is residually X-commutative,

(ii) G has a normal X-abelian factor covering,

(iii) G has an ascending normal series with Xabelian factors.

The proof of (ii) if and only if (iii) is due to Durbin (2).

Theorem B. IfX is a variety of groups then the class of residually X-com-
mutative groups is a local class.

3. Basic lemmas

Let X be an arbitrary class of groups.
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Lemma 3.1. Xw = 3£(0) when X is the trivial class, with inequality in general,
even when X is a variety.

Proof. Let (5 denote the trivial class of groups. It is clear from the definitions
that (£(0) g £(1) and so we need only show the inclusion (£(1) g &0). Let
G e (£(1) and a and ft be two non-trivial elements of G. Since G is residually
©-commutative, we can find H normal in G such that 02(a, H,H); if b does not
belong to H then #(a, b, H) and 52(a, G, G). If beH, then there exists M
normal in G such that ^(a, b, M) and again 3/l(a, G, G). In both cases we have
shown that G e &°\

To show that J(0)<3E(1), consider the following example. Let X be the
variety generated by As, the alternating group on five letters. Define

and
Hln+1) = HWIAS, (w^O)

the wreath product.
We can identify Hin~1) with one of the direct factors of the base group of

Hw and so obtain a series

1 = H(o) ̂  H(1) g H(2) g ... g Hw g ...

and let G= (J fl(n). Let Nw be the normal closure of Hw in G; then
1

G= (J JV(n) and N^+^/N™ eX, which shows that G has a normal ascending
n = 1

series with 3£-factors and hence is residually 3E-commutative.
We now examine the 3E-verbal subgroups W(HW). Since

we take as inductive hypothesis

W(Hm) = (H^k-^)H<k\ for k = l,2, 3, ..., n-1

and let N denote the normal closure of H(1) in #( n ) . Then, as

H<»>/jV=*ijC»-i)

it follows that
W(HM/N) S (ffC"-2))^"-"

and in particular

N N

But JV is contained in (iff"-1))**"" and W(H(B)) and thus

as required. This implies that i?<"-1) ^
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We now assert that W(G) = G; for if g e G, then geH(n), for some
integer n, and so g e W(Hin+1)) g W(G). Thus the only choice for N in
the 3£(0) definition is N = G. Let a and b be two non-commuting elements of
Hw = ^ 5 . It is then clear that G cannot satisfy the 3£(0) definition.

Lemma 3.1 shows that the class 3t(1) is a generalisation of Ayoub's class of
residually commutative groups (£(0), in the sense that when X = C the property
residual 3£-commutativity coincides with Ayoub's property.

Lemma 3.2 (i) Pn3e(l) g Xw,

(ii) £* ^ 3E(0) ^ 3E(1),

(iii) £(1)* ̂  Xw,

(iv) ?/£ & S-closed then 3E(1) w <C, Sydosed.

Proof. The proofs are routine and are omitted.

For the rest of this section we shall assume that X = HX = SnX.

Lemma 3.3. If G eXll) and M is a minimal normal subgroup of G, then
M is X-abelian and G/MeXw.

Proof, (i) Suppose that M is not 3E-abelian and let xe M—Ht(M : X).
Since G e 3E(1), there exist No H<\ G such that ®(x, H, N) and H/N e X. Then
l # x e HnM, so M ^ H. Note that MnN e JP(M : X) since

M/(MnN) £ MN/N<iH/N and X = SnX.

Hence [x, MnN] # 1 and there exists be MnN with [x, 6] # 1. By
£?(*, H, N), there exists X<G such that <&(x, b, A). Then 1 ^ [x, Z>] e Afn/4,
so that M ^ /4. But M contains both x and b and thus so does A, contrary to
V(x, b, A).

(ii) Suppose that (7/M£3E(1); then there exists 1 ¥= xMeG/M such that
0t{xM, *, *) never holds with an 3E-factor group. Now 3fc{x, H, N) for some
N*aH<iG and HM/NMeX by .ff-closure. Since 0l(xM, HM/N, NM/M) is
false, there exists 1 # bM/M e NM/M such that ^(xM, bM, *) is always false:
here we can assume be N. By M(x, H, N), there exists P<aG such that
<#(x, b, P). Clearly [xM, bM} ePM/M so that PM contains both x and b,
as <€(xM, bM, PM/M) cannot hold. Write

x = p1m1 and b = p2m2, (pteP, m^eM, i = 1,2).

Here />j # 1 since x $ M.
Next ^{pu H2, N2) is valid for some H2 and N2 with H2/N2 e X. Without

loss we may replace H2 by H2nP and N2 by N2nP, using 5n-closure. Thus we
can assume that H2 ^ P and of course iV2 ^ -P- Notice that MnP = 1 for
otherwise M ^ P and we have x e PM = P, b e PM = P in contradiction to
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H2M/M, N2M/M) is not valid, so there exists 1 ¥= dM e N2M/M
such that #(xM, dM, *) is always false: here we can assume deN2. By
@(Pi, H2, N2) there exists P2oG such that ^Oi , d, P2): here we can assume
P2 g P. Then of course [xM, dM~\ = [/^M, dM\ e P2M/M. However, as
<&(xM, dM, P2M/M) cannot hold we conclude that P2M contains both x and
d. Write

x = p3m3 and d = /vn 4 (Pie^2> rnteM, i = 3, 4).
Then /̂ /Wj = p3m3 yields pf 1 ^ = m1mJ1eMnP = 1 so />! = p3eP2 and
plldeMnP = 1 so d = p4 eP2: but this contradicts #(/>!, d, />2) and com-
pletes the proof of the lemma.

We remark that even when X is .H-closed, X(l) need not be; for by Lemma
3.2, free groups are residually 3£-commutative for any class X, e.g. X = g but
the alternating group on five letters is clearly not residually 3E-commutative.

4. The proof of Theorem A

Lemma 4.1. When X = SnX = HX, X^nW* is H-closed.

Proof. Let Mo G e 3E(1) and suppose G/M is not residually 3£-commutative.
Then there exists 1 # xM e G/M such that M(x, *, *) is always false with an
3£-factor group; we are using ~ to denote images under the natural map from
G onto G/M. Since GeXw, there exist JV</f<G such that H/NeX and
@{x, H, N). Since 5?(x, H, N) is false, there exists 1 ^ B e N such that
<g(x, 5, *) is always false and b e N. But there exists K<i G with <tf(x, b, K)
and we may assume K ^ H. Then [x, ti]e K and so [3c, 5] e K. Since
"̂(ic, 5, K) is false, K contains both x and 5, say x = R and we may assume that

k e K. Now there exist JV^Po G such that P/N^ e X and 0i(]c, P, NJ, and by
5n-closure we may assume K contains P and Nt. As £i(x, F, Nj) is false, there
exists 1 i= bxeNt such that ^{x, bu *) is always false. Now, there exists
Q<iG with <g(k, bu Q) and we may assume that Q g K. Then [x, 5t] e g
means that Q contains x and 5t . Put H± = P and jSTt = Q. Then

for /^i = K1 would yield keP = Q and b1eNl ^ P = Q, contrary to
J, Q). In this way we produce an infinite descending chain

of normal subgroups of G, contrary to min-n. This completes the proof of the
lemma.

ThusifGeX(1)n5D(l^and/fisanyhomomorphicimageofGthenH63E(1)n9K^
and so has minimal normal subgroup M, say, which is 3£-abelian by Lemma 3.3;
hence G is hyper-3E-abelian. Hence (i) implies (iii) in Theorem A: that (iii)
implies (ii) is obvious and (ii) implies (i) is part of Lemma 3.2.

https://doi.org/10.1017/S0013091500015704 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500015704


12 DAVID G. ARRELL

5. The proof of Theorem B
Throughout this section X will be a variety of groups. We show that 3£(1)

is a local class using a method similar to that of Theorem 10 of (6).
Let G 6 LX(1) and pick l # a e G . Let <5(a) denote the collection of all

finite subsets of G containing a and for each S in O(a) denote by T(S) the
collection of all finitely generated subgroups of G containing S. Hence for
each HeT(S), HeXw and so there exist N^K-^H such that ®{a, K, N).
Let 0(S) denote the collection of all such K, i.e. Ke 0(S) implies that there
exists HeT(S) such that there exists N<iK and @(a, K, N). Write

We now need the following two Lemmas.

Lemma 5.1. Ka is a normal subgroup of G containing a.

Proof. It is clear that Ka contains a. Let x and y belong to Ka. Then we
can find Sx and Sy in <D(a) such that x e Ka(Sx) and y e Ka(Sy), hence
xy'1 e Ka(SxvSy). Now let geG, then x e Ka(Sx<u{g}) so whenever
H e r(5xu{0}), geHand as A^ufo}) is normal in H, xg e Ka(Sxu{g}) ^ Ka,
as required.

Lemma 5.2. La is a normal subgroup of Ka and KJLa e X.

Proof. We show first that whenever S e O(a), La(S) is normal in Ka(S).
Let meLa(S) and k e Ka(S), then for each Ke®(S), mept{Ky=*K and so
mk lies in £a(S). Now if x e La and j> e T̂a, there exist Sx and 5y in $(a) such
that xeLa(Sx) £La(Sx<uSy) and j> e /^(S;) g Ka(Sx<oSy). Normality now
follows by the opening remarks.

Now let vvCxj, ..., xn) be a word which is satisfied by the variety X and let
kj-,a e KJLa for i = 1, ..., n. Then we can find Se <5(a) such that kteK for
each A:e0(S). But K/p$(K)eX and so w(xls .... xn)ep%(K) for every iiT in
©(S) which implies that w(xi, ..., xn)eLa(S) ^ JLa; hence w is identically 1
on KJLa as required.

Because of Lemma 5.2 we are now able to deduce that whenever
1 4= bep%(KJ, beLa and so for some Se$(a), bep^jpO f o r e v e r v ^ e

Let O'(a) denote the collection of S e $(tf) such that b e La(S). Let 5 e
for each T̂ e 0(5) we define

Ma,b(K) = n{M<cH | V(a, b, M)}

The proof of Theorem B is now completed in two Lemmas.
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Lemma 5.3. Whenever Su S2e O'(a) and S t is contained in S2, Mttt b(S^)
is a subgroup of Ma< b(S2)-

The proof of this lemma is obvious.

Lemma 5.4. <#{a, b, Ma> b).

Proof. Clearly, in view of Lemma 5.3 Mo> b is a normal subgroup of G
containing [a, b~\. Suppose both a and b lie in Ma> b. Then we can find
S1 e <D'(a) such that a and b lie in Ma< b{S) and hence in Ma_ b(K) for every K
in 0(5) , which is contrary to hypothesis.

As a result of Lemma 5.4 we now see that for each 1 # a e G there exist
such that ®(a, Ka, La) and we conclude that Ge 3E(1).
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