
The Art of Modelling Stars in the 21st Century
Proceedings IAU Symposium No. 252, 2008
L. Deng & K.L. Chan, eds.

c© 2008 International Astronomical Union
doi:10.1017/S1743921308022758

Deathzones and exponents: A different
approach to incorporating mass loss in

stellar evolution calculations

Lee Anne Willson1

1Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA
email:lwillson@iastate.edu

Abstract. Observations tend to select mass loss rates near the critical rate, Ṁcr it = ML̇/L.
There are two reasons for this. In some situations, such as near the tip of the AGB, the mass
loss rate is very sensitive to stellar parameters. In this case, stars with Ṁ � Ṁcr it have dust-
free, hard-to-measure mass loss rates while stars with Ṁ � Ṁcr it do not survive very long and
thus make up a small fraction of any sample. Selection effects dominate the fitting of empirical
formulae; observations of mass loss rates tell us more about which stars are losing mass than
about how a star loses mass. In other situations, such as for some of the stars along the RGB,
a steady state situation occurs where the loss of mass leads to a decrease in mass loss rate
while the evolutionary changes lead to an increase; the result is a steady state with Ṁ = Ṁcr it .
To determine the envelope mass and composition at the end of a phase of intensive mass loss
requires stellar evolution models capable of responding on a time scale ∼ tK H and thus, a new
generation of stellar modeling codes.
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Stars lose mass, but only some of the time. We can distinguish mass loss, where the
rate is high enough to affect the evolution of a star, from a stellar wind that carries only
very small amounts of mass away. In most situations, mass loss occurs when Ṁ/M is not
too much smaller than L̇/L or Ṙ/R or ˙Tef f /Tef f , and over a limited range of parameters
for a given star (Willson 2000, Willson 2006, Willson 2007).

Known epochs of mass loss for stars with masses from about 0.8 to about 8 MSun

include the upper asymptotic giant branch (AGB) and, at least for some stars, the first
ascent red giant branch (RGB). The stars near the tip of the AGB that are losing mass
we identify as Mira variables; because the atmospheric structure is different for stars
with strong winds, these stars have large visual magnitude variations as they pulsate.
The stars with mass loss rates > 10−5MSun/yr are also known as OHIR stars, IR bright
stars with OH masers, as they have opaque circumstellar outflows.

Stellar evolution modeling has sought to include mass-loss by way of formulae found
by fitting observations of mass loss rate expressed as functions of luminosity L, radius R,
effective temperature Tef f , pulsation period P , or combinations of these. Other formulae
have been proposed from theoretical studies of a particular mass loss mechanism. Mech-
anisms that have been modeled in particular detail include pulsation/dust mass loss for
red giants (Bowen 1988, Bowen & Willson 1991, Höfner 2007a, Höfner 2007b), and line
driven winds for hot stars (Castor et al. 1975, Abbott 1982, Kudritzki et al. 1989).

Formulae derived in the usual manner by fitting mass loss rates vs. stellar parameters
are not particularly useful for stellar evolution models, for two reasons: (a) they are
dominated by severe selection effects; and (b) they are calibrated for a limited volume
of parameter space where often at least one parameter (usually M and/or R) cannot be
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well constrained by observations. For discussion of these points, see Willson (2000, 2006,
2007).

Here, I will discuss some general characteristics of mass loss episodes, then illustrate
my main points with an analysis of mass loss on the AGB and the RGB.

1. Why observations favor M ≈ M(Ẋ/X)
Observations tend to yield Ṁ ≈ MẊ/X (where X is L or R or Tef f depending on

the direction the star is evolving in the HR diagram) in two situations: (a) when the
mass loss rate depends steeply on stellar parameters, often with positive feedback, or (b)
when mass loss changes the situation so as to reduce the mass loss rate but evolutionary
changes increase Ṁ - negative feedback or steady state mass loss.

In the first case, when mass loss rates depend steeply on stellar parameters, there is a
narrow range of stellar parameters for which logṀ = log(MẊ/X)±1. Below this range,
mass loss rates have little effect on the evolution and may be hard to detect. Above
this range, mass loss quickly removes the envelope of the star. Thus we will preferentially
select and tabulate rates near Ṁcrit = MẊ/X. This situation tends to apply where mass
loss increases R and mass loss rate increases with R - such as near the tip of the AGB
until the envelope mass is very small and the star leaves the AGB.

In this first case, it is useful to define the deathline as where Ṁ = MẊ/X = Ṁcrit and
the deathzone as where logṀ = logṀcrit ± 1. Nearly all the mass loss of evolutionary
significance will take place in the deathzone when the mass loss rate depends steeply on
stellar parameters.

In the second case, when the loss of a little mass changes the situation so as to reduce
the mass loss rate, but evolutionary changes increase Ṁ , then the mass loss rate will
tend to the steady state value Ṁ = MẊ/X (X = L or R or Tef f ) depending on the
direction of evolution in the HR Diagram). In this case, the rate at which the star evolves
due to internal processes determines the mass loss rate, and to predict the mass loss rate
we need only know the rate of evolution, Ẋ/X, for each mass M from a stellar evolution
code - we do not need to know the mechanism to predict the mass loss rate, as the steady
Ṁ/M = Ẋ/X.

The mass loss terminates, in the first case, when the star has lost enough mass that
the mass loss rate no longer increases with decreasing mass. For example, when an AGB
star’s envelope mass goes below a small value, the radius decreases with decreasing M .
However, it will take the star a time on the order of the Kelvin-Helmholtz time (tK H )
to adjust to a change in its mass, and thus the mass loss process will ”overshoot” the
simplest estimate by some amount. An order-of-magnitude estimate for the overshooting
is Ṁmax×tK H ; however, for such important questions as the evolution of post-AGB stars.
the surface layers on white dwarfs, and the structure of pre-SNIIs, it will be necessary
to use evolutionary models capable of responding on times shorter than tK H to derive
dlogR/dlogM for the process. Such codes are becoming available - for example, there is
the Djehuty code being developed at LLNL (Bazán et al. 2003).

Finally, I note that a similar logic has long been applied to the evolution of binary
systems with Roche lobe overflow, where the mass exchange is modeled using informa-
tion about the evolutionary changes in each star and the effect of mass exchange, and
sometimes also mass loss from the system, on the orbits of the two stars involved. (See
Hjellming & Webbnik 1987, Webbink 1976.) What I propose is we consider a similar
approach to mass loss more generally, particularly since reliable observational deter-
mination of Ṁ(L,R,M,Z) is not available, and theoretical computations are not yet
reliably predictive of such a formulae either. Both for complete understanding of the
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binary evolution and the single star evolution with mass loss, however, we need to be
able to study the response of a star to changes of mass on time scales comparable to or
less than the Kelvin-Helmholtz time. One significant difference is, though, that mass-loss
on a dynamical time-scale, expected in some binary star systems, is not likely for the
single star case. The difference is that in the binary case the orbit evolves on a dynamical
time scale, so when mass loss leads to a decrease in the size of the orbit relative to the
stellar radius this initiates very fast exchange. For the single star case we expect the
changes to take place on time scales between the thermal or Kelvin-Helmhotlz timescale
tK H , and the nuclear time scale.

2. Examples of the two cases
2.1. Mass loss at the tip of the AGB

This case is one I have reviewed a number of times; see Willson (2000), Willson (2006),
Willson (2007), Willson (2008). Because this is the main mass loss episode for most stars
(M = 0.8 to 8 MSun ), there have been quite a few attempts to produce reliable mass
loss laws from observations or from theory. Examples are reviewed in Willson (2007) and
Willson (2008) taken from Vassiliadis &Wood (1993), van Loon et al. (2005), Bryan, Volk
& Kwok (1990), Blöcker (1995), Schröder and Cuntz (2005), Baud & Habing (1983), and
Wachter et al. (2002). We have argued (Bowen & Willson 1991, Willson 2000, Willson
2006, Willson 2007) that the episode is short-lived because the mass loss rate is very
sensitive to stellar parameters. As the star evolves in L and R, Ṁ increases from too
small to notice to large enough to kill the star quickly in the course of just 2 to 4x105

years. The mass loss prescription based on our 1995 grid of models = BW in what follows.
Note that Blöcker (1995) used an earlier grid of models where the regulation of the driving
amplitude in the models had not yet been set to an energy condition; for the 1995 grid
and subsequent modeling we have implemented a maximum power condition that results
in a steeper dependence on L, R, and M (Willson 2000). A recent exploration with an
independent code also provides support for this choice (LAWMa08).

If we reduce all the mass loss laws to a common basis, Ṁ(L,M,α,Z), where α = �/Hp ,
using evolutionary tracks with period-mass-radius relations and the definition of Tef f as
needed, then we can see (Figure 1 of Willson (2007), Figures 1 & 2 of Willson (2008))
that the relations all cross within a modest range of log Ṁ and log L, but that the slopes
d log Mdot/d log L (taken along the evolutionary track in this figure) are quite varied.
This is what we expect if (a) the mass loss rate is highly sensitive to stellar parameters
and (b) observations mainly pertain to stars within an order of magnitude or so of the
critical rate, as noted above. Thus I have concluded that observations of mass loss rates
tell us which stars are losing mass but (mostly) do not tell us much about how a given star
will lose mass. The one possible exception to this rule is the Vassiliadis &Wood (1993)
= VW fit for Miras, logṀ = −11.4+0.123P . Because they used a variable that is easily
and accurately observed, pulsation period P , and because they restricted the fit to a
homogeneous class of objects, Miras, they obtained a fit with a steep dependence of mass
loss rate on stellar parameters near the deathline that is probably closer to having the
right slope near the deathline than any of the other observational calibrations. Even in
their case, however, not having observational determinations of the stellar masses leads to
underestimating the sensitivity of the mass loss rate to the combined effects of increasing
R and decreasing M .

Theoretical models suffer also from selection effects. These include the choice of L, R or
Tef f for which to run models; the choice of modeling parameters (such as mixing length
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or R for a given L,M , for a giant); “piston” amplitude for most pulsating atmosphere
modeling; dust condensation formulation; handling of cooling and heating by interaction
with the radiation field; and treatment of the radiative transfer problem for a dynamical
atmosphere). Some choices will produce more shallow slopes and others, a steeper slope.
For example, the piston amplitude may be taken to have the same velocity amplitude �v,
the same �v2 , or the same peak power (taking into account work done on the atmosphere
by the piston at some phases and by the atmosphere on the piston at other phases).

Typically, the power going into driving the wind, roughly 1
2 Ṁ(v2

esc + v2
∞), is many

orders of magnitude below the stellar luminosity, and so, it is a small residual of much
more energetic processes. Without violating energy conservation the energy associated
with mass loss can easily vary around a typical 10−5L∗ (corresponding to the Reimers’
relation) by several orders of magnitude. The choice of which models to run and how to
model the processes giving rise to mass loss can influence the derived formula, just as
the selection of which stars to study can affect the empirical relations.

The mass loss process along the AGB is an example of positive feedback - as M
decreases, R increases, and both changes increase the mass loss rate. The duration of
the mass loss phase is thus determined by how steeply the mass loss rate depends on
M , L, R and/or Tef f . Reducing the variables for a given M to a single one, L, taken
along the evolutionary track, and finding the slope at the deathline, gives values that
may be compared directly with each other at a given L near the deathline. The duration
of the mass loss phase is < (L/L̇)/(d log Ṁ/d log L) ≈ 106years/(d log Ṁ/d log L). The
duration is > 106 years for most of the formulae we have examined, but ∼ 4x105 years for
the VW and BW mass loss formulae; observations support a value closer to 2 to 4x105

years (Jura and Kleinmann 1992).
When the envelope mass reaches a critical value that depends on the core mass, further

reduction in the envelope mass will decrease the radius of the star (e.g. Frankowski 2003,
Iben & Renzini 1983). Now, both evolution and mass loss have the same effect - reduction
of the envelope mass. Evolution also increases L, but relatively slowly, so the mass loss
rate should quickly go to zero as the star shrinks at nearly constant L. Again, we expect
the shrinkage to take at least tK H , so we expect the mass loss to end with an envelope
mass smaller than the critical value obtained from quasi-equilibrium stellar models. Note
that tK H for these extreme giants is only a few decades, while the dynamical time is
around one year; Ostlie & Cox (1986) (Figure 4) showed that the growth rates of pulsation
modes were quite sensitive to the ratio tdyn/tK H and relatively large for small ratios, so
some erratic pulsation may be expected at/near the end of this mass loss episode.

2.2. Mass loss along the RGB
From the appearance of cluster HR diagrams with well-populated horizontal branches it
is apparent that cluster stars of a given initial mass do not all lose the same amount of
mass along the RGB. Recent observations by Origlia et al.(2007) have confirmed that
the mass loss rates of red giants in 47 Tuc are not all the same at a given L, with 10
to 30% of red giants at a given L showing an IR excess. These also show that mass loss
occurs within a single cluster at a range of values of L. The rates satisfy Ṁ ≈ Ṁcrit also
for the RGB stars. Because this mass loss occurs over a range of L for a given initial
M , this is most likely to be a case of a steady state mass-loss process, i.e. one where the
loss of a little mass leads to changes that reduce the mass loss rate. Since, on the RGB,
decreasing M increases R, and since mass loss rates generally increase with R, this is
unlikely to be the result of a mechanism operating for a single star. We are investigating
a mechanism for mass loss that involves a low mass companion with a star with relatively
rapidly increasing radius (subgiant or giant); in this case, the companion can’t enforce
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synchronous rotation, and therefore the standard Roche lobe analysis does not apply.
For details, see Wang et al. (this volume) and Struck et al. (in prep).

3. Recipe for handling mass loss in stellar evolution calculations
Above I have argued that (a) we do not have a reliable mass loss law for important

episodes of mass loss in the life of many stars; and (b) typically, interesting mass loss
happens near Ṁ = Ṁcrit where Ṁcrit may be determined directly from evolutionary
models. This suggests a very different approach for incorporating mass loss into stellar
evolution models:

(a) Include mass loss only where observations say it occurs - do not extrapolate from
limited ranges of stellar parameter space.

(b) Where mass loss matters, use duration, amplitude, and distribution data to es-
timate the exponents (slopes d log Ṁ/d log X where X = L, R, Tef f or a combination
taken along the dominant direction of evolution.

(c) Calculate, from models, ML̇/L = Ṁcrit . See how the observed mass loss rates are
distributed with respect to this critical rate.

[i] If the distribution is broad, and the stars are located near or at an extreme
value of stellar parameters, suspect a ”deathline/deathzone” situation and proceed
accordingly.
[ii] If the distribution is narrow, and the stars distributed over a range of stellar pa-
rameters, suspect a steady-state mass loss process, and evaluate possible mechanisms
accordingly.

(d) Compute a grid of models without massloss that cover all the parameter space
occupied by stars in the appropriate population.

(e) Where mass loss is likely, use an appropriate code to determine the (local) expo-
nents dlogR/dlogM , dlogL/dlogM , and dlogTef f /dlogM . Based on the argument, above,
that the mass loss time scale will be close to the nuclear time scale at steady state or
at the deathline, and normally tdyn � tK H � tnuclear , an ordinary evolutionary code
may be used to find these exponents for mass loss rates up to the critical value, while a
code capable of modeling processes faster than the nuclear scale will be needed for the
high-mass-loss end of the deathzone.

(f) Supplement the no-mass-loss grid with the results of the mass loss analysis. This
may truncate the evolution, or shift subsequent evolution to a new track, or introduce a
dispersion in the results to be expected from an initially homogeneous population (with
heterogeneous rotation, duplicity or planet families).

4. Conclusions and the future
To a great extent we can separate two hard problems: The incorporation of mass loss

into stellar evolution, and the determination of mass loss rates and mass loss mechanisms
for various classes of star. This parallels the logic that has been used to model the
evolution of binary star systems, but instead of a condition of Roche lobe overflow to
determine when mass loss occurs, we will use observations of which stars are losing mass at
interesting rates, and constraints from the observed duration, amplitude, and distribution
of mass loss rates in each episode. This approach will suffice to derive initial-final mass
relations, and thus also to compute the colors or composite spectra of populations of stars.
It will not suffice to tell us the precise envelope mass at which the mass loss process stops,
however, nor do traditional stellar evolution models suffice. For such nuances we will need
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to study the response of a star to mass loss with codes capable of following changes on
time scales shorter than the Kelvin-Helmholtz time.
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Discussion
Podsiadlowski: I completely agree with you that AGB stars must have a deathline,
and there is a simple theoretical reason for it, as pointed out many years ago by Han,
Podsiadlowski and Eggleton (1994), going back to a suggestion by Ziolkowski and
Paczynski, and that is that at this point the AGB star envelopes start to have positive
binding energies. This explains both the initial to final mass relation and the white-
dwarf mass distribution. Indeed, I think that this must be the ultimate cause for the
Mira variability.

https://doi.org/10.1017/S1743921308022758 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308022758


Deathzones and exponents 195

Willson: Several things happen near the AGB tip – the question is which happens first.
The initial-final mass relation is not the best constraint – final L is better since L-Mc

relations can be shown to be wrong.

Woitke: What can we learn from the structure of planetary nebulae, where the final
mass loss history is imprinted? Due to thermal pulses, the stars may cross the “death
zone” several times during the final evolution, producing multiple shells (e.g., Wachter
et al.; Schröder et al.).

Willson: (1) I think there is useful information in these observations, but we are not
yet ready to extract the meaning. (2) We need more sophisticated models to extract the
information of Ṁ-history from PN. There are complications due to binaries.
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