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ON UNIONS OF METRIZABLE SUBSPACES 

E. K. VAN DOUWEN, D. J. LUTZER, J. PELANT AND G. M. R E E D 

1. I n t r o d u c t i o n a n d de f in i t ions . In this paper we s tudy the question 
"which generalized metric spaces can be wri t ten as the union of K (closed) 
metrizable subspaces, where K is a cardinal number with K ^ c?" Questions of 
this type first arose in [16] where J. Naga ta asked for examples of certain 
generalized metric spaces which could not be wri t ten as the union of countably 
many closed metrizable subspaces. Using Baire Category arguments , Fi tz-
patrick provided the required examples in [12]. We begin this paper by sharpen
ing Fi tzpatr ick 's examples, showing in Section 2 t h a t there is a Moore space 
which is not the union of countably many metrizable subspaces of any kind. 
Then in Section 3 we present a positive result, proving t ha t any cr-space, and 
a fortiori any Moore space, can be wri t ten as the union of c = 2wo closed 
metrizable subspaces. (A related result is obtained for Bennet t ' s quasi-
developable spaces.) In Section 4 we show tha t Section 3 contains the best 
positive result. More precisely, we show tha t in any model of Mar t in ' s Axiom 
plus wi < c, neither the Moore space given by Fi tzpatr ick [12] nor the Lasnev 
space given by van Doren in [7] can be the union of K metrizable closed sub-
spaces for any K < c. In Section 5 we present examples which show tha t 
members of two other generalized metric classes—the S-spaces of Nagami and 
the BCO spaces of Wicke and Worrel l—cannot always be wri t ten as the union 
of a cont inuum of metrizable subspaces. In the final section, we show t h a t 
some generalized metric s t ructure is necessary for the positive results of 
Section 3 by describing a perfect space ( = closed sets are GO'S) which is first-
countable and hereditarily paracompact , and yet which is not the union of a 
cont inuum of metrizable subspaces. In addit ion, our example is a generalized 
ordered space in the sense of [15]. 

Our terminology generally follows tha t of [6]. By a Moore space wre mean a 
regular 7Vspace X which admits a sequence ( & (n) ) of open coverings such 
tha t if U is open in X and if p Ç U, then for some n, p £ St(p, @ (n)) C U, 
where 

St(p, &(n)) = U {G e &(n) : p G G}. 

If the collections @ (n) in tha t definition are not required to cover all of X, 
then the preceding sentence describes a quasi-developable space in the sense of 
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Bennet t [4]. By a Lasnev space we mean any image of a metric space under a 
closed, continuous mapping. Both Moore spaces and Lasnev spaces are 
examples of cr-spaces, where by a a-space we mean a TVspace X admit t ing a 
collection -J/ of closed sets satisfying: 

a) if U is open and p £ U, than p (z N C. U for some TV Ç «yK (such an «yK 
is called a network for X ) ; 

b) the collection ^K is c-discrete in X. 

Definitions of semistratifiable spaces, 2-spaces and semi-metric spaces, with 
relevant references, appear in [6]. 

The results announced above suggest two questions which we cannot yet 
settle: 

(1) Can the main positive result in Section 3 be proved for semistratifiable 
spaces or for semi-metric spaces? (The semistratifiable spaces lie somewhere 
between the perfect spaces and the c-spaces, and semimetric spaces are just 
first-countable semistratifiable spaces.) 

(2) Is it true tha t every regular space with the point-countable base can be 
writ ten as the union of a cont inuum of (closed) metrizable subspaces? (See 
Corollary 3.3.) 

We record, without proof, some easy results about the stabili ty of the class of 
spaces which can be wrritten as the union of c (closed) metrizable subspaces. 
These results shed some light on where not to look for counterexample solutions 
to the above problems. 

a) If X can be writ ten as the union of c closed metrizable subspaces and if 
/ : X —> F is a closed continuous surjection, then Y can also be writ ten as the 
union of c closed metrizable subspaces. (This follows from (3.1).) 

b) If each space X(n), for n G wo, can be writ ten as the union of a con
t inuum of (closed) metrizable subspaces, then so can the product space 
Y = H \X(n) : n (E co0}. 

c) If X can be writ ten as the union of a cont inuum of (closed) metrizable 
subspaces, then so can each subspace of X. 

Convention. In this paper, we assume tha t each space is a t least a 7\-space. 

2. A n e x a m p l e c o n c e r n i n g c o u n t a b l e u n i o n s . 

E X A M P L E 2.1. There is a separable Moore space M which is the union of wi 
closed, metrizable subspaces and yet which is not the union of any collection of 
conntably many metrizable subspaces. 

Proof. Let X be any separable, non-metrizable Moore space having 
ca rd (X) = coi. (For example, let X be a dense subspace of the usual Niemytski 
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plane having cardinali ty coi and having coi points on the x-axis.) T h e n X mus t 
contain an uncountable discrete subspace E. Our example will be the space 
M = Xw°, the usual product of countably many copies of X, endowed with the 
usual product topology SP. 

T o see tha t X is the union of coi closed, metrizable subspaces, enumera te X 
as X = \x(a) : a < coi}. For each /3 < coi, let 

A(0) = \x(a) : a < p}«». 

Clearly each A (0) is a closed metrizable subspace of M and M = U {̂ 4 (0) : 

0 < wi}. 
Next, suppose t ha t J ^ is a countable collection of metrizable subspaces of M 

and tha t Af = U s/. We introduce two auxilliary spaces. Let D be the set X 
equipped with the discrete topology and let the product topology of Du° be 
denoted by «g. Then & C «2. Since D<** = U se and since (Z>°, i2 ) is a 
Baire space, some i Ç j / must fail to be nowhere dense in Z>o. Let B be a 
nonvoid i2-basic open set in Z)wo such t ha t A C\ B is j2-dense in ( 5 , SB). We 
observe tha t (.£>, i2B) is homeomorphic to Z>o s o t h a t the proof will be com
plete once we prove 

(*) If 5 is a dense subset of (Duo, i 2 ) , then (S, SP $) is not metrizable. 

T o prove (*), note t ha t if 5 is dense in Dœ<>, then 5 is also dense in (M, &) so 
tha t , (M, SP) being separable and first countable, (5, &s) is also separable. 
Next , letting 

q : Z>o —> D 

be projection onto the first coordinate, we see t ha t since 5 is dense in Dœo, q[S] 
must be dense in D. Bu t then q[S] = D. Let p : (M, &) —>X be first co
ordinate projection. As functions between sets, q = p so t ha t p[S] = X. Let F 
be any subset of 5 which contains exactly one point from each member of the 
collection {p_1[{xj] : x (E £ } , where E is the uncountable discrete subspace 
of X found above. Then (F, & F) is an uncountable discrete subspace of 
(M, SP). But (F, &F) is also a subspace of (S, SPs) so t h a t the la t ter space, 
being separable bu t not hereditarily separable, cannot be metrizable. 

2.2 Remarks, (a) If we assume Mar t in ' s Axiom plus coi < c, then the space M 
in the above example can be chosen in such a way t ha t M^ is normal. 

(b) We do not know whether, assuming Mar t in ' s Axiom plus wi < c, there is 
a Moore space tha t is not the union of any family of fewer than c metrizable 
subspaces. The obvious candidate for an example is M = Xœo where X is a 
separable Moore space having a closed discrete subset of cardinal i ty c. Un
fortunately, the above a rgument breaks down, since if D is any uncountable 
discrete space, then Z>o i s the union of a family se of nowhere dense sets, 
where c a r d ( j ^ ) = coi. 
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3. Positive results. 

T H E O R E M 3.1. Any a-space is the union of a collection of c closed metrizable 
subspaces. 

Proof. Let ^ = U [^in) : n G co0j be a d-discrete network for X. For each 
n, the set X — U ^ (n) is an open set and hence an ^ - s u b s e t of X, say 

X - U ^in) = U {C(w, *) : Jfe G co0), 

each C(w, &) being closed in X. 
Let / be any subset of wo. We say tha t a point p G X is a J-point provided 

/ = jw Ç wo : ^ U ^~(n)}. Fix / C ^ o and consider the set 

X ( / ) = {£ G X : £ is a / - po in t ) . 

For each n Ç J , I ( J ) C U ^{n) so tha t the collection 

&->(n) = \X(J) H F: F e ^in)) 

is a discrete relatively closed cover of X(J). But then ^~' in) is also a collection 
of relatively open subsets of X(J). 

We assert t ha t the collection U \^r' in) : n G J] is a base for the subspace 
X(J). For suppose £ G X{J) C\ G where G is an open subset of X. Then for 
some w, some member F G ^ (m) has £ G F d G. But then m G / so tha t 

F H I ( / ) G U { ^ ' ( » ) : « G / } 

as required. Thus X(J) has a c-discrete base of open sets so tha t metrizabil i ty 
of X(J) will follow from the Bing-Nagata-Smirnov Theorem once we have 
proved tha t X(J) is regular. But tha t is immediate since X(J) is Ti and 
U [^'(n) : n G J) is a base of relatively closed and open sets for X(J). 

Since it is clear tha t X = U {X(7) • / C to0} wre can complete the proof by 
showing tha t each X (J) is the union of c subspaces, each closed in X. T o tha t 
end, for each function a : co0 — / —» co0, we define 

* ( / . * ) = X ( / ) n ( f i {C(n,a(n)) : n G co0 - / } ) . 

We first show tha t each X(J, a) is closed in X. So suppose q £ X — X(J, a). 
The case where q (I D {C(n, <r(n)) : n (z uo — J} is easy, so assume 
q G H {C(w, ( j ( w ) ) : w ^ ( o o - i } , Then q d X (J) so tha t J 9^ Jq where we 
have writ ten Jq = \n G co0 : ç G U ^(n)\. Since 

g ^ H {C(w, o-(w)) : « G wo — J\ 

we see tha t co0 — / C ^o — Jq and hence Jq ^ J implies J — Jq 9e 0. Choose 
m G J — Jq\ then the open set V = X — U ^(m) contains g and is disjoint 
from X(J, or). Therefore, each X(J, a) is closed in X. 

Finally we show tha t X(J) = U {X(J, a) : a : co0 — J —> w0}- Obviously it 
is enough to show tha t each p G X (J) belongs to some X(J, <J). Now for each 
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71 G O)0 — J , 

p t X - U ^(n) = U \C(n, k) : k G co0} • 

Define o-(w) to be the least & having £ G C(w, k). Then o- : co0 — / —> coo and 
/? G X ( J , o-) as required. 

T H E O R E M 3.2. ^Lny quasi-developable Ti-space is the union of a family of c 
metrizable subspaces. 

Proof. In the light of [5, Lemma 4], there is a quasi-development (& (n)) 
for X such tha t if p is a point of an open set U, then for some n} p belongs to 
exactly one member of & (n) and t ha t member is a subset of U. Now for each 
J C w0, we say tha t p is a type J" point provided J — {n G coo : P belongs to 
exactly one member of ^ (n)}. (Note t ha t this is not the same definition as we 
used in (3.1).) Let X(J) = {p G X : p is a type J point} . Clearly X = 
U {X(J) : / C w o ) so tha t it is enough to show tha t each X(J) is metrizable. 
Fix / C wo and write Y = X(J). For each n G / let 

^ ' ( w ) = j F H G : G G ^ ( » ) } . 

Each &' (n) is a disjoint relatively open cover of F and is, therefore, a discrete 
collection in the subspace Y. And since (@ (n)) is a quasi-development for 
X, U I ^' (n) : w G / } is a base for F. Since F is JHI and has a d-discrete base 
of relatively closed and open sets, F is metrizable. 

COROLLARY 3.3. Any T^-space having a a-point-finite base is the union of c 
metrizable subspaces. 

Proof. I t is known tha t any space having a o--point-nnite base is quasi-
developable [3]. 

This corollary suggests Question 2 of the Introduct ion. 
The reader will note tha t Theorem 3.2 does not guarantee t ha t quasi-

developable spaces can be wri t ten as the union of a cont inuum of closed 
metrizable subspaces. T h a t there are quasi-developable spaces t ha t cannot be 
represented as such a union is the point of our next example. 

E X A M P L E 3.4. There is a locally compact quasi-developable space which is not 
the union of a continuum of closed metrizable subspaces. 

Proof. We outline a general construction. T o obta in the example we begin 
with a set K of cardinali ty c+. 

Let K be any uncountable set. Let 2) be a maximal almost disjoint collection 
of countably infinite subsets of K. Let ^ ( ^ ) be the set K^J 3ï topologized in 
such a way tha t each point of K is isolated and such t ha t basic neighborhoods 
of a point D ^ have the form N(D, F) = {D} VJ (D - F) where F is a 
finite subset of D. I t is easy to see t ha t the space ^f(^) is a locally compact 
quasi-developable space which cannot be a Moore space. T h a t last assertion 
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can be deduced from the observation, needed later, tha t if / is an uncountable 
subset of K, then the collection 

2' = {D r\ J : D e 2 and D C\ J is infinite) 

is a maximal almost disjoint collection of countably infinite subsets of J. 
Now consider a closed subset A of ty(&) for which A P\ K is uncountable. 

Wri te J = A C\ K and consider the maximal almost disjoint collection Q>' 
defined above. Define a function h : ^{^') —» "&(&) by the rule tha t h(x) = x 
for each x £ / and h(D C\ J) = D for each D C\ J £ 2'. T h a t function is well 
defined, since two dist inct members of £iï cannot have identical infinite inter
sections with J. Fur ther , it is easy to see tha t h is a topological embedding and 
that , if D H / G &', then D = h(D H J) is a limit point of ,4 and therefore 
belongs to A since .4 is closed. But then A cannot be metrizable since its 
subspace SF(i^') is not even a Moore space. 

Finally, suppose s/ is a collection of closed metrizable subspaces of *&(&) 
having c a r d ( j / ) < ca rd (X) . If U ^ = *(9) then 2C = U | i H i [ : 
yl Ç J ^ j so tha t for a t least one 4̂ G se the set 4̂ Pi K must be uncountable. 
But then A is not metrizable. T h a t contradiction shows tha t U stf ^ ^(2), 
as claimed. 

4. T h e i n a d e q u a c y of coi. Throughout this section Mart in ' s Axion plus the 
negation of the Cont inuum Hypothesis is abbreviated (MA + ~| C H ) . Mar t in ' s 
Axiom states tha t no compact Hausdorff space satisfying the countable chain 
condition ( = no family of pairwise disjoint open sets can be uncountable) can 
be writ ten as the union of fewer than c nowhere dense subspaces. I t is easy to 
deduce the same conclusion for certain non-compact spaces. For example, a 
completely regular space is Cech-complete if it is a GVsubset of its Cech-Stone 
compactification. Any complete metric space, and any complete Moore space, 
is Cech complete, as is any countable product of Cech complete spaces (see [1] 
for definitions and references). 

LEMMA 4.1. (MA + ~| CH) Let X be a space which satisfies the countable chain 
condition and which contains a dense, Cech-complete subspace. Then X cannot be 
written as the union of fewer than c nowhere dense subspaces. 

We now present two examples, one a Moore space and the other a Lasnev 
space, which cannot be writ ten as the union of K metrizable subspaces for any 
K < c. The first example utilizes a Moore space presented by Fitzpatr ick in [12] 
and the second uses a Lasnev space constructed by van Doren in [7]. 

E X A M P L E 4.2. (MA + 1 CH) There is a Moore space which is not the union of K 
closed metrizable subspaces for any K < c. 

Let P be the familiar tangent-disk space (Niemytzki plane). Then P is a 
complete, separable, non-metrizable Moore space and is therefore Cech 
complete. Let X = P^ be the product of countably many copies of P. Then X 
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is separable and Cech complete and no non-void open subspace of X is metri-
zable. If K < c and if X = U \X(a) : a < K\ where each X(a) is a closed 
metrizable subspace of X, then (3.1) would force INT(X(a ; ) ) 9^ 0 for some 
a < K. But then INT(X(o: ) ) would be a metrizable non-empty open subset of 
X, which is impossible. 

The Fi tzpatr ick technique used in (4.2) cannot be applied to find an ana
logous example in the class of Lasnev spaces since it is known t h a t if both X 
and X X X are Lasnev spaces, then X mus t be metrizable. Instead we use 
several results of van Doren [7] which we reproduce here for the reader 's 
convenience. 

T H E O R E M 4.3. If X is a closed continuous image of a complete metric space, 
then X has a dense subspace which is completely metrizable. 

T H E O R E M 4.4. There is a space X which satisfies: 
a) X is a closed continuous image of a complete separable metric space; 
b) the set X$ of all points of X at which X is not first-countable is dense in X. 

4.5. Remark. Van Doren 's theorem [7] does not mention t h a t the metric 
space of which X is a closed continuous image is separable. However, separ
ability of the domain space is easily seen since the domain is a product of 
countably many closed subsets of Euclidean spaces. 

E X A M P L E 4.6. (MA + "1 C H ) There is a Lasnev space which is not the union 
of fewer than c closed metrizable sub spaces. 

For consider van Doren 's space X described in (4.4). If K < c and if 
X = U {X(a) : a < K\ where each X(a) is a closed metrizable subspace of X, 
then (4.3) and (4.1) may be applied to conclude t ha t for some a, I N T ( X ( a ) ) ?* 
0. But then 

x* r\ iNT(x(<*)) ^ 0 

which is impossible because X is first-countable a t each point of I N T ( X ( a ) ) . 

5. E x a m p l e s c o n c e r n i n g o t h e r genera l i zed m e t r i c c las ses . In this 
section, if K is a cardinal number , then K+ denotes the first cardinal number 
greater than K. A subset S D [0, K) is stationary in K if 5 C\ C 9^ 0 whenever C 
is a closed cofinal subset of [0, K) (which is endowed with the open-interval 
topology of the usual ordering). I t is easily proved ([8], [11]) t h a t 

a) if X < K and if U \X(a) : a < X} is s ta t ionary in K, then some X(a) is 
s ta t ionary in K\ 

b) in its topology as a subspace of [0, K), no s ta t ionary subset is paracompact . 

In [16] Nagami introduced the class of 2-spaces as a s imultaneous and 
natural generalization of Okuyama ' s cr-spaces and the (countably) compact 
spaces. I t is not necessary to reproduce the ra ther technical definition of the 
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class of S-spaces; for our purposes, it is enough to know tha t every compact 
space is a 2-space. Our next example conclusively shows tha t no analogue of 
Theorem 2.1 can be proved for the class of 2-spaces. 

E X A M P L E 5.1. For each cardinal X there is a compact Hausdorff space which is 
not the union of any family of ^ X metrizable subspaces. 

We let K = X+. Then the space X = [0, K] is a compact Hausdorff space, and 
if X = U {X(a) : a < X}, then some set X(a) — {K} would be s ta t ionary in 
[0, K) and hence not even paracompact , so X (a) could not be metrizable. 

We next consider the class of BCO spaces introduced by Worrell and Wicke 
in [18]. Recall t ha t a base 3i for a space X is a base of countable order (abbrevi
ated BCO) if whenever B(l) Z) B(2) D £ ( 3 ) D . . . is a sequence of distinct 
members of Se each containing a point p, then \B(n) : n £ co0} is a neighbor
hood base a t p. Our example requires a couple of easy lemmas. 

LEMMA 5.2. / / Y is a first countable regular space and if for some p £ Y the 
sub space X = Y — \p\ has a BCO, then Y has a BCO. 

LEMMA 5.3. Let S be a first-countable subspace of ordinals. Then S has a BCO. 

Proof. If (5.3) is false, let a be the least ordinal such tha t some first-countable 
subspace S of [0, a) does not have a BCO. Then a must be a limit ordinal. For 
if a = (3 + 1, then [0, a) = [0, /3] and, by minimality of a, $ £ S. Again by 
minimality of a, the space T = S P [0, fi) has a BCO. Now, applying (5.2), we 
see tha t the space S = T U {($} also has a BCO, contrary to our choice of 5. 
Therefore a is a limit ordinal. For each @ < a let S(/3) = S Pi [0, (3). Each S(fi) 
is an open subspace of S, S = U {S(fi) : 13 < a}, and by minimality of a, each 
S(P) has a BCO. But then by [18, Theorem 1] the space 5 has a BCO, and this 
contradiction completes the proof. 

E X A M P L E 5.4. For each cardinal X there is a collectionwise normal space X 
which has a BCO and yet which is not the union of a continuum of metrizable 
subspaces. 

For let K = X+ and let X = {a < K : cf(a) ^ co0}. Then X is a first-countable 
space of ordinals so tha t X has a BCO. Furthermore, X is s ta t ionary in [0, K) 
and hence if X = U \X(a) : a < X}, then a t least one of the sets X(a) is also 
s tat ionary in [0, K) and therefore not even paracompact . 

5.5. Remark. Hajnal and Juhasz [14] have proved tha t if 5 is a first-countable 
space of ordinals such tha t for each limit ordinal X the set S P [0, X) is not 
s ta t ionary in [0, X), then 5 is metrizable. The result in (5.3), combined with the 
characterization of paracompactness given in [11] show tha t any such space is 
paracompact and has a BCO. Now a theorem of Arhangel'skiï [2] may be 
applied to deduce metrizability of S. (A more convenient reference for tha t 
result is [18].) 
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6. A perfect space which is not the union of a continuum of metriz-
able s u b s p a c e s . In this section we present an example which shows the need 
for some generalized metric s t ructure , above and beyond such properties as 
paracompactness, perfectness ( = closed sets are GVs) and first-countability, 
if Theorem 3.1 is to hold. 

Let K be a cardinal number such tha t KWO > K ^ c and let (D, S) be a 
linearly ordered set such tha t 

a) D has cardinali ty K; 
b) the open interval topology of (D, ^ ) is the discrete topology; 
c) (D, S ) has neither first nor last points. 

Such sets are easy to find: let D be the lexicographic product set [0, /<) X Z, 
where Z denotes the set of integers with the usual ordering. 

The product set X = Z>°o carries two topologies—the Tychonoff product 
topology 0* and the usual open-interval topology J of the lexicographic 
ordering of X. I t is a theorem of Faber, Maurice and Wat te l [13] (see also [10]) 
tha t SP = J. Hence (X, J') is a metrizable linearly ordered topological space 
whose density ( = smallest cardinali ty of a dense subset) is K [9, Theorem 
2.3.15]. Fur thermore , since D has no end points, the set X is densely ordered 
by the lexicographic order (i.e., if a < c in X, then for some b G X, a < b < c). 

The next step is to modify the interval topology J using the collection 
{[x, y) : x < y in X) as a base for a newr topology £/ on X. Because X is 
densely ordered and (X, J) is perfect, so is the new space (X, Jf). In the 
terminology of [15], (X, *f) is a generalized ordered space so tha t , being 
perfect, (X, S^) is both hereditarily paracompact and first-countable (see [15] 
or [11]). I t remains only to show tha t (X, £f) is not the union of c metrizable 
subspaces. T o tha t end, suppose tha t ( F , S^Y) is a metrizable subspace of 
(X, y). Then we have [9] 

c a r d ( F ) = weight ( F ) = density ( F ) g density (X, ¥) 

= density (A7-, J) = K 

where the first equali ty holds in any space with a "Sorgenfrey-type" topology, 
the second follows from metrizabil i ty of F, the third follows from [15, 
Theorem 2.10] and the fourth follows from the fact t ha t X is densely ordered. 
But then the union of a cont inuum of metrizable subspaces of (X, £f) can have 
cardinali ty a t most c • K = K < KWO = card (AT) and so (X, £f) cannot be the 
union of c metrizable subspaces. 

We remark tha t the space (X, £f) is a generalized ordered space and not a 
linearly ordered space. However, afficianados of linearly ordered topological 
spaces will recognize t ha t by using the lexicographic product X X JO, l j , we 
could have obtained a perfect linearly ordered space which is not the union of a 
cont inuum of metrizable subspaces. 
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