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Abstract

We examined the effect of dietary nicotinic acid (NA) variations before and after oxidative stress (OS) treatment on the antioxidant defence
system, function and morphology of the liver along with Zn status in rats. OS was generated by three intraperitoneal injections of fert-butyl
hydroperoxide in the first week for the pre-exposure group and in the third week for the post-exposure group, respectively. These groups
were further divided into subgroups and fed on a diet with marginally deficient Zn (10 mg Zn/kg diet) and NA variations as NA deficient,
normal and excess with 10, 30 and 1000 mg NA/kg diet, respectively. Aspartate aminotransferase and alanine aminotransferase levels were
elevated in rats with OS coupled with the Zn- and NA-deficient diet, which decreased towards normal with excess dietary NA. Excess NA
supplementation in the OS pre-exposure group resulted in nearly preserved hepatic architecture with normal hepatocytes, whereas maxi-
mum tissue destruction was evident in the post-exposure group with NA deficiency. Dose-dependent improvement in the antioxidant
defence system, enhanced reduced glutathione levels, lowered lipid peroxidation and higher hepatic Zn levels were observed with NA
supplementation. The effect was more prominent in the pre-exposure group. In conclusion, dietary NA supplementation improves hepatic

Zn uptake and results in hepatoprotection against OS-induced damage in rats.
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Antioxidants are substances that counteract free radicals and
prevent the damage caused by them. In recent years, antioxi-
dants have emerged as promising prophylactic and thera-
peutic agents(l). Nicotinic acid (NA), also known as niacin
(vitamin Bj), is considered as a major antioxidant since it
influences multiple pathways tied to both cellular survival
and cellular death. During oxidative stress (OS), NA protects
the cell by blocking cellular inflammatory cell activation,
early apoptotic phosphatidylserine exposure and late nuclear
DNA degradation®. NA supplementation has been shown to
reverse OS-induced cell injury in kidney epithelial HEK 293
cells®”. Zn** is another major antioxidant that offers protec-
tion through the antagonism of redox-active transition
metals, such as Cu and Fe, the induction of metallothionein
synthesis, the guarding of protein sulthydryl groups from oxi-
dative damage™ and the stabilisation of Cu—Zn superoxide
dismutase (SOD)@. Zn is necessary for normal liver function,
as Zn deficiency could participate in the pathogenesis of liver
diseases”” and reduced hepatic Zn levels have been corre-
lated with impaired liver function and regeneration®. Tt has

also been reported that Zn deficiency leads to a rapid increase
in cellular oxidants“'®.

Vitamins such as riboflavin, NA, thiamin, folic acid and
ascorbic acid have functional groups reported to be capable
of forming complexes with Zn. Our previous studies with
erythrocytes'?, Caco-2 cells’® and hepatocytes™™® have
demonstrated the effects of NA, folic acid and ascorbic acid
on Zn bioavailability, indicating interactions between vitamins
and Zn. The results from in vitro experiments demonstrated
that improved Zn metabolism can be achieved through
enhanced Zn absorption (intestinal) and post-absorptive
uptake (hepatic) especially under OS conditions in the pre-
sence of NA. Another study from our laboratory has revealed
that NA supplementation as a finger millet-based diet resulted
in a significant enhancement of Zn absorption, hepatic Zn
levels and growth of weanling mice™”. In a recent study,
we have reported a dose-dependent increase in hepatic NA
accumulation as dietary Zn levels increased from deficient to
excess''”. The interaction between Zn and NA seems to be

bidirectional. Therefore, it was thought worthwhile to explore

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; GI, group I; GII, group II; GIII, group III; GPx, glutathione peroxidase; GSH,
glutathione; i.p., intraperitoneal; NA, nicotinic acid; OS, oxidative stress; SOD, superoxide dismutase.
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the efficacy of NA administration in attenuating the adverse
effects caused by OS exposure to a Zn-deficient state in vivo.
Hence, animal experiments were conducted wherein the
effect of NA on Zn metabolism under Zn deficiency and OS
in growing rats was investigated, and the findings are reported
in the present study.

Experimental methods
Animals, diet and experimental design

Weanling male Wistar rats weighing 50 (sp 10) g were pro-
cured from the animal facility, Agharkar Research Institute,
Pune. The animal experiments’ protocol was approved by
the Agharkar Research Institute’s Institutional Animal Ethics
Committee, and the rats were treated according to the guide-
lines set by the Committee for the Purpose of Control and
Supervision of Experiments on Animals.

The animals were housed individually in polypropylene
cages in the institute’s animal house under hygienic conditions
in a room maintained at 24 = 2°C and with a 12h light—12h
dark cycle. During the study period of 3 weeks, the rats
were fed with a modified AIN-93G diet prepared according
to the American Institute of Nutrition guidelines(l()), containing
casein as the source of protein, wheat bran as the source of
fibre, and maize starch and sucrose as the sources of carbo-
hydrates. All rats were fed the treatment diets and distilled
water ad [libitum, throughout the experimental period.
A weekly record of body-weight changes and food intake of
rats for all groups was maintained. The only variations were
that Zn content in the diet (added as ZnSO,) was at a margin-
ally deficient level (10mg Zn/kg diet), and NA was given at
three levels, namely deficient (10mg NA/kg diet), adequate
(30mg NA/kg diet) and excess (1000mg NA/kg diet). The
reported excess dietary NA supplementations were from 500
and 1000 mg/kg diet"” to pharmacologically supplemented
4g NA/kg diet"?.

The study design and grouping of animals for the exper-
iment are shown in Fig. 1. Group I (GI, n 8) animals served
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as normal controls and were fed with an AIN-93G diet
containing adequate Zn and NA (30 mg each/kg diet). The
remaining animals were randomly divided into two main
groups, groups II and III (GII and GIII), which were with
OS and without OS, respectively. NA supplementation may
improve Zn metabolism and prevent or cure OS-induced
damage, hence it was decided to assess this by inducing
OS before and after the dietary NA addition, respectively.
Considering these variables, the main group GII was sub-
divided into two sets depending on the OS treatment (intra-
peritoneal (i.p.) of tert-butyl hydroperoxide)
within the experimental period of 3 weeks, which were
(1) pre-exposure (OS treatment in the first week only) and

injections

(2) post-exposure (OS treatment in the third week). At each
OS exposure condition, dietary NA levels varied as deficient,
normal and excess states, which resulted in a total of six
treatment subgroups (1 8), i.e. Glla, GIIb and Gllc for pre-
exposure and GIId, Glle and GIIf for post-exposure. The
corresponding six control groups (Gllla—GIIIf) were also
maintained, wherein only NA variation was done without
any OS treatment (i.p. injections of saline). For pre-exposure,
Glla, GIIb and GIIc animals were given OS treatment by i.p.
injections of 0-22 mmol/kg body weight of fert-butyl hydroper-
oxide on the 2nd, 4th and 6th day of the first week. The
respective controls GIIIa, GIIIb and GIIIc were given i.p. injec-
tions of saline on the same days. All these groups were given a
normal American Institute of Nutrition diet (containing 30 mg
Zn and NA each/kg diet) during the first week, whereas for
the next 2 weeks, the groups were maintained on a specific
diet assigned to each group (marginally deficient Zn with
respective NA levels — deficient, normal and excess). For
post-exposure, animals were maintained on a specified diet
for the first 2 weeks, and a normal diet and the treatment of
three i.p. injections (one every alternate day) of fert-butyl
hydroperoxide (for GIId, Glle and GIIf) or saline (for GIIId,
Gllle and GIIIf) were given in the third week. The diet and
OS treatment schedule for GII and GIII animals is shown in

Weanling male rats

(n104)
|
1 1 1
Zn deficiency with OS Normal Zn and NA Zn deficiency without OS
Gll Gl (normal control) Glll

| 1 1
[ Pre-exposure ] [ Post-exposure ][ Pre-exposure ] [Post-exposure]
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NA NA][NA) (NA) (NA) (NA) (NA) (NA) [(NA) (NA
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Gllla Glllb Glllc  GIID GIIE GIlIF

Fig. 1. Design of an in vivo animal experiment for studying the effect of nicotinic acid (NA) supplementation on zinc metabolism under different oxidative stress
(OS) exposure conditions. NA D, NA deficient; NA N, NA normal; NA E, NA excess; Gl, group I; Gll, group Il; Glll, group IlI.
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Fig. 2. Oxidative stress (OS) and diet schedule for groups Il and Ill animals during the (a) pre-exposure and (b) post-exposure OS treatment. i.p., Intraperitoneal;
tBHP, tert-butyl hydroperoxide; NA D, nicotinic acid deficient; NA N, NA normal; NA E, NA excess; ZnD, zinc deficient.

Fig. 2. The design was thought to help in better understanding
the role of NA supplementation in Zn metabolism and OS.

Tissue sampling

After 3 weeks, the rats were deprived of food for 6 h and then
euthanised under light diethyl ether anaesthesia. Blood was
collected by cardiac puncture into EDTA-containing tubes.
After collecting the blood, the animals were dissected, and
the livers were excised and rinsed in PBS. A small section of
each liver was placed in 10% phosphate-buffered formalin
for histopathological analysis, and the remaining liver tissue
was processed for various biochemical estimations. The
blood samples were centrifuged at 4000 rpm for 10 min. The
plasma was separated and processed on the same day for
the estimation of liver marker enzymes, such as aspartate ami-
notransferase (AST) and alanine aminotransferase (ALT).

Estimation of liver marker enzymes in plasma

The enzyme activities of AST and ALT were estimated using
commercial kits (Ranbaxy Diagnostics Ltd, Baddi, H.P.,
India) as described previously"®, and the enzyme activities
are expressed in terms of 1U/] of plasma at 37°C.

Histopathological studies

For histopathology, liver samples fixed in formalin were dehy-
drated in ascending grades of alcohol, cleared in benzene and
embedded in paraffin wax. The blocks were cut into 5—-7 pm
thin sections, which were then double-stained with haema-
toxylin and eosin. After staining, the sections were observed
under a light microscope and photographed.

Biochemical analysis

The liver samples were homogenised in 100 mm-potassium
phosphate buffer (pH 7-5) containing 0-15M-KCl with a
Potter—Elvehjem homogeniser to obtain 10% homogenate.
Tissue homogenates were centrifuged at 10000 g for 30 min
at 4°C, and the supernatants were used for the estimation of
different enzymes, protein, reduced glutathione (GSH) and
lipid peroxidation.

Catalase, SOD and glutathione peroxidase (GPx) activities
were determined by following the methods of Clairborne &
Fridovich™”, Kono®” and Mohondas et al.*", respectively.
Protein concentrations were determined by the method of
Lowry et al.®®, and the levels of reduced GSH were estimated
by using the method of Ellman®®. The estimation of lipid
peroxidation in the liver was done by the method of Placer
et al®®. All these methods have been described briefly in

our previous report!>.

Hepatic zinc estimation

Zn concentrations in liver samples were measured as
described earlier™ using atomic absorption spectropho-
tometry (AA 800; Perkin-Elmer, Shelton, CT, USA).

Data presentation and statistical analysis

Data are presented as means and standard deviations. The
experimental parameters from the OS treatment group (GID
and without OS exposure groups (GII) were initially com-
pared with the normal control (GI) using one-way ANOVA.
The effect of NA supplementation and OS exposure in the
treatment groups (GII and GIII) was then assessed using
two-way ANOVA. Student’s unpaired ¢ test was used to
further analyse differences between group pairs (i.e. NA-
supplemented groups and OS exposure groups). To compare
the effect of OS treatment, the subgroups from GII were com-
pared with the respective subgroups from GIII, for example
Glla with GIIla. For comparison of NA supplementation
within the GII and GIII groups, the NA-deficient groups
(Glla and GlIIla) were compared with the respective NA
normal and NA excess groups.

Results

Body weight and food intake records for the OS pre-exposure
experiment showed no significant difference in the different
treatment groups and their subgroups. GII animals with OS
treatment showed a slight decrease (NS) in weights and
intake, indicating that OS pre-exposure along with Zn
deficiency and dietary NA variation was tolerated by the
animals.
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Effect on aspartate aminotransferase and alanine
aminotransferase

The consequences of NA variation in the diet under Zn
deficiency and OS pre-exposure on plasma AST and ALT
levels are shown in Fig. 3. OS pre-exposure to the rats
caused significant elevations in plasma ALT and AST levels
in GII animals compared with the normal control group
(GD. The highest AST and ALT levels were observed in Glla
(P<0-001 ». GD animals, indicating increased hepatotoxicity
due to fert-butyl hydroperoxide coupled with Zn and NA
deficiency. Enzyme activities were reduced (P<0:01) in GIIb
and GlIc animals as the dietary NA level changed from the
deficient to normal to excess states, respectively. Compared
with GI animals, these enzymes were slightly elevated in
GIlIa (P<0-05) animals, indicating that even without OS treat-
ment, the Zn-deficient diet affects the levels of liver marker
enzymes. Moreover, in GIIlc animals, the Zn-deficient but
NA excess diet showed comparable activities with GI animals.

OS post-exposure to the rats resulted in elevated levels of
AST (145-39 (sp 8 1)IU/D and ALT (113-8101 (sp 5-7)IU/D in
GIId animals, which remained towards the higher side even
after excess NA supplementation in GIIf (AST: 1164 (sp
2:5)10/1; ALT: 71-295 (sD 3:9) IU/D animals.

Histopathological observations

The effect of different treatments, i.e. OS pre- and post-
exposure with dietary NA variations, on liver morphology of
selected groups is shown in Fig. 4. Liver from control rats
(GD showed preserved hepatic architecture with normal hep-
atocytes (Fig. 4(e)). In the rat liver from OS pre-exposure with
the NA-deficiency group, it was observed that the hepatocytes
showed necrosis with cytoplasmic vacuolisation. A dilated
central vein was also observed in this sample (Fig. 4(a)).
However, these effects were almost diminished by excess
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NA supplementation in OS pre-exposure, since nearly pre-
served hepatic architecture with normal hepatocytes was
observed (Fig. 4(b)). Maximum tissue destruction was evident
in OS post-exposure with NA deficiency (Fig. 4(c)). Peritoneal
fibrosis with a mononuclear cell inflammatory infiltrate was
observed in the liver sample. With enhanced NA supplemen-
tation, tissue morphology was somewhat recovered, as a few
focal areas of the vacuolar degeneration of hepatocytes with
some dilated blood vessels were manifested (Fig. 4(d)).

Effect of dietary nicotinic acid levels on the hepatic
antioxidant enzymes, glutathione, lipid peroxidation and
zinc content

The results of OS pre- and post-exposure along with dietary
NA levels on the hepatic primary antioxidant enzymes, lipid
peroxidation, Zn and GSH levels are summarised in Tables 1
and 2, respectively.

Comparison of group Il and group Il with normal control
group | for the oxidative stress pre-exposure subgroups. OS
pre-exposure to Glla (with Zn-deficient and NA-deficient)
animals resulted in significant (P<0-001) depletion in SOD,
catalase, GPx, GSH, Zn levels and elevated lipid peroxidation
compared with normal control GI. The effect was less
pronounced in GIIb and Gllc animals with normal and
excess NA supplementation. Without OS treatment, the GIIIb
and GIIlc groups showed a non-significant difference in
the levels of all parameters compared with the GI group.
However, the Zn and NA deficiency combination without
OS in the GlIlla subgroup caused a decrease in GSH
(P<0:001), Zn (P<0:01), SOD (P<0-05) and GPx (P<0-05)
and an increase in lipid peroxidation (P<0-05) levels.

Comparison of oxidative stress treatment between group Il
and group Il animals for the oxidative stress pre-exposure
subgroups. OS pre-exposure along with Zn and NA
deficiency further worsened the antioxidant status in Glla as

Gl Glla Gllb

Gllc Gllla Glllb Glllc
Control [NA D+OS |NA N+OS|NA E+OS [NA D-OS|NA N-OS| NA E-0OS

Fig. 3. Effect of dietary nicotinic acid (NA) variation on plasma enzymes aspartate aminotransferase (II) and alanine aminotransferase (E&) in animals treated with
pre-exposure to oxidative stress (OS) conditions. Values are means, with standard deviations represented by vertical bars. NA D, NA deficient; NA N, NA normal;
NA E, NA excess; Gl, group I; Gll, group II; Glll, group Ill. Mean value was significantly different from that of the normal control group (Gl): *P<0-05, **P<0-01,

***P<0-001.
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Table 1. Effect of dietary nicotinic acid (NA) variations on the hepatic antioxidant enzymes, glutathione (GSH), lipid peroxidation and zinc content in rats subjected to oxidative stress (OS) pre-
exposure

(Mean values and standard deviations, n 8)

S8BWEDP SANEPIXO IDAI] SHWI PIOE JIUNODIN

Catalase (umol H,O, GPx (nmol NADPH Lipid peroxidation GSH
SOD decomposed/min reduced/min per mg (nmol MDA/mg (nmol/mg Zn

(U/mg)T per mg protein) protein) protein) protein) (ng/g liver)
Group Mean SD Mean SD Mean SD Mean ) Mean sD Mean sD
Gl (normal control) 5.95 1.47 49-84 4.52 150-07 825 4-88 0-59 26-12 1-86 42.38 418
Glla (NA D + OS) 3-05***ttt 0-65 41.27*t11 362 130-94***t 8.71 7-26""*ttt 0-34 20-15***tt 1-11 35.07***t 223
Gllb (NA N + OS) 3:94***tt 0-67 44.21**11 323 138-35** 9-68 6-08***tt 0-46 22-41**1% 1.98 36-54***t 323
Gllc (NA E + OS) 4-58*11t 1.04 4715111t 312 1477311 7-35 5-75*ttt 0-37 23-20*t1t 2.76 39-33**111t 2.97
Gllla (NA D — OS) 4-68* 1.01 48-15 3.01 141.66* 929 5.78* 0-23 21.48*** 1.95 38.72** 3.71
Glllb (NAN — OS) 4.72* 112 50-03 4.86 143-65 8.97 5-53tt 013 23-41* 2.56 40-79 3.70
Gllic (NA E — OS) 5.13 1.01 51.17 251 148-16 9-82 5-1611f 0-29 25.24% 2.94 41.31 2-35
Effect of OSY 3.74§ 15-44|| 0-87 (NS) 27-41|| 2-71 (NS) 10-55]]
Effect of NATY 2:29 (NS) 265 (NS) 4.50§ 6-39§ 2.04 (NS) 2.97 (NS)
Interaction between NA and OSY1 0-11 (NS) 0-51 (NS) 0-53 (NS) 0-44 (NS) 0-32 (NS) 1-41 (NS)

SOD, superoxide dismutase; GPx, glutathione peroxidase; MDA, malondialdehyde; Gl, group I; Gll, group II; Glll, group IlI; D, deficient; N, normal; E, excess.

Mean values of all subgroups were significantly different from those of normal control Gl: *P<0-05, **P<0-01, ***P<0-001.

Mean values of Glla—Gllc subgroups were significantly different from those of the Gllla—Gllic subgroups (for OS treatment): 1P<0-05, t1P<0-01, +11P<0-001.

Mean values of the GlIb—Gllc and GllIb—Glllc subgroups were significantly different from those of the Glla and Gillla subgroups (for NA variation): $P<0-05, +$P<0-01, $11+P<0-01.
§ P<0-05.

|| P<0-001.

9 One unit (U) of enzyme is inverse of the amount of protein required to inhibit the reduction rate of nitroblue tetrazolium by 50 %.

99 Results of two-way ANOVA, as indicated by the F value.
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Fig. 5. Effect of dietary nicotinic acid (NA) variations (NA deficient (D), NA normal (N) and NA excess (E)) on the hepatic antioxidant enzymes ((a) superoxide
dismutase (SOD), (b) catalase and (c) glutathione peroxidase (GPx)), (d) lipid peroxidation, (e) glutathione and (f) Zn contents in rats subjected to treatments.

(a) OS pre-exposure groups Glla, Gllb and Glic (----¢--); (b) OS post-exposure groups Glld, Glle and GlIf (

increased peroxidation, which are otherwise capable of mod-
erating the amount of lipid peroxidation. However, NA sup-
plementation to OS-treated Zn-deficient GIIb and GIIc rats
significantly increased the levels of GSH compared with GIla
animals. NADPH is an essential coenzyme of the GSH
reductase, which is involved in the reduction of oxidised to
reduced GSH. Treatment with excess NA in GIIc showed
near-normal levels of GSH, which may be conceived as the
effect of enhanced tissue Zn levels by NA, reduction in hepatic
peroxidative damage followed by a respite in GPx activity,
thereby leading to restoration of the GSH content. In GIII ani-
mals, GSH levels improved accordingly with increased dietary
NA contents.

It is well known that the liver performs an important func-
tion in the short-term regulation of trace-element metab-
“D Through its myriad biological functions, Zn plays
an important role in the therapy of several liver diseases and

olism

has been shown to attenuate or protect against a variety of
hepatotoxins such as carbon tetrachloride, bromobenzene
and several metals>~* The OS pre-exposure study indi-
cated a significant depression of hepatic Zn content after Zn
deficiency and OS treatment. However, NA treatment from

); (c) without OS pre-exposure groups Gllla,

Glla to Gllc rats raised the hepatic Zn levels compared with
the reference levels of GI rats. Interestingly, administration
of NA to Zn-deficient GIII rats without OS treatment had not
improved the hepatic Zn content to that extent, indicating
the specific role of OS for its interaction with NA and Zn.
Thus, in OS pre-exposure, it was found that NA enhanced
the hepatic Zn level, which in turn might have resulted in
hepatoprotection against OS-induced damage.

The interaction between Zn and NA is bidirectional as sup-
plementation of any one improves the metabolism of the
other. Vannucchi e al.*> had reported that in NA-deficient
rats, Zn repletion caused activation of NA metabolism. Similar
results were obtained in another study from our laboratory™> .

Exogenously added NA has been shown to markedly
increase NAD levels in mammalian tissues including liver,
kidney and heart"” and concomitantly resulting in the rever-
sal of OS-induced cell injury in kidney epithelial HEK 293
cells®. Maiese et al.® had reviewed the role of nicotinamide
as an antioxidant and different unique cellular pathways invol-
ving nicotinamide that determine cellular longevity, cell survi-
val and unwanted cancer progression. In vitro Zn uptake by
human erythrocytes has been studied using blood samples
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of ten healthy subjects. It has been found that 8 mm-NA or
NADPH increased ®Zn uptake by 389 and 43-1% in the fast-
ing, and by 709 and 281% in postprandial conditions™?.
When mice were fed with NA-deficient, -adequate and
-excess synthetic diets for 4 weeks, it has been observed
that, in comparison with the NA-deficient diet, percentage
of Zn absorption, intestinal Zn, percentage of Hb and hepa-
tic Fe increased significantly under NA-adequate and -excess
conditions™. The present study imparts another dimension
to the antioxidant role of NA through the improvement in
hepatic Zn uptake.

The results of all parameters signify that NA supplemen-
tation is more beneficial under the pre-exposure condition,
as it assures more favourable circumstances to combat
oxidative injury by enhancing Zn uptake under Zn deficiency.
Hence, NA supplementation can be a better treatment strategy
rather than prophylaxis.

In conclusion, dietary NA supplementation improves Zn
uptake, acts as an antioxidant along with Zn and results in
hepatoprotection against OS-induced damage in rats. The
results collectively suggest that NA supplementation may
have a therapeutic potential in the treatment of Zn
deficiency-related complications and oxidative liver damage.
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