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CHARACTERISATION OF MULTIPLIERS FOR THE
DOUBLE HENSTOCK INTEGRALS

LEE TUO-YEONG, CHEW TUAN-SENG AND LEE PENG-YEE

In this paper, we prove that fg is Henstock integrable on an interval in the
Euclidean space for each Henstock integrable function / if and only if g is a
function of essentially strongly bounded variation.

1. INTRODUCTION

It is well-known [5, Theorem 12.1] that if / is Henstock integrable on [a,b] and
g is of bounded variation, then fg is Henstock integrable on [a, 6]. Also, if fg is
Henstock integrable on [a, b] for each Henstock integrable function / , then g is equal
to a function of bounded variation almost everywhere. This latter was proved by Sargent
[11, 5, Theorem 12.9] using the Denjoy integral. The Henstock, the Denjoy and the
Perron integrals are all equivalent [5]. Attempts have been made to generalise the result
to higher dimensions [8, 9, 10]. In particular, Kurzweil [4, Theorem 2.10] proved that
if g is a function of strongly bounded variation on an interval E in the Euclidean
space, then fg is Henstock integrable on E for all Henstock integrable functions / on
E. Here g is called a multiplier. See also [8, 9]. In this paper, we shall show that
the converse holds true. In other words, we have characterised the multipliers for the
Henstock integrals in higher dimensions.

The proof of Sargent's result was done by contradiction. Since her method is real-
line dependent, it no longer applies to higher dimensions. In what follows, we provide
a different proof by first giving the general form of a bounded linear functional on the
space of all Henstock integrable functions on E and hence solving a problem posed in
[8, p.140]. The one-dimensional and general versions of this representation theorem
were given by [1] and [3, p.199] respectively. Finally, using the representation theorem,
we characterise the multipliers for the Henstock integrals in higher dimensions. For
simplicity, we consider the Henstock integral in the plane. The proof applies equally
well to higher dimensions.
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2. PRELIMINARIES

By R and R + we denote the real line and the positive real line respectively. The
2-dimensional Euclidean space is denoted by R2 . Let E = [a, b] x [c, d] with a < b and
c < d. By an interval we mean a compact set of the form [s,t] x [u,v] with s < t and
u < v. If X C R 2 , then in t (X) , diam (X) and xx denote the interior, the diameter
and the characteristic funtion of X respectively. The 2-dimensional Lebesgue measure
of the set X C R2 is denoted by \X\. We shall say that the intervals Ei and E2 are
non-overlapping if int (Ei) !~l int (E2) — 0. Also, B(£,r) denotes an open ball of centre
£ and radius r in R2 . If the intervals /< C E, i = 1,2,. . . , k are non-overlapping, we
say that the set D — {Ii : i = 1,2,... A:} is a partial division of E. If, in addition,

k

U Ii = E, we say that D is a division of E. Given a function 8 : E —» R + and

a partial division D, we say that D is £-fine if for each interval / from D we have
I C B{£,8{£)) where £ is a vertex of 7, and we write D = {(/,£)}• In [2, P-42], it is
shown that a 8-fine division of E exists for each 8 : E —> R + .

A function / : E —> R is Henstock integrable on E if there is a real number A
with the following property: for every e > 0, there exists 6 : E —> R + such that

— A < e

for each 6-fine division D — {(I, £)} of E, and we write A = fEf or A =
JE f(x,y) d(x,y). The family of all Henstock integrable functions on E will be de-
noted by H(E). If 7 is a subinterval of E, we shall denote the Henstock integral of
/ on I by Jj f • We denote by L(E) the family of all Lebesgue integrable functions /
on E, or equivalently, the family of all absolutely Henstock integrable functions on E.
It is known that L(E) C B(E) (see, for example, [2, p.37]), and Fubini's theorem also
holds for the Henstock integral (see [2, p.163, 7, p.152]).

If / £ B{E), then we shall define its primitive F as

{ /[a«]x[ct]/(a:^)4ali!')! if a < s < 6 and c < t ^ d;

0, if s = o or t = c.

It is known that F is a continuous function on E, for a proof, see [6, remark after
Corollary 10]. Hence the space can be equipped with the Alexiewicz norm ||-|| where

H/ll = sup / f(x,y)d(x,y)
(>,i)€E |J[o,«]x[c,t]

We remark that the space H(E) can also be normed by the norm ||-|| where

||/||= sup / f(x,y)d(x,y)
JEi
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where the supremum is over all subintervals E\ of E. One can verify that for each
/ £ H(E), Il/H ^ Il/H < 4II /IIH- I n this paper, we shall consider the space H(E),
equipped with the norm ||-||, and shall denote it by (H(E), \\-\\). We have the following
theorems.

THEOREM 2 . 1 . [9, Corollary 13] {H(E), HID is a barrelled space.

The next theorem gives a characterisation of the conjugate space (H(E), \\-\\)* of

THEOREM 2 . 2 . [9, Proposition 3] T e (B(E), | | | | ) * if and only if there exists a
finite signed Borel measure fi on (a, 6] x (c, d\ such that

T(f) = I
JE

F d/i
B

for all f £H(E).

In section 3, we shall give a different charactisation of (H(E), \\-\\)* which enables
us to solve the multiplier problem for the Henstock integral. See Theorem 5.1. Before
we state another useful theorem, we need some definitions.

Let X be a closed set whose complement in E is the union of a sequence of
nonoverlapping intervals {Ek}. Assume that the following interval function Fo is well-
defined :

MI) = E / f ioi ICE.

The funtion Fo is said to satisfy the (SL) condition on X if for e > 0 there exists
6 : X —> R + such that for any ^-fine cover D = {(/, £)} of X (that is, the union of
I in D covers X ) , we have

We are now in a position to state the next theorem which plays an important part
in proving a key lemma (Lemma 4.1) below.

THEOREM 2 . 3 . [12, Theorem 3] A function f is Henstock integrable on the

union of {Ek} and

ft*
JE

2\ I f anY subinterval I of E
U % J

if and only if Fo defined above exists and satisfies the (SL) condition on X .
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3. INTEGRATION BY PARTS AND CONJUGATE SPACE

A real-valued function / defined on E is said to be of strongly bounded variation
if for each x 6 [a, b], g(x, •) is of bounded variation on [c, d], for each y 6 [c, d], g(-,y)
is of bounded variation on [a, b], and

where g(I) = g(ai,/32) - g(ai,a2) + g(f3i,a2) -ff(/3i,/?2) for I = [auP\] x [a2,i32]
and the above supremum is taken over all divisions D — {/} of E. The family of
all strongly bounded variation functions on E is denoted by SBV(E). A real-valued
function gi defined on E is said to be of essentially strongly bounded variation on E
if there exists a function g2 6 SBV(E) such that gi — g2 almost everywhere on E.
The family of all essentially strongly bounded variation functions on E is denoted by
ESBV(E).

We next give a formula for integration by parts.

THEOREM 3 . 1 . If f e H(E) and g e SBV(E), then we have

I F dg= f f(x,y){g{b,d) - g{b,y) - g{x,d) + g{x,y)}d(x,y)
JE JE

where F denotes the primitive of f on E.

PROOF: By Fubini's theorem [7, p.152], for almost all x G [a, 6], f(x, •) is Henstock
integrable on [c, d\. Define the function hi : [a, 6] —» R by

J / f(x,y)dy, if the Henstock integral / f(x,y)dy exists

^ 0, otherwise

Then, by Fubini's theorem, hi is Henstock integrable on [a,b] and F(x, d) =
J2 hi (t) dt. By integration by parts for the one-dimensional Henstock integral [5, Corol-
lary 12.2],

(1) / hi(x)g(x,d)dx = F(b,d)g(b,d) - f F(x,d)dg(x,d).
Jo. Jo.

By applying Fubini's theorem to JE f(x,y)g(x,d) d(x,y), equation (1) gives

(2) jj{x,y)g{x,d)d{x,y)=^jj{x,y)d{x,y)SJg{b,d)- jf F(x,d)dg(x,d).

Similarly, we have

(3) JEf(x,y)g(b,y)d(x,y) = yEf(x,y)d(x,y)^g(b,d)- £ F(b,y)dg(b,y).
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Substitute (2) and (3) into the following integration by parts formula

(4) / f(x,y)g(x,y)d(x,y) = F(b,d)g(b,d) - f F(x,d) dg(x,d)
JB Ja

- j F(b,y)dg(b,y)+ f F(x,y) dg(x,y),
Jc JE

see [4, Section 2.11], gives the desired formula. D

We are now in the position to give a characterisation of the conjugate space
(H(E), ||-||)* of (H(E), HID, and hence answer the problem posed in [8, p.140].

THEOREM 3 . 2 . (H(E), \\-\\)* = SBV(E). More precisely, T is a bounded linear
functional on (H(E), \\-\\) if and only if there exists a function g0 £ SBV(E) such that

T{f)= f f(x,y)go(x,y)d(x,y)
JE

for every f G H{E).

PROOF: Suppose g0 E SBV(E). It follows from (4) that T is a bounded linear
functional on H(E), see also [9, p.16]. Now we shall prove the converse. Let T 6
(H(E), ||-||)* . By Theorem 2.2, there exists a finite signed Borel measure fi on (a, 6] x
(c, d] such that

T ( / ) = [ Fdy.
JE

for all / £ H(E). Let gn(x,y) = /x((a,z] x (c,y]), if a < x ^ b and c < y ^ d, and
be zero, otherwise. Then g^ is a function of strongly bounded variation on E, see [8,
Proposition 2.6]. Furthermore, JEFd/j. = JEFdgli, see [8, Proposition 2.11 - 2.13].
Consequently, we have

Fd9llT(f) = (
JEIE

for all / e H{E). By Theorem 3.1, we have

T(f)= f f(x,y)go(x,y)d(x,y)
JE

where go(x,y) = g»(b,d) - g^{b,y) - g,,.{x,d) + g^(x,y). The proof is complete. D

4. SOME KEY LEMMAS

Let {cfc} C E, where c* = (ajt,&t)- For a non-degenerate subinterval E\. of E
with opposite vertices c* and Ck+i, we write Ek = (ck,Ck+i) and we say that {2?*} is
monotone if {ot} and {&*} are both strictly monotone. In this case, we say that {c*}
is strictly monotone.

The following key Lemma plays an important role in proving Theorem 5.1.
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LEMMA 4 . 1 . Let {In}n°=i be a monotone sequence of subintervals of E. Let
{/„} be a sequence of Henstock integrable functions defined on E, where fn(x) = 0 for

oo oo

all x ^ In, and the series J2 11/* II converges. Then f = ^ fk is Henstock integrable
k=i k=i

on E with

I.'-
PROOF: Let /„ = (cn ,cn + 1 ) and lim cn = c. Let X = {c}, a singleton set.

n—»oo
oo

Observe that Y = {c} U [J /* is a closed subset of E. Thus the complement of

Y in E is a union of nonoverlapping intervals {Jjt}. Since / = 0 on E — Y and the
oo

series J^ ||/jt|| converges, the interval function Fo is well-defined where
*=i

f for / C E
*Ti • / / n /*

Let e > 0. We choose a positive integer N such that ^ | | /t | | < e. Define
fc=iV+l

6 : X —> R + by S(c) = dist (C,IN), the distance between {c} and IN . As the
sequence {/„} is monotone, for each 6-fine cover D = {(/0,c)} of X, there exists
a minimum positive integer No ^ JV + 1 such that Io C\ Ip ^ 0 for all p ^ iVo.
Consequently,

°°
k=N0

and by Theorem 2.3, / is Henstock integrable on the union of {/n}- As X is a singleton
set, fxY is Henstock integrable on E. Recall that / — 0 on £ — Y. We see that / is
Henstock integrable on E with value FQ(E). The proof is complete. D

LEMMA 4 . 2 . If f e -ff(-E), t A e n / / / -> 0 as diam/ -> 0, wAere I is a subin-
tervai of E.

PROOF: Let / = [11,2:2] X [2/1 >2/2]- Then we have

= (F(x2,y2) - F(Xl,y2)) + (F{xuyi) - F{x2,yi))I
where F is the primitive of / , and the result follows .from the uniform continuity of

F. D
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LEMMA 4 . 3 . Let {In}%Li be a monotone sequence ol intervals in E. If g $
ESBV(In) for infinitely many n, and for each n, fg £ B(In) for each f £ H(In),
then there exists f £ H(E) such that fg £ H(E).

PROOF: We may assume that g is not a function of strongly bounded variation
on each /„ . Then, by Theorem 3.2, for each n, the linear functional Tn : H{In) —> R
defined by

T»(/)= / f(x,y)g(x,y)d(x,y)

is not bounded on (H(In), | |- | |). Thus, for each positive integer n , there exists / „ 6
S(In) with fn(x) = 0 for x £ / „ and

L fn(x,y)g(x,y) d{x,y) with ||/n|| = 1 for aU n.

Define / = £ (l/*2)/**/* • Then, by Lemma 4.1, / £ H(E), but
k=i

(5) / f{x,y)g{x,y)d(x,y) = — I fn(x,y)g(x,y) d(x,y) ~>- 1 for all n.

By Lemma 4.2, fg 0 H(E). D

LEMMA 4 . 4 . Suppose the following conditions are satisfied :

(i) g is a multiplier for H(E);
(ii) g £ ESBV(Ei) for each subinterval Ei of E such that E\ is disjoint

from dE, the boundary of E.

Then g£ESBV{E).

PROOF: Let / £ H(E). Then, by (i), fg £ H(E). Let {£„} be a sequence of
subintervals of E such that diam En —> diam E as n —» oo and En D dE = 0 for all n.

By (ii), we may define a sequence of bounded linear functionals {Tn} on H(E) by
Tn(f) = JE fg. By the continuity of the primitive of fg, lim Tn(f) = JBfg- By
Theorem 2.1. The Banach-Steinhaus theorem (see [9, Corollary 14]) and Theorem 3.2,
gEESBV{E). D

5. CHARACTERISATION OF MULTIPLIERS

In this section, we shall prove the following main theorem.

THEOREM 5 . 1 . If fg £ H(E) for each f € B(E), then g £ ESBV(E).

PROOF: We shall call a point x £ E regular if there exists an open interval G
containing x, and g is almost everywhere equal to a function of strongly bounded
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variation on each interval contained in G. Denote the set of all regular points in E by
W. We shall prove that W = E.

Suppose that E\W is a nonempty set. In view of Lemma 4.4, we may suppose that
E\W is not a subset of a finite union of lines parallel to the coordinate axes, and E\W C
int E. Let («i,*i) G E\W. By our assumption, E\W <£ (si x \c,d\) U {[a,b] x U).
Then there exists (s2,<2) £ E\W such that si ^ S2 and <i ^ 12. By induction,
we may construct a sequence {(sn,tn)} C E\W such that Si 7̂  Sj and U ^ t;- if
i ^ j • By choosing a subsequence of {(sn,tn)} and relabelling, if necessary, we may
suppose that the sequence {(s n , i n )} is strictly monotone. Then we may construct a
sequence of monotone intervals {/n} such that (sn,tn) £ int /„ for each n. By our
definition of E\W, g 0 ESBV(In). By Lemma 4.3, we get a contradiction. The proof
is complete. D
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