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Abstract. We introduce and study the notion of hereditary frequent hypercyclicity, which
is a reinforcement of the well-known concept of frequent hypercyclicity. This notion
is useful for the study of the dynamical properties of direct sums of operators; in
particular, a basic observation is that the direct sum of a hereditarily frequently hypercyclic
operator with any frequently hypercyclic operator is frequently hypercyclic. Among
other results, we show that operators satisfying the frequent hypercyclicity criterion
are hereditarily frequently hypercyclic, as well as a large class of operators whose
unimodular eigenvectors are spanning with respect to the Lebesgue measure. However,
we exhibit two frequently hypercyclic weighted shifts Bw, Bw′ on c0(Z+) whose direct
sum Bw ⊕ Bw′ is not U -frequently hypercyclic (so that neither of them is hereditarily
frequently hypercyclic), and we construct a C-type operator on �p(Z+), 1 ≤ p < ∞,
which is frequently hypercyclic but not hereditarily frequently hypercyclic. We also solve
several problems concerning disjoint frequent hypercyclicity: we show that for every
N ∈ N, any disjoint frequently hypercyclic N-tuple of operators (T1, . . . , TN) can be
extended to a disjoint frequently hypercyclic (N + 1)-tuple (T1, . . . , TN , TN+1) as soon as
the underlying space supports a hereditarily frequently hypercyclic operator; we construct
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a disjoint frequently hypercyclic pair which is not densely disjoint hypercyclic; and we
show that the pair (D, τa) is disjoint frequently hypercyclic, where D is the derivation
operator acting on the space of entire functions and τa is the operator of translation by
a ∈ C \ {0}. Part of our results are in fact obtained in the general setting of Furstenberg
families.

Key words: frequent hypercyclicity, Furstenberg families, countable Lebesgue spectrum,
disjointness
2020 Mathematics Subject Classification: 47A16, 37A30 (Primary); 37B20 (Secondary)

1. Introduction
This paper is devoted to two different topics, both pertaining to the study of the dynamics
of linear operators. First, motivated by some questions regarding the behaviour of direct
sums of operators, we introduce a new dynamical property of continuous linear operators
on Banach or Fréchet spaces, which appears to be a very natural strengthening of the
classical notion of frequent hypercyclicity; we call it hereditary frequent hypercyclicity. We
believe that this is an interesting notion and we study it in some detail. Second, we address
some questions concerning disjoint frequent hypercyclicity—also called diagonal frequent
hypercyclicity. One notable connection between these two topics is that hereditarily
frequently hypercyclic operators can be used to extend diagonally frequently hypercyclic
tuples (see below).

In what follows, the letter X denotes an infinite-dimensional Polish topological vector
space and L(X) is the space of continuous linear operators on X. Recall that an operator
T ∈ L(X) is said to be hypercyclic if it has a dense orbit, that is, there exists x ∈ X such
that {T nx : n ≥ 0} is dense in X; equivalently, for each non-empty open set V ⊂ X,
the ‘visit set’ NT (x, V ) := {n ∈ N; T nx ∈ V } is infinite. A much stronger property,
introduced in [5], is frequent hypercyclicity: the operator T is frequently hypercyclic if
there exists x ∈ X such that for each non-empty open set V ⊂ X, the set NT (x, V ) has
positive lower density. We refer the reader to [7, 33] for an in-depth presentation of various
aspects of linear dynamics.

More recently, quantitative notions of hypercyclicity have begun to be studied in a
very general framework [11, 17, 24]. Let F be a Furstenberg family, that is, a family
of non-empty subsets of N which is hereditary upwards (if A′ ⊃ A ∈ F , then A′ ∈ F).
Following [11], we say that an operator T ∈ L(X) is F-hypercyclic if there exists x ∈ X,
called an F-hypercyclic vector for T, such that for each non-empty open set V ⊂ X,
the set NT (x, V ) belongs to F . Thus, hypercyclicity corresponds to the family of all
infinite subsets of N, and frequent hypercyclicity corresponds to the family of sets
with positive lower density. The set of F-hypercyclic vectors for T will be denoted by
F-HC(T ). However, in accordance with a well-established notation, we write HC(T ) in
the hypercyclic case and FHC(T ) in the frequently hypercyclic case. Also, when F is
the family of all subsets of N with positive upper density, we say that T is U -frequently
hypercyclic and we write UFHC(T ).

The starting point of the paper is the following question.
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Hereditary frequent hypercyclicity 3

Question 1.1. Let T1 ∈ L(X1) and T2 ∈ L(X2) be two frequently hypercyclic operators; is
it true that T1 ⊕ T2 is frequently hypercyclic?

This question seems to have been considered for the first time in [31, §8] and appears
as a natural variant of the following well-known open problem in linear dynamics [5]:
if T is a frequently hypercyclic operator, is it true that T ⊕ T is frequently hypercyclic?
Question 1.1 makes sense for F-hypercyclicity as well; and in the especially interesting
case T1 = T2, the answer is known for the family of all infinite subsets of N and for the
family of sets with positive upper density. Indeed, a famous example from [23] shows
that hypercyclicity of T does not imply that of T ⊕ T , whereas it is proved in [24] that
U -frequent hypercyclicity of T does imply that of T ⊕ T .

Given T1 ∈ L(X1) and T2 ∈ L(X2), two frequently hypercyclic operators, a natural
way to show that T1 ⊕ T2 is frequently hypercyclic would be the following. Let (Vi)i∈N
be a countable basis of open sets for X1 ×X2 and assume that each Vi has the form
Vi = Vi,1 × Vi,2, where Vi,1 is open in X1 and Vi,2 is open in X2. Pick a frequently
hypercyclic vector x1 ∈ X1 for T1. Then, for any i ∈ N, there exists a set Ai ⊂ N with
positive lower density such that T n1 x ∈ Vi,1 for all n ∈ Ai . We would be done if we were
able to find a vector x2 ∈ X2 with the following property: for every i ∈ N, there exists a
set Bi with positive lower density and contained in Ai (this is the important point, which
cannot be guaranteed if x2 is simply assumed to be frequently hypercyclic for T2) such that
T n2 x2 ∈ Vi,2 for all n ∈ Bi . This leads to the following definition.

Definition 1.2. Let F ⊂ 2N be a Furstenberg family. We say that an operator T ∈ L(X) is
hereditarily F-hypercyclic if, for any countable family (Vi)i∈I of non-empty open subsets
of X and any family (Ai)i∈I ⊂ F indexed by the same countable set I, there exists a vector
x ∈ X such that NT (x, Vi) ∩ Ai ∈ F for every i ∈ I ; in other words, for each i ∈ I , there
is a set Bi ∈ F such that Bi ⊂ Ai and T nx ∈ Vi for all n ∈ Bi .

When F is the family of sets with positive lower density, we say (of course) that the
operator T is hereditarily frequently hypercyclic; and likewise for U -frequent hypercyclic-
ity. By the above discussion, we get the following observation.

Observation 1.3. Let F ⊂ 2N be a Furstenberg family. If T1, T2 are two F-hypercyclic
operators and at least one of them is hereditarily F-hypercyclic, then T1 ⊕ T2 is
F-hypercyclic.

Note that when F is the family of all infinite subsets of N, hereditary F-hypercyclicity is
equivalent to topological mixing; see §9.1 for the (easy) proof. So, Observation 1.3 implies
in particular that the direct sum of a hypercyclic operator with a topologically mixing
operator is hypercyclic; which is of course well known.

We also point out that—perhaps surprisingly—hereditary F-hypercyclicity automati-
cally implies dense hereditary F-hypercyclicity: given (Ai) and (Vi) as in Definition 1.2
above, there is a dense set of vectors x ∈ X satisfying the required property; see
Proposition 6.4 below.

Having introduced a definition, we are immediately faced with some obvious questions.

https://doi.org/10.1017/etds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.13


4 F. Bayart et al

• Are there any hereditarily frequently hypercyclic operators? We answer this in the
affirmative by two different methods. Indeed, there are two ‘standard’ ways of proving
that an operator is frequently hypercyclic: either by showing that it satisfies the so-called
frequent hypercyclicity criterion (see [7] or [33]) or by exhibiting a large supply of
eigenvectors associated with unimodular eigenvalues (see for example [5] or [8]). It turns
out that in both cases, one gets in fact hereditary frequent hypercyclicity (Theorems 2.1,
3.1) or hereditary U -frequent hypercyclicity (Theorem 3.24).

• Is hereditary frequent hypercyclicity a new notion? In other words, are there any
frequently hypercyclic operators which are not hereditarily frequently hypercyclic? The
answer is ‘Yes’, and we prove this in two ways. On the one hand, we construct two
frequently hypercyclic weighted shifts Bw and Bw′ on c0(Z+) such that Bw ⊕ Bw′ is
not U -frequently hypercyclic (Theorem 4.2), so that neither of them can be hereditarily
frequently hypercyclic by Observation 1.3. This also gives a strong negative answer to
the T1 ⊕ T2 frequent hypercyclicity problem of Question 1.1. On the other hand, with the
terminology of [31], we construct a C-type operator on �p(Z+), 1 ≤ p < ∞, which is
frequently hypercyclic but not hereditarily frequently hypercyclic (Theorem 5.2).

• What are hereditarily frequently hypercyclic operators good for? We will use them in
the context of ‘disjoint hypercyclicity’. The notion of disjointness in linear dynamics was
introduced independently in [10, 14]. Let N ≥ 1 and let T1, . . . , TN ∈ L(X). Following
[14], we say that T1, . . . , TN are disjoint or that the tuple (T1, . . . , TN) is diagonally
hypercyclic if there exists x ∈ X such that the set {(T n1 x, . . . , T nNx) : n ≥ 0} is dense in
XN ; in other words, the ‘diagonal’ vector x ⊕ · · · ⊕ x is hypercyclic for T1 ⊕ · · · ⊕ TN .
Such a vector x is said to be d-hypercyclic for the tuple (T1, . . . , TN) and the set
of d-hypercyclic vectors for (T1, . . . , TN) will be denoted by d − HC(T1, . . . , TN).
Similarly, (T1, . . . , TN) is said to be d-frequently hypercyclic if there exists x ∈ X such
that x ⊕ · · · ⊕ x is a frequently hypercyclic vector for T1 ⊕ · · · ⊕ TN , and we denote by
d − FHC(T1, . . . , TN) the set of d-frequently hypercyclic vectors for (T1, . . . , TN).

A natural problem regarding d-hypercyclicity is that of the extension of d-hypercyclic
tuples. It was shown in [39] that given any N ≥ 1, any Banach space X and any
T1, . . . , TN ∈ L(X) such that (T1, . . . , TN) is d-hypercyclic, there exists TN+1 ∈ L(X)

such that (T1, . . . , TN+1) is also d-hypercyclic. As for d-frequent hypercyclicity, the
situation is trickier since there exist Banach spaces which do not support any frequently
hypercyclic operator [53]. The best one could hope for is that as soon as X supports a
frequently hypercyclic operator, then one can extend d-frequently hypercyclic tuples. We
are unable to prove this, but we show that one can indeed extend d-frequently hypercyclic
tuples as soon as X supports a hereditarily frequently hypercyclic operator (Theorem 6.1).

The preceding discussion has outlined the content of §§2–6 of the paper and hopefully
it is clear that §6 makes a transition between our two topics—hereditary frequent
hypercyclicity and d-frequent hypercyclicity. The next two sections are exclusively devoted
to d-frequent hypercyclicity. In §7, we show (in the spirit of [51]) that there exists a
d-frequently hypercyclic pair (T1, T2) on some Banach space X which is not densely
d-hypercyclic, that is, the set d − HC(T1, T2) is not dense in X (Theorem 7.2). In §8, we
give a sufficient condition for d-frequent hypercyclicity of a tuple (T1, . . . , TN) in terms
of eigenvectors of the operators Ti (Theorem 8.2); and this allows us for example to show
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that the pair (D, τa) is d-frequently hypercyclic, where D is the derivation operator on the
space of entire functions H(C) and τa is the operator of translation by a ∈ C \ {0}.

Finally, §9 contains a few additional remarks and a number of open questions
originating in a rather natural way from our work.

2. The frequent hypercyclicity criterion
The frequent hypercyclicity criterion (FHCC) is a very efficient tool for showing that a
given operator is frequently hypercyclic. Since [5], there have been several versions of it
in the literature; we choose here the most widely used [16]: an operator T ∈ L(X) satisfies
the FHCC provided there exist a dense set D ⊂ X and a map S : D → D such that:
• T S = I on D;
• for any x ∈ D, the series

∑
T nx and

∑
Snx are unconditionally convergent.

In this section, we show that the FHCC implies, in fact, hereditary frequent hyper-
cyclicity.

THEOREM 2.1. If T ∈ L(X) satisfies the FHCC, then T is hereditarily frequently hyper-
cyclic.

The proof of this theorem will closely mimic the classical proof that an operator
satisfying the FHCC is frequently hypercyclic. Recall that the latter depends on the
construction of subsets of N with positive lower density which are ‘well separated’. To
obtain hereditary frequent hypercyclicity, we need to control more precisely these subsets
and, in particular, we have to be sure that one can find them inside some prescribed subsets
of N (of positive lower density, of course). This is the content of the next lemma, which is
useful in other situations as well (see [36] and the very recent [18]). This lemma is actually
contained in [36, Lemma 2.2], but we give a proof for completeness (and convenience of
the reader).

LEMMA 2.2. Let (Ai)i∈I be a countable family of subsets of N with positive lower density
and let (Ni)i∈I be a family of positive integers indexed by the same countable set I. There
exists a family (Bi)i∈I of pairwise disjoint subsets of N with positive lower density such
that:
(a) Bi ⊂ Ai and min(Bi) ≥ Ni for all i ∈ I ;
(b) for any i, j ∈ I and any (n, m) ∈ Bi × Bj with n �= m, |n−m| ≥ Ni +Nj .

Proof. We may assume that I = N. For each i ∈ N, let Mi := 2 maxj≤i Nj .
Enumerate each set Ai as an increasing sequence (ni(k))k∈N and for s ≥ 1, define

Ai,s := {ni(sk) : k ∈ N},
Ãi,s := (Ai,s + [−Mi , Mi]) ∩ N.

Then (by subadditivity of upper density),

dens(Ãi,s) ≤ 2Mi + 1
s

·
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Since all sets Ai,s have positive lower density, it follows that one can construct, by
induction, a sequence of positive integers (s(i))i∈N such that for all i ∈ N, s(i) ≥ Mi and

dens(Ãi,s(i)) ≤ min
j<i

1
4i−j

dens(Aj ,s(j)).

We then set

Bi := Ai,s(i)\
⋃
j>i

Ãj ,s(j),

so that

dens(Bi) ≥ dens(Ai,s(i))
(

1 −
∑
j>i

1
4j−i

)
> 0.

Moreover, Bi is clearly contained in Ai , min(Bi) ≥ s(i) ≥ Mi , the sets Bi are pairwise
disjoint, and if (n, m) ∈ Bi × Bj with n �= m and j ≥ i, then:
• either j = i, in which case |n−m| ≥ s(i) ≥ Mi ≥ 2Ni = Ni +Nj ;
• or j > i, in which case |n−m| ≥ Mj ≥ Ni +Nj since n /∈ Bj + [−Mj , Mj ].

We can now give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let (Ap)p∈N be a sequence of subsets of N with positive lower
density and let (Vp)p∈N be a sequence of non-empty open subsets of X. We have to find a
vector x ∈ X such that NT (x, Vp) ∩ Ap has positive lower density for all p ∈ N; and for
that, we follow the proof of [7, Theorem 6.18]. Let us fix an F-norm ‖ · ‖ defining the
topology of X.

Let D be the dense set given by the FHCC. For each p ≥ 1, choose a vector
xp ∈ D ∩ Vp and let αp > 0 be such that B(xp, 3αp) ⊂ Vp. Let also (εp)p≥1 be a
summable sequence of positive real numbers such that for all p ≥ 1,

pεp +
∑

q>p+1

εq < αp.

By unconditional convergence of the series involved in the FHCC, for each p ≥ 1, one can
find a positive integer Np such that, for any set F ⊂ N ∩ [Np, ∞),∥∥∥∥∑

n∈F
T nxi

∥∥∥∥ +
∥∥∥∥∑
n∈F

Snxi

∥∥∥∥ ≤ εp for all i ≤ p.

Now, let (Bp)p∈N be the sequence of subsets of N with positive lower density associated
with (Ap) and (Np) by Lemma 2.2. The vector x we are looking for is defined by

x :=
∞∑
p=1

∑
n∈Bp

Snxp.
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First, we note that x is well defined. Indeed, each series
∑
n∈Bp S

nxp is convergent and
since Bp ⊂ [Np, ∞) for all p, we have∑

p≥1

∥∥∥∥ ∑
n∈Bp

Snxp

∥∥∥∥ ≤
∑
p≥1

εp < ∞.

Let us fix p ≥ 1 and n ∈ Bp: we show that T nx ∈ Vp. By definition of x, we have

‖T nx − xp‖ ≤
∞∑
q=1

∥∥∥∥ ∑
m∈Bq
m>n

Sm−nxq
∥∥∥∥ +

∞∑
q=1

∥∥∥∥ ∑
m∈Bq
m<n

T n−mxq
∥∥∥∥.

To estimate the first sum, we decompose it as
p∑
q=1

∥∥∥∥ ∑
m∈Bq
m>n

Sm−nxq
∥∥∥∥ +

∞∑
q=p+1

∥∥∥∥ ∑
m∈Bq
m>n

Sm−nxq
∥∥∥∥.

Since n ∈ Bp, we know thatm− n > max(Np, Nq) wheneverm ∈ Bq andm > n. By the
choice of the sequence (Np), it follows that

∞∑
q=1

∥∥∥∥ ∑
m∈Bq
m>n

Sm−nxq
∥∥∥∥ ≤ pεp +

∞∑
q=p+1

εq < αp.

Estimating the second sum in the same way, we conclude that

‖T nx − xp‖ < 3αp,

so that T n(x) ∈ Vp.

As a direct consequence of Theorem 2.1 and the fact that every frequently hypercyclic
weighted backward shift on �p(Z+) satisfies the FHCC [9], we obtain the following
corollary.

COROLLARY 2.3. A weighted backward shift on �p(Z+), 1 ≤ p < ∞ is frequently hyper-
cyclic if and only if it is hereditarily frequently hypercyclic.

Remark 2.4. It should be clear from the proof of Theorem 2.1 that the FHCC implies
hereditary F-hypercyclicity for any Furstenberg family F satisfying Lemma 2.2. For
example, this holds true for the family of sets with positive upper density and the family of
sets with positive Banach upper density, see [36, Lemma 2.2]; so any operator satisfying
the FHCC is hereditarily U -frequently hypercyclic. It is not clear to us that this could be
deduced from Theorem 2.1: indeed, if F and F ′ are two Furstenberg families, the inclusion
F ⊂ F ′ does not formally imply that hereditary F-hypercyclicity is a stronger property
than hereditary F ′-hypercyclicity.

3. Ergodic theory
3.1. Results and general strategy. It is well known that if T ∈ L(X) and if one can find
a T-invariant Borel probability measure μ on X with full support with respect to which T is
an ergodic transformation, then T is frequently hypercyclic. Let us recall the argument. Let
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(Vp)p∈N be a countable basis of open sets for X. Applying Birkhoff’s pointwise ergodic
theorem to the characteristic functions 1Vp , we obtain a sequence (�p) of subsets of X
with μ(�p) = 1 such that

1
N

#(NT (x, Vp) ∩ [0, N − 1]) = 1
N

N−1∑
n=0

1Vp (T
nx)

N→∞−−−−→ μ(Vp) > 0 for every x ∈ �p.

Hence, any x ∈ ⋂
p∈N �p is a frequently hypercyclic vector for T.

It is also well known (see for example [5], [7, Ch. 5], [8]) that if X is a complex Banach
space and if an operator T ∈ L(X) admits ‘sufficiently many’ T-eigenvectors (that is,
eigenvectors whose associated eigenvalues have modulus 1), then it is indeed possible to
find an ergodic measure with full support for T. So, it may seem reasonable to expect that
operators with sufficiently many T-eigenvectors are hereditarily frequently hypercyclic.

Now, if one wants to repeat the above argument to show that a given operator is
hereditarily frequently hypercyclic, Birkhoff’s ergodic theorem is not enough: what is
needed is a pointwise convergence result for averages of quantities of the form 1V (T nx)
not only along the whole sequence of integers, but in fact along any sequence (nk) with
positive lower density. Specifically, we will use a theorem of Conze [20], which we state
in the next section (Theorem 3.3). The assumptions of Conze’s theorem are much stronger
than merely asking that T is an ergodic transformation; so we will need to impose a rather
strong condition on the T-eigenvectors to be able to conclude that our operator T is indeed
hereditarily frequently hypercyclic.

Let us recall a few definitions. Assume that X is a complex Fréchet space. If T ∈ L(X),
a T-eigenvector field for T is any bounded map E : T → X such that T E(z) = zE(z) for
every z ∈ T. Given a positive Borel measure σ on T, we say that a family of T-eigenvector
fields (Ei)i∈I is σ -spanning if span (Ei(z) : z ∈ T \N , i ∈ I ) = X for every Borel set
N ⊂ T such that σ(N) = 0. Similarly, we say that the T-eigenvectors of T are σ -spanning
if for every Borel setN ⊂ T such that σ(N) = 0, the eigenvectors of T with eigenvalues in
T \N span a dense subspace of X. It follows from [7, Lemma 5.29] that the T-eigenvectors
of T are σ -spanning if and only if there exists a σ -spanning countable family of Borel
T-eigenvector fields for T. One of our main aims in this part of the paper will be to prove
the following theorem. (We refer to any book on Banach space theory, for example [2], for
the definition of type. Let us just recall that an Lp-space has type 2 if 2 ≤ p < ∞ and type
p if 1 ≤ p < 2.)

THEOREM 3.1. Let X be a separable complex Banach space and let T ∈ L(X). Assume
that one can find a λ-spanning, finite or countably infinite family (Ei)i∈I of T-eigenvector
fields for T, where λ is the Lebesgue measure on T. Moreover, assume that one of the
following holds true:
(a) X has type 2;
(b) X has type p ∈ [1, 2) and each eigenvector field Ei is αi-Hölderian for some

αi > 1/p − 1/2.
Then T is hereditarily frequently hypercyclic.

From this, we immediately get the following corollary.
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COROLLARY 3.2. Let X be a separable complex Banach space and let T ∈ L(X). If the
T-eigenvectors of T are spanning with respect to the Lebesgue measure and if, moreover,
the Banach space X has type 2, then T is hereditarily frequently hypercyclic.

In view of the above discussion, our strategy for proving Theorem 3.1 should be
clear: we will show that under the above assumptions, one can find a T-invariant (Borel
probability) measure μ on X for which one can apply Conze’s Theorem 3.3 below to get
hereditary frequent hypercyclicity. This will yield a more precise result, Theorem 3.9.

The proof of Theorem 3.1 will occupy us from §§3.2 to 3.6. After that, in §3.7, we
will come back to the FHCC; in particular, we explain how the ergodic-theoretic point
of view allows to give a completely different proof of Theorem 2.1, and we compare the
assumptions in Theorems 2.1 and 3.1. Finally, in §3.8, we show that an assumption on
the T-eigenvectors similar to that of Corollary 3.2 but much weaker—namely, the perfect
spanning property—is sufficient to imply hereditary U -frequent hypercyclicity (without
any additional assumption on the space X).

3.2. Conze’s theorem. Before stating Conze’s theorem, let us introduce some
terminology.

In what follows, by a measure-preserving dynamical system (X, B, μ, T ), we mean a
pair consisting of a probability space (X, B, μ) and a measurable map T : X → X such
that μ ◦ T −1 = μ. Note that here, we are departing from our standing notation: X is an
abstract space, not necessarily a topological vector space, and hence, T is not necessarily
a linear operator. This ambiguity is in fact intentional and it should cause no confusion.

Given a measure-preserving dynamical system (X, B, μ, T ), we denote by
UT : L2(X, B, μ) → L2(X, B, μ) the associated Koopman operator, which is defined by

UT f := f ◦ T .

This is an isometry of L2(X, B, μ), and a unitary operator if T is bijective and bimea-
surable, in which case we say that T is an automorphism of (X, B, μ) or that the
measure-preserving dynamical system (X, B, μ, T ) is invertible.

We stress a technical point: all probability spaces (X, B, μ) under consideration will
be assumed to be standard Borel, that is, the underlying measurable space (X, B) is
isomorphic to (Z, B(Z)) for some Polish space Z, where B(Z) is the Borel σ -algebra of
Z. Additionally, when X is already a Polish space, we assume that B is the Borel σ -algebra
of X.

A unitary operator U : H → H acting on a Hilbert space H is said to have Lebesgue
spectrum if there exists a family of vectors (fi)i∈I in H such that {Unfi : n ∈ Z, i ∈ I }
is an orthonormal basis of H. Observe that if H is separable, the family (fi) has to be finite
or countably infinite. When there exists a countably infinite such family (fi), we say that
U has countable Lebesgue spectrum. Finally, we say that an invertible measure-preserving
dynamical system (X, B, μ, T ) has (countable) Lebesgue spectrum if the restriction of
the Koopman operator UT to L2

0(X, B, μ) := {f ∈ L2(X, B, μ) :
∫
X
f dμ = 0} has

(countable) Lebesgue spectrum. We may also say that T itself has (countable) Lebesgue
spectrum.

Conze’s theorem from [20] now reads as follows.
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THEOREM 3.3. Let (X, B, μ, T ) be an invertible measure-preserving dynamical system
and assume that T has Lebesgue spectrum. If (nk)k≥0 is an increasing sequence of integers
with positive lower density then, for any f ∈ L1(μ),

1
N

N−1∑
k=0

f (T nkx)
N→∞−−−−→

∫
X

f dμ for μ-almost every x ∈ X.

Getting back to the case where X is a separable Banach space, it is easy to check that
if T ∈ L(X) and if one can find a T-invariant measure with full support μ such that
(X, B, μ, T ) satisfies the assumptions of Conze’s theorem, then T is hereditarily frequently
hypercyclic. However, Conze’s theorem is only stated for automorphisms and, in our
context, it would be rather restrictive to confine ourselves to the case of automorphisms. We
will get round this problem thanks to the notion of factor. Recall that a measure-preserving
dynamical system (X, B, μ, T ) is a factor of a measure-preserving dynamical system
(Y , C, ν, S) or that (Y , C, ν, S) is an extension of (X, B, μ, T ), if (possibly after deleting
two sets of measure 0 in X and Y) there exists a measurable map π : Y → X such that
π ◦ S = T ◦ π and μ = ν ◦ π−1. Using suitable extensions, we will be able to apply
Conze’s theorem to general operators T via the following corollary.

COROLLARY 3.4. Let T ∈ L(X) and assume that there exists a T-invariant probability
measure μ on X with full support such that (X, B, μ, T ) is a factor of an invertible
measure-preserving dynamical system (Y , C, ν, S) with Lebesgue spectrum. Then, T is
hereditarily frequently hypercyclic. More precisely, given a countable family (Ai)i∈I of
subsets of N with positive lower density and a family (Vi)i∈I of non-empty open sets,
μ-almost every x ∈ X is such that NT (x, Vi) ∩ Ai has positive lower density for every
i ∈ I .

Proof. It is enough to prove the result for a single pair (A, V ), where A ⊂ N has positive
lower density and V is a non-empty open set.

Let (nk)k≥1 be the increasing enumeration of A. Let also W := π−1(V ), where
π : (Y , C, ν, S) → (X, B, μ, T ) is a factor map, so that ν(W) = μ(V ) > 0, and let

� :=
{
y ∈ Y :

1
N

N∑
k=1

1W(Snky)
N→∞−−−−→ μ(V )

}
.

By Conze’s theorem, we know that ν(�) = 1. Since we are working with standard Borel
spaces, it follows that the set π(�) is μ-measurable (being an analytic set, it is universally
measurable) and that μ(π(�)) = 1. So it is enough to show that every x ∈ π(�) is such
that dens(NT (x, V ) ∩ A) > 0.

Let x ∈ π(�) and write x as x = π(y) for some y ∈ �. By definition of �, we know
that the set {k ≥ 1 : Snky ∈ W } has positive lower density; enumerate it as an increasing
sequence (mk)k≥1. Then, B := {nmk : k ≥ 1} has positive lower density, it is contained
in A and Sny ∈ π−1(V ) for all n ∈ B. This means that T nx ∈ V for all n ∈ B, which
concludes the proof.
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3.3. Natural extensions. To apply Corollary 3.4, we need a simple way of extending
a given measure-preserving dynamical system (X, B, μ, T ) to a measure-preserving
dynamical system (X̃, B̃, μ̃, T̃ ), where T̃ is an automorphism of (X̃, B̃, μ̃). Fortunately,
there is a canonical procedure doing precisely that. Consider the set

X̃ := {(xk)k≥0 ∈ XZ+ : T (xk+1) = xk for all k ≥ 0},
and for k ≥ 0, let πk : X̃ → X denote the projection onto the kth coordinate of X̃. Endow
X̃ with the smallest σ -algebra B̃ which makes every projection πk measurable. The
Rokhlin’s natural extension of T is the measurable transformation T̃ : X̃ → X̃ defined by

T̃ (x0, x1, . . .) := (T (x0), x0, x1, . . .).

One can prove that there exists a unique probability measure μ̃ on (X̃, B̃) such that
μ̃ ◦ π−1

k = μ for all k ≥ 0. (Here, the fact (X, B) is a standard Borel space is needed.)
Then, it is a simple exercise to check that T̃ : X̃ → X̃ is an automorphism of (X̃, B̃, μ̃)
such that πk ◦ T̃ = T ◦ πk for all k ≥ 0. In particular, (X, B, μ, T ) is a factor of
(X̃, B̃, μ̃, T̃ ) as witnessed by π0 : X̃ → X. Note also that if X is a Polish space, then X̃ is
a Borel subset of the Polish space XZ+ endowed with the product topology, and B̃ is the
Borel sigma-algebra of X̃. For more details, see for example [56, §8.4] or [46].

We will need the following lemma. Recall that if X is a complex Fréchet space, a Borel
probability measure μ on X is said to be Gaussian if every continuous linear functional on
X has a complex symmetric Gaussian distribution when considered as a random variable
on (X, B, μ).

LEMMA 3.5. Assume that X is a complex Fréchet space, that T ∈ L(X) and that the
measureμ is Gaussian. Then, X̃ is a Fréchet space when endowed with the induced product
topology of XZ

+
, T̃ is an invertible continuous linear operator on X̃ and the measure μ̃ is

Gaussian.

Proof. It is clear that X̃ is a closed linear subspace of XZ+ (and hence a Fréchet space)
and that T̃ is an invertible continuous linear operator on X̃.

Let φ be a continuous linear functional on X̃. By the Hahn–Banach theorem, one can
extend φ to a continuous linear functional � on XZ+ . Since XZ+ is endowed with the
product topology, this linear functional � has the form

� =
N∑
k=0

x∗
k ◦ πk ,

where x∗
0 , . . . , x∗

N ∈ X∗. Moreover, by definition of X̃, we have πk = T N−k ◦ πN on X̃
for k = 0, . . . , N ; so we may write

φ = x∗ ◦ πN where x∗ =
N∑
k=0

x∗
k ◦ T N−k ∈ X∗.

Hence, μ̃ ◦ φ−1 = (μ̃ ◦ π−1
N ) ◦ (x∗)−1 = μ ◦ (x∗)−1. Since μ is a Gaussian measure,

it follows that μ̃ is Gaussian as well.
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3.4. Gaussian measures and countable Lebesgue spectrum. In this section, we state a
general result about Gaussian linear measure-preserving dynamical systems. This result
looks very much like [21, Theorem 14.3.2], but it is not clear to us that it can be formally
deduced from it; so we will give a more or less complete proof. However, this proof is not
necessary for understanding the proof of Theorem 3.1, so it is postponed to §3.6 for the
sake of better readability. This means that a reader who is ready to take Proposition 3.6 on
faith can safely ignore that section.

Recall that if (X, B, μ, T ) is a measure-preserving dynamical system then, for any
f ∈ L2(μ), there is a unique positive Borel measure σf on T with non-negative Fourier
coefficients

σ̂f (n) = 〈UnT f , f 〉L2(μ), n ≥ 0.

This follows from Herglotz’s theorem and from the fact that the Koopman oper-
ator UT : L2(μ) → L2(μ) is a contraction operator (so that the map Z+ � n �→
〈UnT f , f 〉L2(μ) can be extended to a positive-definite function on Z, see for example
[55, p. 28]). The measure σf is the spectral measure of f with respect to UT .

PROPOSITION 3.6. Let (X, B, μ, T ) be a measure-preserving dynamical system where
X is a separable Fréchet space, T is an invertible linear operator and μ is a Gaussian
measure on X. Assume that for any x∗ ∈ X∗ ⊂ L2(μ), the spectral measure σx∗ with
respect to UT is absolutely continuous with respect to the Lebesgue measure. Then,
(X, B, μ, T ) has countable Lebesgue spectrum.

Proposition 3.6 has the following consequence for not necessarily invertible Gaussian
linear measure-preserving dynamical systems.

COROLLARY 3.7. Let (X, B, μ, T ) be a measure-preserving dynamical system, where
X is a complex separable Fréchet space, T is a continuous linear operator and μ is a
Gaussian measure on X. Assume that for any x∗ ∈ X∗ ⊂ L2(μ), the spectral measure σx∗
with respect to UT is absolutely continuous with respect to the Lebesgue measure. Then,
the natural extension of (X, B, μ, T ) has countable Lebesgue spectrum.

Proof. Let (X̃, B̃, μ̃, T̃ ) be the natural extension. By Lemma 3.5, we know that T̃ is an
invertible linear operator and μ̃ is a Gaussian measure. Hence, by Proposition 3.6, it is
enough to show that for any continuous linear functional φ on X̃, the spectral measure σφ
(with respect to UT̃ ) is absolutely continuous with respect to the Lebesgue measure.

By the proof of Lemma 3.5, one can find N ∈ Z+ and x∗ ∈ X∗ such that φ = x∗ ◦ πN
on X̃, where πN : XZ+ → X is the projection onto the Nth coordinate. Now, we apply
the following purely formal fact, which holds true for any measure-preserving dynamical
system (X, B, μ, T ).

FACT 3.8. Let f ∈ L2(X, B, μ) and F := f ◦ πN ∈ L2(X̃, B̃, μ̃). Then, the spectral
measure σF with respect to UT̃ is equal to σf , the spectral measure of f with respect
to UT .
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Proof of Fact 3.8. For all n ≥ 0,

〈Un
T̃
F , F 〉L2(μ̃) = 〈F ◦ T̃ n, F 〉L2(μ̃) = 〈f ◦ πN ◦ T̃ n, f ◦ πN 〉L2(μ̃)

= 〈f ◦ T n ◦ πN , f ◦ πN 〉L2(μ̃)

= 〈f ◦ T n, f 〉L2(μ)

= 〈UnT f , f 〉L2(μ).

By Fact 3.8, σφ = σx∗ is absolutely continuous with respect to the Lebesgue measure,
which concludes the proof of Corollary 3.7.

3.5. Proof of Theorem 3.1. We can now state and prove very easily the following more
precise version of Theorem 3.1.

THEOREM 3.9. Let X be a separable complex Banach space and let T ∈ L(X). Assume
that one can find a λ-spanning, finite or countably infinite family (Ei)i∈I of T-eigenvector
fields for T, where λ is the Lebesgue measure on T. Moreover, assume that one of the
following holds true:
(a) X has type 2;
(b) X has type p ∈ [1, 2), and each Ei is αi-Hölderian for some αi > 1/p − 1/2.
Then, there exists a T-invariant Gaussian measure μ on X with full support such that
(X, B, μ, T ) is a factor of a measure-preserving system which has countable Lebesgue
spectrum. In particular, T is hereditarily frequently hypercyclic; and more precisely: given
a countable family (Ai)i∈I of subsets of N with positive lower density and a family (Vi)i∈I
of non-empty open sets, μ-almost every x ∈ X is such that NT (x, Vi) ∩ Ai has positive
lower density for every i ∈ I .

Proof. Under the assumptions above, there exists a T-invariant Gaussian measure μ on X
with full support such that, for all x∗ ∈ X∗, the measure σx∗ is absolutely continuous with
respect to the Lebesgue measure; this is contained for instance in [7, Lemma 5.35, (4)].
So, the result follows immediately from Corollaries 3.7 and 3.4.

3.6. Proof of Proposition 3.6. In this section, we give the promised proof of
Proposition 3.6.

3.6.1. Two facts concerning unitary operators. We will need several results on unitary
operators. These results are certainly well known, but since they are rather difficult to
locate in the literature, we provide some details.

Let U be a unitary operator acting on a complex separable Hilbert space H . By
Herglotz’s theorem, for any f ∈ H , there exists a unique positive and finite Borel measure
σf on T, called the spectral measure of f with respect to U, such that

for all n ∈ Z : 〈Unf , f 〉 = σ̂f (n).

Note in particular that σf is equal to the Lebesgue measure λ if and only if the sequence
(Unf )n∈Z is orthonormal. This explains the terminology ‘Lebesgue spectrum’.
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Denote by C(f ) the cyclic subspace generated by f , that is, C(f ) = span(Unf :
n ∈ Z). With this notation, one form of the spectral theorem reads as follows (see for
example [19, Ch. IX], [47, Appendix, §2] or [49]): there exists a finite or infinite sequence
of vectors fi ∈ H , 0 ≤ i < m, where m ∈ N ∪ {∞}, such that

H =
⊕

0≤i<m
C(fi) and σf0 � σf1 � · · · � σfi � · · · .

Moreover, these measures are essentially unique in the following sense: for any other
sequence (gi)0≤i<m′ satisfyingH = ⊕

0≤i<m′ C(gi) and σg0 � σg1 � · · · � σgi � · · ·,
we have m′ = m and σfi ∼ σgi for all i. The maximal spectral type of T is then defined as
(the equivalence class of) the measure σf0 .

Observe that for any f ∈ H , the restriction of U to C(f ) is unitary equivalent to
the multiplication operator Mσf : L2(T, σf ) → L2(T, σf ) defined by Mσf u(z) := zu(z),
z ∈ T.

Suppose now that U has countable Lebesgue spectrum and let (fi)i∈N be a sequence in
H such that {Unfi : n ∈ Z, i ∈ N} is an orthonormal basis ofH . Then,H = ⊕

i∈N C(fi)
and σfi = λ for all i ∈ I . Hence, U is unitarily equivalent toM(∞)

λ := ⊕∞
i=1 Mλ acting on⊕∞

i=1 L
2(T, λ). Conversely, it is clear that if U ∼= M

(∞)
λ , then U has countable Lebesgue

spectrum.
By the uniqueness part of the spectral theorem, it follows in particular that the maximal

spectral type of a unitary operator with countable Lebesgue spectrum is the Lebesgue
measure. The next lemma is a kind of converse.

LEMMA 3.10. Let U be a unitary operator on a complex separable Hilbert space H
satisfying the following two conditions.
(a) There exists a closed subspaceK ⊂ H such that U(K) = K and U|K : K → K has

countable Lebesgue spectrum.
(b) The maximal spectral type of U is the Lebesgue measure.
Then, U : H → H has countable Lebesgue spectrum.

Proof. We will use the following notation: if σ is a positive finite Borel measure
on T and N ∈ N ∪ {∞}, we denote by M

(N)
σ the operator

⊕
0≤j<N Mσ acting on⊕

0≤j<N L2(T, σ). Recall also that λ is the Lebesgue measure on T.
By condition (a), we know that

U|K ∼= M
(∞)
λ .

Consider now the operator U|K⊥ : K⊥ → K⊥. By condition (b), its maximal spectral
type is absolutely continuous with respect to the Lebesgue measure λ. By the ‘second
formulation’ of the spectral theorem (see for example [49] or [19, Ch. IX]), there exist
pairwise disjoint Borel sets
∞, 
1, 
2, . . . and positive finite measures μ∞, μ1, μ2, . . .
on T supported on 
∞, 
1, 
2, . . . and absolutely continuous with respect to λ, such
that U|K⊥ is unitarity equivalent to M

(∞)
μ∞ ⊕M

(1)
μ1 ⊕M

(2)
μ2 ⊕ · · · . Note that some of

the measures μn may be 0. For n ∈ {∞} ∪ N, we may write μn = fn λ for some
non-negative function fn ∈ L1(T) and we may assume that 
n = {fn > 0}. Hence, if
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we set νn := 1
n λ, we get Mμn
∼= Mνn since the measures μn and νn are equivalent.

Therefore,

U|K⊥ ∼= M(∞)
ν∞ ⊕M(1)

ν1
⊕M(2)

ν2
⊕ · · · .

Now, let E := T\(
∞ ∪ ⋃
n≥1 
n) and ν := 1E λ. Then, λ = ν + ν∞ + ∑

n∈N
νn so

that

Mλ
∼= Mν ⊕Mν∞ ⊕Mν1 ⊕ · · · .

Consequently, we obtain

U ∼= U|K ⊕ U|K⊥

∼= M(∞)
ν ⊕M(∞)

ν∞ ⊕M(∞)
ν1

⊕M(∞)
ν2

⊕ · · ·
⊕M(∞)

ν∞ ⊕M(1)
ν1

⊕M(2)
ν2

⊕ · · ·
∼= M(∞)

ν ⊕M(∞)
ν∞ ⊕M(∞)

ν1
⊕M(∞)

ν2
· · ·

∼= M
(∞)
λ ,

which means that U has countable Lebesgue spectrum.

The following observation is useful to check assumption (a) in Lemma 3.10.

LEMMA 3.11. Let (fi)i∈I be a countably infinite family of vectors in H. Assume that
the cyclic subspaces C(fi) are pairwise orthogonal and let K := ⊕i∈IC(fi). If σfi is
equivalent to the Lebesgue measure for all i ∈ I , then U|K has countable Lebesgue
spectrum.

Proof. For each i ∈ I , there exists gi ∈ C(fi) such that σgi is exactly equal to the
Lebesgue measure and for any such gi , we have C(gi) = C(fi); see for example [47, pp.
93–94]. Hence, {Ungi : i ∈ I , n ∈ Z} is an orthonormal basis of K.

We will also need the following fact.

LEMMA 3.12. Let U be a unitary operator acting on a separable Hilbert space H and let
σ be a finite, positive Borel measure on T. If there exists a dense set D ⊂ H such that
σf � σ for all f ∈ D, then σf � σ for all f ∈ H .

Proof. Denote by M(T) the space of all complex Borel measures on T. By [49, Corollary
2.2], the map f �→ σf is continuous from H into M(T) endowed with the norm topology.
The result follows immediately.

3.6.2. Proof of Proposition 3.6. Before really starting the proof, we need to recall
some basic facts concerning the L2-space of a Gaussian measure. In what follows, μ is
a Gaussian measure on the (separable) complex Fréchet space X.

Let G := span (〈x∗, ·〉 : x∗ ∈ X∗), where the closure is taken in L2(X, B, μ). This is
a Gaussian subspace of L2(X, B, μ), in the sense that any function in G has symmetric
complex Gaussian distribution. Moreover, G is clearly UT -invariant.
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For k ≥ 0, let us denote by Gk the space of homogeneous polynomials of degree k in
the elements of G, with G0 = C. The subspaces Gk , k ≥ 0, are linearly independent (which
is not obvious) and one can orthonormalize them thanks to the so-called Wick transform
f �→ ::: f ::: which is defined on

⋃
k≥0 Gk as follows:

::: f ::: =
{
f if f is constant,

f − Pkf if f ∈ Gk , k ≥ 1,

where we denote by Pk the orthogonal projection onto span (Gi : 0 ≤ i ≤ k − 1).
With this notation, we have the orthogonal decomposition

L2(X, B, μ) =
∞⊕
k=0

::: Gk :::.

Moreover, for any f1, . . . , fk , g1, . . . , gk ∈ G, the scalar product 〈::: f1 · · · fk ::: , :::
g1 · · · gk :::〉 is given by

〈::: f1 · · · fk ::: , ::: g1 · · · gk :::〉 =
∑
s∈Sk

〈fs(1), g1〉 · · · 〈fs(k), gk〉, (3.1)

where Sk is the permutation group of {1, . . . , k}.
For details on these general facts, we refer to [48, Ch. 8] or [34, Chs. 2 and 3]. We will

also need the following lemma (see [5, Lemma 3.28]).

LEMMA 3.13. Let T ∈ L(X) and let μ be a T-invariant Gaussian measure on X. For any
f1, . . . , fk ∈ G, we have

UT (::: f1 · · · fk :::) = ::: (UT f1) · · · (UT fk) ::: .

In particular, each subspace ::: Gk ::: is UT -invariant.

We can now finally give the proof of Proposition 3.6.

Proof of Proposition 3.6. Let (X, B, μ, T ) be a measure-preserving dynamical system,
where T ∈ (X) is invertible and the measure μ is Gaussian, such that for any x∗ ∈ X∗ ⊂
L2(μ), the spectral measure σx∗ with respect to UT is absolutely continuous with respect
to the Lebesgue measure. We want to show that (X, B, μ, T ) has countable Lebesgue
spectrum.

Let us first recall that for any f , g ∈ L2(μ), there is a unique complex Borel measure
σf ,g on T with Fourier coefficients

σ̂f ,g(n) = 〈UnT f , g〉, n ∈ Z.

If f = g, then σf ,f is the spectral measure σf ; and the existence of σf ,g for arbitrary
functions f and g follows from a polarization argument. Indeed, we have

σf ,g = 1
4

3∑
k=0

ikσf+ikg .
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This formula and the assumption of the proposition show that σx∗,y∗ is absolutely
continuous with respect to the Lebesgue measure for any x∗, y∗ ∈ X∗. Note also that the
map (f , g) �→ σf ,g is obviously R-bilinear.

In what follows, we denote by � the convolution product for measures on T and we write
the elements of X∗ as f , g, . . . rather than x∗, y∗, . . . to avoid the proliferation of stars.

FACT 3.14. If f1, . . . , fk ∈ X∗, then σ:::f1···fk::: = ∑
s∈Sk

σfs(1),f1 � · · · � σfs(k),fk .
Proof of Fact 3.14. By Lemma 3.13 and equation (3.1), we have for all n ∈ Z:

σ̂:::f1···fk:::(n) = 〈::: (UnT f1) · · · (UnT fk) ::: , ::: f1 · · · fk :::〉
=

∑
s∈Sk

〈UnT fs(1), f1〉 · · · 〈UnT fs(k), fk〉

=
∑
s∈Sk

σ̂fs(1),f1(n) · · · σ̂fs(k),fk (n).

Now, let us denote by D the set of all functions f ∈ L2(μ) of the form

f =
N∑
k=1

:::
mk∑
j=1

fj ,1 · · · fj ,k ::: with mk ≥ 1 and fj ,i ∈ X∗.

This is a dense linear subspace of L2
0(μ).

FACT 3.15. If f ∈ D, then σf is absolutely continuous with respect to the Lebesgue
measure.

Proof of Fact 3.15. Let f ∈ D, so that f = ∑N
k=1 fk , where

fk =
mk∑
j=1

::: fj ,1 · · · fj ,k ::: with fj ,i ∈ X∗, so that fk ∈ ::: Gk :::.

By orthogonality and UT -invariance of the subspaces ::: Gk :::, we have for all n ∈ Z,

σ̂f (n) = 〈UnT f , f 〉 =
N∑
k=1

〈UnT fk , fk〉 =
N∑
k=1

σ̂fk (n),

so that σf = σf1 + · · · + σfN . Hence, it is enough to check that each measure σfk is
absolutely continuous with respect to the Lebesgue measure. However, this is clear by
Fact 3.14 and bilinearity of the map (f , g) �→ σf ,g: indeed, we have

σfk =
N∑

j ,j ′=1

σ:::fj ,1···fj ,k::: , :::fj ′ ,1···fj ′ ,k::: =
N∑

j ,j ′=1

∑
s∈Sk

σfj ,s(1),fj ′ ,1 � · · · � σfj ,s(k),fj ′ ,k

and the result follows since all measures σfj ,s(i),fj ′ ,i are absolutely continuous with respect
to the Lebesgue measure.

We can now finish the proof of Proposition 3.6. By Fact 3.15 and Lemma 3.12, the
maximal spectral type of UT is absolutely continuous with respect to the Lebesgue

https://doi.org/10.1017/etds.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.13


18 F. Bayart et al

measure. Now, take any f ∈ X∗ \ {0}. Then, σf is a non-zero measure which is absolutely
continuous with respect to the Lebesgue measure. It follows that there exists k0 ≥ 1 such
that, for all k ≥ k0, the measure σ:f k : = k! σf � · · · � σf (k times) is equivalent to the
Lebesgue measure (see for example [45, Lemma 3.6], where the symmetry assumption on
the measure is in fact not necessary). Let us set

K := span {UnT (::: f k :::) : n ∈ Z, k ≥ k0}.
By orthogonality andUT -invariance of the spaces ::: Gk :::, and applying Lemma 3.11, we see
that (UT )|K has countable Lebesgue spectrum. Hence, by Lemma 3.10, UT has countable
Lebesgue spectrum.

3.7. The frequent hypercyclicity criterion again. The tools introduced in the previous
sections allow us to give another proof of Theorem 2.1. Arguably, this proof is much
less elementary. Let us say that an operator T ∈ L(X) has countable Lebesgue spectrum
after extension if there exists a T-invariant Borel probability measure μ on X with full
support such that (X, B, μ, T ) is a factor of a measure-preserving dynamical system which
has countable Lebesgue spectrum. By Corollary 3.4, any such operator T is hereditarily
frequently hypercyclic.

PROPOSITION 3.16. Let T ∈ L(X) be an operator satisfying the FHCC. Then, T has
countable Lebesgue spectrum after extension.

Proof. It is shown in [44] that there exists a T-invariant measure μ on X with full
support such that (X, B, T , μ) is a factor of a Bernoulli shift; and it is well known that
Bernoulli shifts have countable Lebesgue spectrum (see for example [57, Theorems 4.30
and 4.33]).

One can also prove the following ‘probabilistic’ version of Proposition 3.16. Let us say
that a sequence (xn)n∈Z is a bilateral backward orbit for an operator T if T xn = xn−1 for
all n ∈ Z.

PROPOSITION 3.17. Let X be a complex Fréchet space and let T ∈ L(X). Assume that
there exists a bilateral backward orbit (xn)n∈Z for T such that span(xn : n ∈ Z) = X and
the series

∑
gnxn is almost surely convergent, where (gn) is a sequence of independent

complex standard Gaussian variables. Then, T has countable Lebesgue spectrum after
extension. More precisely, there exists a T-invariant Gaussian measure μ on X with full
support such that (X, B, μ, T ) is a factor of a measure-preserving dynamical system with
countable Lebesgue spectrum.

The (almost sure) convergence of the bilateral series
∑
gnxn means that both series∑

n≥0

gnxn and
∑
n<0

gnxn

are (almost surely) convergent.
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Proof. Let μ be the distribution of the random variable ξ := ∑
n∈Z gnxn. This is a

Gaussian measure, which has full support since span(xn : n ∈ Z) = X and which is
T-invariant because (xn) is a bilateral backward orbit for T. By Corollary 3.7, it is enough
to show that for any x∗ ∈ X∗ ⊂ L2(μ), the spectral measure σx∗ of x∗ with respect to UT
is absolutely continuous with respect to the Lebesgue measure.

By orthogonality of the Gaussian variables gk , we have for all n ≥ 0,

σ̂x∗(n) = 〈UnT x∗, x∗〉 =
∑
k∈Z

〈x∗, T nxk〉 〈x∗, xk〉

=
∑
k∈Z

〈x∗, xk−n〉 〈x∗, xk〉.

The series is absolutely convergent since the almost sure convergence of the scalar
Gaussian series

∑〈x∗, xk〉 gk implies that
∑
k∈Z |〈x∗, xk〉|2 < ∞.

Now, let ϕ ∈ L2(T) be the function with Fourier coefficients ϕ̂(k) := 〈x∗, x−k〉, k ∈ Z,
that is,

ϕ(z) ∼
∑
k∈Z

〈x∗, x−k〉 zk;

and let g := |ϕ|2 ∈ L1(T). By definition, we have for all n ≥ 0,

ĝ(n) =
∑
k∈Z

ϕ̂(k) ϕ̂(n− k) =
∑
k∈Z

〈x∗, xk〉 〈x∗, xk−n〉.

Since two positive measures on T with the same non-negative Fourier coefficients must
be equal, it follows that σx∗ = g(λ) dλ, which concludes the proof.

Remark 3.18. The above proof shows in particular that if (xn)n∈Z is a bilateral backward
orbit for T such that the series

∑
gnxn is almost surely convergent, then the distribution

of the random variable ξ := ∑
n∈Z gnxn is a strongly mixing measure for T. This is not

specific to Gaussian variables: as shown in [1], the same result holds true if (gn) is replaced
by any sequence of independent, identically distributed random variables.

We mentioned above that Proposition 3.17 is a probabilistic version of Proposition 3.16;
let us be a little bit more explicit. The following fact (which was observed independently
by A. López-Martínez) can be extracted from the proof of [1, Theorem 4.9].

Fact 3.19. Let X be a Fréchet space. If T ∈ L(X) satisfies the FHCC, then there exists a
bilateral backward orbit (xn) for T such that span(xn : n ∈ Z) = X and the series

∑
xn

is unconditionally convergent.

In view of that, the next result is an improvement of Proposition 3.16 when X is a Banach
space with non-trivial cotype.

COROLLARY 3.20. Let X be a Banach space with non-trivial cotype and let
T ∈ L(X). Assume that there exists a bilateral backward orbit (xn)n∈Z for T such that
span(xn : n ∈ Z) = X and the series

∑ ±xn is convergent for almost every choice of
signs ±. Then, T has countable Lebesgue spectrum after extension.
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Proof. By assumption on X, almost sure convergence of the Rademacher series
∑ ±xn is

equivalent to almost sure convergence of the Gaussian series
∑
gnxn (this follows from

[40, Corollaire 1.3, p. 67]; see also for example [35, Proposition 9.14]). So, the result
follows immediately from Proposition 3.17.

Remark 3.21. In the same spirit, Proposition 3.17 can be used to show that if an operator
T satisfies the ‘probabilistic frequent hypercyclicity criterion’ of [28, Theorem 1.2], then
T is hereditarily frequently hypercyclic. Indeed, by [28, Lemma 3.2], there is a bilateral
backward orbit (xn)n∈Z for T satisfying the assumption of Proposition 3.17.

We now show that, at least for operators on complex Hilbert spaces, Theorem 3.1 is
‘strictly stronger’ than Theorem 2.1. This answers a very natural question asked by the
referee.

PROPOSITION 3.22. Let X be a complex Fréchet space.
(1) If T ∈ L(X) satisfies the FHCC, then there exists a family (Ei)i∈I of continuous

T-eigenvector fields for T such that span
⋃
i∈I Ei(T) = X. In particular, this family

is spanning with respect to the Lebesgue measure λ, so that if X is a Banach space
with type 2, one can apply Theorem 3.1 to conclude that T is hereditarily frequently
hypercyclic.

(2) If X is a Hilbert space, there exists T ∈ L(X) which admits a λ-spanning
T-eigenvector field (so that T is hereditarily frequently hypercyclic by Theorem
3.1) but does not satisfy the FHCC. In fact, one can even require that T has no
periodic vector except 0.

Proof. (1) This is well known, see for example [8, §8.1].
(2) Let � be any compact subset of T with empty interior, but such that all its

non-empty (relative) open subsets have positive Lebesgue measure (to obtain such a
set, take a compact set �0 with empty interior and positive Lebesgue measure, and
remove all open subsets of �0 with Lebesgue measure 0). Let T� : H� → H� be the
Kalish operator associated with � (see for example [7, Ch. 5] for the definition). The
operator T� has the following properties: its point spectrum is equal to � and it admits a
continuous T-eigenvector field E : � → H� such that span E(�) = H�. By continuity
and since � \N is dense in � for every set N ⊂ T with Lebesgue measure 0, this
eigenvector field is λ-spanning. However, T does not satisfy the FHCC. Indeed, assume
otherwise. The continuous T-eigenvector fields Ei : T → H� given by item (1) cannot
vanish identically outside� (unless they are identically 0 on T) since T \� is dense in T;
so T� has eigenvalues outside �, which is a contradiction since σp(T�) = �. Moreover,
if � contains no roots of unity, then T� has no periodic vector except 0 since no root of
unity can be an eigenvalue of T�. Recall that any operator (on a real or complex space)
satisfying the FHCC is chaotic, see for example [7, Theorem 6.10].

Finally, the ergodic-theoretic point of view allows us to give an ‘extreme’ example of a
hereditarily frequently hypercyclic operator T which does not satisfy the FHCC.

Example 3.23. There exists a separable complex Banach space X supporting a hereditarily
frequently hypercyclic operator with no eigenvalues.
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Proof. Let T be the Kalish operator acting on the space X := C0([0, 2π ]) of continuous
functions on [0, 2π ] vanishing at the point 0 (see [5, Example 4.2] or [7, §5.5.4]). The
operator T has no eigenvalues. However, T admits a Gaussian invariant measureμwith full
support such that all the spectral measures σx∗ , x ∈ X∗ relative to the Koopman operator
UT : L2(μ) → L2(μ) are absolutely continuous with respect to the Lebesgue measure;
so T has countable Lebesgue spectrum after extension by Corollary 3.7 and hence it is
hereditarily frequently hypercyclic.

3.8. Perfect spanning and hereditary UFHC. The links between properties of unimod-
ular eigenvectors of an operator T and frequent hypercyclicity of T have been very much
studied since [5]. The strongest available result may be the following (see [8, 29]).

Let X be a separable complex Fréchet space and let T ∈ L(X). If the T-eigenvectors of T
are perfectly spanning, then T is frequently hypercyclic and, in fact, there exists a Gaussian
T-invariant measure μ with full support such that T is weakly mixing with respect to μ.

The perfect spanning assumption means that for any countable set N ⊂ T, the eigen-
vectors of T with eigenvalues in T \N span a dense linear subspace of X; equivalently
(see [30, Proposition 6.1]), the T-eigenvectors of T are σ -spanning for some continuous
probability measure σ on T. It is plausible that under this assumption, the operator T is, in
fact, hereditarily frequently hypercyclic; but we are very far from being able to prove that.
We would be already happy enough if we could weaken the assumptions of Theorem 3.1
and prove that for any complex Banach space X, an operator T ∈ L(X) is hereditarily
frequently hypercyclic as soon as the T-eigenvectors of T are spanning with respect to the
Lebesgue measure—but again, this seems out of reach for the moment. However, we do
have the following result.

THEOREM 3.24. Let X be a complex Fréchet space and let T ∈ L(X). If the T-eigenvectors
of T are perfectly spanning, then T is hereditarily U -frequently hypercyclic.

For the proof, we will need the following variant of [20, Lemme 5].

LEMMA 3.25. Let (X, B, μ, T ) be a measure-preserving dynamical system and assume
that T is weakly mixing with respect to μ. Let also (nk)k≥1 and (ki)i≥0 be two increasing
sequence of integers. Assume that nki = O(ki) as i → ∞. Then, for any measurable set
V ⊂ X,

1
ki

ki∑
k=1

1V ◦ T nk L2−→ μ(V ) as i → ∞.

Proof. The proof is similar to that of the classical Blum–Hanson theorem [15]. We have∥∥∥∥ 1
ki

ki∑
k=1

1V ◦ T nk − μ(V )

∥∥∥∥2

2
= 1
k2
i

ki∑
r ,s=1

(μ(T −nr (V ) ∩ T −ns (V ))− μ(V )2)

= 2
k2
i

∑
1≤r<s≤ki

(μ(V ∩ T −(ns−nr )(V ))− μ(V )2)+O

(
1
ki

)
.
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So it is enough to check that∑
1≤r<s≤ki

|μ(V ∩ T −(ns−nr )(V ))− μ(V )2| = o(k2
i ). (3.2)

In what follows, we put

γs,r := |μ(V ∩ T −(ns−nr )(V ))− μ(V )2|.
Since T is weakly mixing with respect to μ, there is a set D ⊆ N with dens(D) = 1

such that

μ(V ∩ T −d(V ))− μ(V )2 → 0 as d → ∞, d ∈ D. (3.3)

Write ∑
1≤r<s≤ki

γs,r =
ki∑
r=1

∑
r<s≤ki
ns−nr∈D

γs,r +
ki∑
r=1

∑
r<s≤ki
ns−nr �∈D

γs,r =: αi + βi .

Using equation (3.3) and since γr ,s ≤ 1 for all r , s, it is not hard to check that∑
r<s≤ki
ns−nr∈D

γs,r = o(ki) as i → ∞, uniformly in r;

and it follows that αi = o(k2
i ). Moreover, since dens(D) = 1, we see that

βi ≤
ki∑
r=1

#{s ∈ (r , ki] : ns − nr �∈ D} ≤ ki × #((0, nki ] \D) = ki × o(nki );

so βi = o(k2
i ) since we are assuming that nki = O(ki). This proves equation (3.2).

COROLLARY 3.26. Let (X, B, μ, T ) be a measure-preserving dynamical system and
assume that T is weakly mixing with respect to μ. Let also A ⊂ N with dens(A) > 0.
If V ⊂ X is a measurable set such that μ(V ) > 0, then dens(A ∩ NT (x, V )) > 0 for
μ-almost every x ∈ X.

Proof. Let (nk)k≥1 be the increasing enumeration of A. Since dens(A) > 0, one can find
an increasing sequence of integers (ki)i≥0 such that nki = O(ki). By Lemma 3.25, one

can find a subsequence (k′
i ) of (ki) such that (1/k′

i )
∑k′i
k=1 1V ◦ T nk → μ(V )μ-almost

everywhere. In other words: for μ-almost every x ∈ X,

1
k′
i

#{k ∈ [1, k′
i] : nk ∈ NT (x, V )} → μ(V ).

Since #{k ∈ [1, k′
i] : nk ∈ NT (x, V )} = #([1, nk′i ] ∩ A ∩ NT (x, V )) and nk′i = O(k′

i ), it

follows that dens(A ∩ NT (x, V )) > 0 for μ-almost every x ∈ X.

Proof of Theorem 3.24. Assume that the T-eigenvectors of T are perfectly spanning. By
[8], there exists a T-invariant Gaussian measure μ on X with full support such that T is
weakly mixing with respect to μ. Let (Ai)i∈I be a countable family of subsets of N with
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positive upper density and let (Vi)i∈I be a family of non-empty open subsets of X. It follows
immediately from Corollary 3.26 that one can find x ∈ X (in fact, μ-almost every x ∈ X
will do) such that dens(Ai ∩ NT (x, Vi)) > 0 for all i ∈ I .

Let us point out one consequence of Theorem 3.24.

COROLLARY 3.27. If X is a complex Banach space admitting an unconditional Schauder
decomposition, then X supports a hereditarily U -frequently hypercyclic operator.

Proof. It is shown in [22] that such a space X supports an operator with a perfectly
spanning set of T-eigenvectors.

Remark 3.28. The proof of Theorem 3.24 shows the following: if T ∈ L(X) and if there
exists a T-invariant Borel measure with full support μ on X such that T is weakly mixing
with respect to μ, then T is hereditarily U -frequently hypercyclic. It would be interesting
to know if the weak mixing assumption can be replaced by ergodicity. Incidentally, we do
not know any example of an operator T admitting an ergodic measure with full support but
no weakly mixing measure with full support.

4. The T1 ⊕ T2 frequent hypercyclicity problem
One of the most intriguing open problems regarding frequent hypercyclicity is to decide
whether T ⊕ T is frequently hypercyclic whenever T is frequently hypercyclic [5]. Note
that, by [24], the corresponding question for U -frequent hypercyclicity has a positive
answer. A related problem is Question 1.1, which asks whether T1 ⊕ T2 is frequently
hypercyclic for every frequently hypercyclic operator T1 and T2. This question is also open
if we replace frequent hypercyclicity by U -frequent hypercyclicity. As observed in [31],
T1 ⊕ T2 is hypercyclic as soon as T1 and T2 are U -frequently hypercyclic. In the opposite
direction, it seems that the best known result is [31, Theorem 7.33] which deals with infinite
sums: there exists a sequence (Tn)n≥1 of frequently hypercyclic operators on �p(N),
p > 1, such that the operator T = ⊕

n≥1 Tn acting on the �p-sum X = ⊕
n≥1 �p(N) is

not U -frequently hypercyclic.
As mentioned in §1, things are much simpler if we consider hereditarily frequently

hypercyclic operators. We now give the detailed proof for the convenience of the reader.

PROPOSITION 4.1. Let F ⊂ 2N be a Furstenberg family and let X1, X2 be two Polish
topological vector spaces. Let also T1 ∈ L(X1) and T2 ∈ L(X2). If T1 is F-hypercyclic
and T2 is hereditarily F-hypercyclic, then T1 ⊕ T2 is F-hypercyclic. If both T1 and T2 are
hereditarily F-hypercyclic, then T1 ⊕ T2 is hereditarily F-hypercyclic.

Proof. Assume that T1 is F-hypercyclic and T2 is hereditarily F-hypercyclic. Let (Vi)i∈I
be a countable basis of open sets for X1 ×X2. Without loss of generality, we may assume
that each Vi has the form Vi = Vi,1 × Vi,2, where Vi,1, Vi,2 are open inX1, X2. Let x1 ∈ X1

be any F-hypercyclic vector for T1. Then, for each i ∈ I , the set Ai := NT1(x1, Vi,1)
belongs to F . Since T2 is hereditarily F-hypercyclic, it follows that one can find a vector
x2 ∈ X2 such that Bi := Ai ∩ NT2(x2, Vi,2) ∈ F for all i ∈ I . Then, x := (x1, x2) is a
frequently hypercyclic vector for T := T1 ⊕ T2 since NT (x, Vi) ⊃ Bi for all i ∈ I .

The proof of the second part of the proposition is essentially the same.
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Using weighted backward shifts on c0(Z+), we now find a counterexample to the
T1 ⊕ T2 frequent hypercyclicity problem, and thus answer Question 1.1 in the negative.
This counterexample also solves the T1 ⊕ T2U -frequent hypercyclicity problem.

THEOREM 4.2. There exist two frequently hypercyclic weighted shifts Bw, Bw′ on c0(Z+)
such that Bw ⊕ Bw′ is not U -frequently hypercyclic.

From this theorem and Proposition 4.1, we immediately deduce the following result,
which is of course to be compared with Corollary 2.3.

COROLLARY 4.3. There exist weighted shifts on c0(Z+) which are frequently hypercyclic
but not hereditarily frequently hypercyclic.

Let us also point out another consequence of Theorem 4.2 and Remark 3.28.

COROLLARY 4.4. There exist frequently hypercyclic weighted shifts on c0(Z+) which
admit no weakly mixing invariant measure with full support, and hence no ergodic
invariant Gaussian measure with full support.

This is not really a new result: the Gaussian part has been known since [6] (with
arguably a more complicated example than the one we are about to present here) and
it was proved in [30] that there exist frequently hypercyclic bilateral weighted shifts on
c0(Z) which admit no ergodic invariant measure with full support.

In the proof of Theorem 4.2, we shall use the following lemma, which gives a simple
characterization of frequent hypercyclicity for weighted shifts on c0(Z+) whose weight
sequence is bounded below (see [9] or [17, Corollary 34]).

LEMMA 4.5. Let w = (wn)n≥1 be a bounded sequence of positive real numbers and
assume that infn≥1 wn > 0. Then, the associated weighted shift Bw is frequently hyper-
cyclic on c0(Z+) if and only if there exist a sequence (M(p))p≥1 of positive real numbers
tending to infinity and a sequence (Ep)p≥1 of disjoint subsets of N with positive lower
density such that:
(a) limn→∞, n∈Ep w1 · · · wn = ∞ for all p ≥ 1;
(b) for all p, q ≥ 1, for all m ∈ Ep and n ∈ Eq with m > n,

w1 · · · wm−n ≥ max(M(p), M(q)).

We will also need the following elementary lemma, which is almost the same as
[9, Lemma 6.1]. For ε > 0, a > 1 and u ∈ N, we let

I a,ε
u := [(1 − ε)au, (1 + ε)au].

LEMMA 4.6. There exist ε > 0 and a > 1 such that, for any integers u > v ≥ 1,

I a,4ε
u ∩ I a,4ε

v = ∅, I a,2ε
u − I a,2ε

v ⊂ I a,4ε
u and I a,ε

v + [−v, v] ⊂ I a,2ε
v .
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Proof. Provided that ε ∈ (0, 1/4), the first condition is equivalent to saying that

(1 + 4ε)au < (1 − 4ε)au+1 for all u ≥ 1,

that is,

1 + 4ε
(1 − 4ε)a

< 1.

The second one is satisfied as soon as

(1 − 2ε)au − (1 + 2ε)au−1 ≥ (1 − 4ε)au for all u ≥ 2,

which is equivalent to

2εa
1 + 2ε

≥ 1.

The last condition is satisfied if (1 − ε)av − v ≥ (1 − 2ε)av for all v ≥ 1, in other
words,

εav ≥ v for all v ≥ 1.

Therefore, one can choose, for example, ε := 1/8 and then take a sufficiently large.

Proof of Theorem 4.2. Our construction is inspired by that of [9, §6]. In what follows, we
fix once and for all ε > 0 and a > 1 satisfying the conclusions of Lemma 4.6.

For k ≥ 1, let

Ak := 2k−1
N\2kN.

Note that eachAk is a syndetic set, that is, it has bounded gaps, and the setsAk are pairwise
disjoint. Moreover, since 2k−1 ≥ k, we have I a,ε

v + [−k, k] ⊂ I a,2ε
v for each k ≥ 1 and all

v ∈ Ak .
We also fix an increasing sequence of positive integers (bp)p≥1 such that

lim
p→∞ dens

[ ⋃
q≥p

(bqN + [−q, q])
]

= 0.

Finally, we set for p ≥ 1,

Ep :=
⋃
u∈A2p

(I a,ε
u ∩ bpN),

Fp :=
⋃

u∈A2p+1

(I a,ε
u ∩ bpN).

We note that since A2p and A2p+1 are syndetic, we have

dens(Ep) > 0 and dens(Fp) > 0 for all p ≥ 1.

Indeed, for all p ≥ 1, there exists δp > 0 such that, for all u sufficiently large,

#(I a,ε
u ∩ bpN) ≥ δpa

u.
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Let Rp be such that if u and v are two consecutive elements of A2p, then v − u ≤ Rp. If
now n is very large and if we consider u and v as two consecutive elements of A2p such
that

(1 + ε)au < n ≤ (1 + ε)av ,

then we see that

#(Ep ∩ [1, n])
n

≥ #(I a,ε
u ∩ bpN)
(1 + ε)av

≥ δp

(1 + ε)aRp
·

Hence, dens(Ep) > 0. A similar argument shows that dens(Fp) > 0.
We now construct our weight sequences w and w′.
For p ≥ 1, we first define a sequence (wpn )n≥1 ⊂ {1/2, 1, 2} such that, for all n ≥ 1,

w
p

1 · · · wpn =
{

1 if n /∈ I a,2ε
u , u ∈ A2p,

2u if n ∈ I a,ε
u , u ∈ A2p.

This is possible since I a,ε
u + [−u, u] ⊂ I

a,2ε
u . These sequences will be used for handling

condition (a) in Lemma 4.5.
For p ≥ 1, we also define a sequence (ωpn )n≥1 ⊂ {1/2, 1, 2} such that, for all n ≥ 1,

ω
p

1 · · · ωpn =
{

1 if n /∈ bpN + [−p, p],

2p if n ∈ bpN.

These sequences will help us to verify condition (b) in Lemma 4.5 for p = q.
Finally, for u > v ≥ 1 with u ∈ A2p and v ∈ A2q for some p, q ≥ 1, we define a

sequence (wu,v
n )n≥1 ⊂ {1/2, 1, 2} such that, for all n ≥ 1,

w
u,v
1 · · · wu,v

n =
{

1 if n /∈ I a,4ε
u ,

max(2p, 2q) if n ∈ I a,ε
u − I a,ε

v .

This is possible since

I a,ε
u − I a,ε

v + [− max(p, q), max(p, q)] ⊂ (I a,ε
u + [−p, p])− (I a,ε

v + [−q, q])

⊂ I a,2ε
u − I a,2ε

v

⊂ I a,4ε
u .

These sequences will be needed to check condition (b) in Lemma 4.5 for p �= q.
We finally define the weight sequencew = (wn)n≥1 as follows: for all n ≥ 1, we require

that

w1 · · · wn = max
p,u>v

(w
p

1 · · · wpn , ωp1 · · · ωpn , wu,v
1 · · · wu,v

n ).

It is not difficult to check that wn ∈ [1/2, 2] for all n ≥ 1. Indeed, assume for instance that
w1 · · · wn = w

p

1 · · · wpn . Then, w1 · · · wn−1 ≥ w
p

1 · · · wpn−1 and

wn ≤ w
p
n ≤ 2.
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The same argument works for the other cases; for the lower bound, assume for instance
that w1 · · · wn−1 = w

p

1 · · · wpn−1. Then, w1 · · · wn ≥ w
p

1 · · · wpn so that

wn ≥ w
p
n ≥ 1

2 .

We define in a similar way a weight sequence w′ = (w′
n)n≥1 ⊂ [1/2, 2], replacing

everywhere A2p by A2p+1 and A2q by A2q+1.
Let us first show that w and w′ satisfy the conditions of Lemma 4.5, so that Bw and Bw′

are frequently hypercyclic. It is clearly enough to do that for w.
(a) If n ∈ Ep, there is a unique u = u(n) ∈ A2p such that n ∈ I a,ε

u . Then, w1 · · · wn ≥
w
p

1 · · · wpn ≥ 2u(n), which shows that w1 · · · wn → ∞ as n → ∞, n ∈ Ep.
(b) Let p, q ≥ 1,, and let us fixm ∈ Ep and n ∈ Eq withm > n. If p = q, thenm− n ∈

bpN, so that w1 · · · wm−n ≥ ω
p

1 · · · ωpm−n ≥ 2p. If p �= q, there exist u > v ≥ 1
such that m ∈ I a,ε

u and n ∈ I a,ε
v , and then w1 · · · wm−n ≥ w

u,v
1 · · · wu,v

m−n ≥
max(2p, 2q).

Now, let us show that Bw ⊕ Bw′ is not U -frequently hypercyclic. Denote by (ej )j≥0

the canonical basis of c0(Z+). We show that for any vector x ∈ c0(Z+)⊕ c0(Z+), the set
Ex := {n ∈ N : ‖(Bw ⊕ Bw′)nx − (e0, e0)‖ < 1/2} has upper density equal to 0.

Towards a contradiction, assume that dens(Ex) > 0 for some vector x. It is easy to check
that

lim
n→∞, n∈Ex

w1 · · · wn = lim
n→∞, n∈Ex

w′
1 · · · w′

n = ∞.

It follows that if we set

Gp := {n ∈ N : w1 · · · wn ≥ 2p and w′
1 · · · w′

n ≥ 2p},

then Ex \Gp is finite and hence dens(Gp) ≥ dens(Ex) > 0 for all p ≥ 1.
Now, the construction of the weight sequence w yields that if n ∈ Gp, then either

n ∈ bqN + [−q, q] for some q ≥ p, or n ∈ I a,4ε
u for some u ∈ ⋃

q≥1 A2q . Similarly, by
construction of the sequence w′, we also know that if n ∈ Gp, then either n ∈ bqN +
[−q, q] for some q ≥ p, or n ∈ I a,4ε

v for some v ∈ ⋃
q≥1 A2q+1. By disjointness of the

sets I a,4ε
u and I 4,ε

v for u �= v, it follows that

Gp ⊂
⋃
q≥p

(bqN + [−q, q]).

By our choice of the sequence (bp), we get a contradiction with dens(Gp) ≥
dens(Ex) > 0.

Remark 4.7. The weighted shift Bw cannot serve as a counterexample to the T ⊕ T

frequent hypercyclicity problem. Indeed, it can be shown (see [32, Theorem 18]) that any
weighted shift on c0(Z+) satisfying the assumptions of Lemma 4.5 is such that any finite
direct sum Bw ⊕ · · · ⊕ Bw is itself frequently hypercyclic.
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5. FHC operators on �p(Z+) which are not hereditarily FHC
5.1. The result. In this section, we use the machinery developed in [31], following the
construction in [41] of chaotic operators which are not frequently hypercyclic, to produce
an operator on �p(Z+), 1 ≤ p < ∞, which is frequently hypercyclic but not hereditarily
frequently hypercyclic. We will, in fact, obtain a formally stronger result.

Definition 5.1. Let A ⊂ N be a set with dens(A) > 0. We say that an operator T ∈ L(X)

is frequently hypercyclic along A if the sequence (T n)n∈A is frequently hypercyclic: there
exists x ∈ X such that dens (A ∩ NT (x, V )) > 0 for every non-empty open set V ⊂ X.

Obviously, if an operator is hereditarily frequently hypercyclic, then it is frequently
hypercyclic along any set A ⊂ N with positive lower density. Our aim is to prove the
following theorem.

THEOREM 5.2. Let 1 ≤ p < ∞. There exist an operator T on �p(Z+) and a set A ⊂ N

with dens(A) > 0 such that T is frequently hypercyclic and chaotic, but not frequently
hypercyclic along A (and thus not hereditarily frequently hypercyclic).

With the terminology of [31], the operator we are looking for will be a C+,1-type
operator. So we will need to recall the definition of C+,1-type operators, and more generally
of C-type and C+-type operators. However, before that, we will prove a general result
allowing to check in a simple way that an operator is not frequently hypercyclic along
some set with positive lower density.

5.2. How not to be hereditarily FHC. The next theorem gives simple conditions
ensuring that an operator is not hereditarily frequently hypercyclic.

THEOREM 5.3. Let X be a Banach space admitting a Schauder basis (ek)k≥0 and let
T ∈ L(X). Denoting by πK , K ≥ 1 the canonical projection onto span(ek : 0 ≤ k ≤
K − 1), assume that there exist increasing sequences of integers (Kn)n≥1 and (Jn)n≥1

such that for every n:
(a) T JnπKn = πKn;
(b) ‖πKnT j (I − πKn)x‖ ≤ ‖(I − πKn)x‖ for all x ∈ X and 0 ≤ j ≤ (n+ 1)2

Jn
Jn.

Then, there exists a set A ⊂ N with positive lower density such that T is not hereditarily
frequently hypercyclic along A.

Proof. Extracting subsequences of (Kn) and (Jn) if necessary, we may assume without
loss of generality that Jn+1 ≥ 2(n+ 1)2

Jn
Jn for all n.

Let us denote by Fn ⊂ 2N the family of all finite sets F ⊂ [0, Jn) such that #F ≥ Jn/2.
Let Cn := #Fn and let (Fn,j )0≤j<Cn be an enumeration of Fn. We setMn := (n+ 1)CnJn
and we remark that Mn ≤ (n+ 1)2

Jn
Jn ≤ Jn+1/2.

We now construct the set A by induction. To start, let

A1 := [0, J1) ∪
⋃

0≤j<C1

⋃
0≤l<2j+1−2j

((2j + l)J1 + F1,j ).
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Given k ≥ 2, if A1, . . . , Ak−1 have been defined already, we define Ak by setting

Ak := [Mk−1, Jk) ∪
⋃

0≤j<Ck

⋃
0≤l<(k+1)j+1−(k+1)j

((k + 1)j + l)Jk + Fk,j ).

Observe that the sets (k + 1)j + l)Jk + Fk,j involved in this definition are pairwise
disjoint, since they are contained in successive intervals. More precisely,

Ak ∩ [sJk , (s + 1)Jk) = sJk + Fk,j

for every 0 ≤ j < Ck and every (k + 1)j ≤ s < (k + 1)j+1, and max(Ak) < (k + 1)Ck

Jk = Mk . Hence, Ak ⊆ [Mk−1, Mk). Finally, we let

A :=
⋃
k≥1

Ak .

CLAIM 5.4. We have #(A ∩ [0, N])/(N + 1) ≥ 1/4 for all N ≥ 0. In particular,
dens(A) > 0.

Proof of Claim 5.4. We will check by induction on k ≥ 1 that

#(A ∩ [0, N])
(N + 1)

≥ 1
4

for all N < Mk . (5.1)

If N < M1, there exists 0 ≤ s < 2C1 such that sJ1 ≤ N < (s + 1)J1. Then,
#(A ∩ [0, N])/(N + 1) ≥ 1 if s = 0 and

#(A ∩ [0, N])
N + 1

≥ #(A1 ∩ [0, sJ1])
(s + 1)J1

≥ s

2(s + 1)
≥ 1

4
if s ≥ 1,

because the sets involved in the definition of A1 are pairwise disjoint and #F1,j ≥ J1/2 for
every j < C1.

Assume that the inequality (5.1) has been proved for k − 1. To get the result for k, it is
enough to check that

#(A ∩ [0, N])
N + 1

≥ 1
4

for every Mk−1 ≤ N < Mk .

If Mk−1 ≤ N < Jk then, since [Mk−1, N] ⊂ [Mk−1, Jk) ⊂ Ak , we get by the induction
assumption that

#(A ∩ [0, N])
N + 1

≥ #(A ∩ [0, Mk−1))

Mk−1
≥ 1

4
·

Moreover, we even have #(A ∩ [0, Jk))/Jk ≥ 1
2 since [Mk−1, Jk) ⊂ Ak andMk−1 ≤ Jk/2.

However, if Jk ≤ N < Mk , there exists 1 ≤ s < (k + 1)Ck such that sJk ≤ N < (s + 1)Jk
and we obtain in this case that

#(A ∩ [0, N])
N + 1

≥ #(A ∩ [0, Jk))
(s + 1)Jk

+ #(Ak ∩ [Jk , sJk])
(s + 1)Jk

≥ 1
2(s + 1)

+ s − 1
2(s + 1)

≥ 1
4

.

This proves Claim 5.4.
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Let us now get back to the proof of Theorem 5.3. Our aim is to show that under
assumptions (a) and (b), T is not hereditarily frequently hypercyclic along the set A that
we just constructed. To this end, we consider for any c > 0, the open sets

Uc := {y ∈ X : |〈e∗0, y〉| < c} and Vc = {y ∈ X : |〈e∗0, y〉| > c},
and we show that for every x ∈ X, either NT (x, U1/2) ∩ A or NT (x, V3/2) ∩ A has a lower
density equal to 0. Let x ∈ X. Since |〈e∗0, u〉| ≤ C ‖πKnu‖ for some absolute constant
C > 0, it follows from assumption (b) that for n sufficiently large, we have

NT (x, U1/2) ∩ [0, (n+ 1)2
Jn
Jn) ⊂ NT (πKnx, U3/4) ∩ [0, (n+ 1)2

Jn
Jn)

⊂ NT (x, U1) ∩ [0, (n+ 1)2
Jn
Jn)

and

NT (x, V3/2) ∩ [0, (n+ 1)2
Jn
Jn) ⊂ NT (πKnx, V4/3) ∩ [0, (n+ 1)2

Jn
Jn)

⊂ NT (x, V1) ∩ [0, (n+ 1)2
Jn
Jn).

Moreover, since NT (x, U1) ∩ NT (x, V1) = ∅, we have, for any n ≥ 1, that

either #(NT (x, U1) ∩ [0, Jn)) ≤ Jn/2 or #(NT (x, V1) ∩ [0, Jn)) ≤ Jn/2.

Hence, either #(NT (x, U1)∩ [0, Jn))≤ Jn/2 for infinitely many n values or #(NT (x,V1)∩
[0, Jn)) ≤ Jn/2 for infinitely many n values. Without loss of generality, we assume that
#(NT (x, U1) ∩ [0, Jn)) ≤ Jn/2 for infinitely many n values (the other case being similar).
Hence, there exists an increasing sequence (nk)k≥1 of integers and a sequence (jk)k≥1 of
integers such that

NT (x, U1) ∩ [0, Jnk ) ∩ Fnk ,jk = ∅ for every k ≥ 1.

Now, since T Jnk πKnk = πKnk by assumption (a), we have for every k ≥ 1,

NT (x, U1/2) ∩ [0, (nk + 1)2
Jnk
Jnk )

⊂ NT (πKnk x, U3/4) ∩ [0, (nk + 1)2
Jnk
Jnk )

=
⋃

0≤l<(nk+1)2
Jnk

(lJnk + NT (πKnk x, U3/4) ∩ [0, Jnk ))

⊂
⋃

0≤l<(nk+1)2
Jnk

(lJnk + NT (x, U1) ∩ [0, Jnk )).

Intersecting with A and observing that (nk + 1)jk+1 ≤ (nk + 1)2
Jnk , we get that

(NT (x, U1/2) ∩ A) ∩ [0, (nk + 1)jk+1Jnk )

⊂ A ∩
⋃

0≤s<(nk+1)jk+1

(sJnk + NT (x, U1) ∩ [0, Jnk )).
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Now, by definition of A, we have

A ∩
⋃

(nk+1)jk≤s<(nk+1)jk+1

[sJnk , (s + 1)Jnk ) =
⋃

(nk+1)jk≤s<(nk+1)jk+1

(sJnk + Fnk ,jk ).

Since NT (x, U1) ∩ [0, Jnk ) ∩ Fnk ,jk = ∅, it follows that

(NT (x, U1/2) ∩ A) ∩ [(nk + 1)jkJnk , (nk + 1)jk+1Jnk ) = ∅,

so that

(NT (x, U1/2) ∩ A) ∩ [0, (nk + 1)jk+1Jnk ) ⊂ [0, (nk + 1)jkJnk ).

So we see that

#((NT (x, U1/2) ∩ A) ∩ [0, (nk + 1)jk+1Jnk ))

(nk + 1)jk+1Jnk
≤ (nk + 1)jkJnk
(nk + 1)jk+1Jnk

·

The right-hand side of this inequality tends to 0 as n tends to infinity, and this shows that
dens(NT (x, U1/2) ∩ A) = 0.

Remark 5.5. Assumption (b) in Theorem 5.3 can be weakened: it is enough to assume
that there exists a non-zero linear functional x∗ ∈ X∗ such that |〈x∗, T j (I − πKn)x〉| ≤
‖(I − πKn)x‖ for all x ∈ X and j ≤ (n+ 1)2

Jn
Jn. This is apparent from the above proof.

5.3. C-type operators. We recall here very succinctly some basic facts concerning
C-type operators, and we refer the reader to [31, §§6 and 7] for more on this class
of operators. In what follows, we denote by (ek)k≥0 the canonical basis of �p(Z+),
1 ≤ p < ∞.

Let us consider four ‘parameters’ v, w, ϕ and b, where:
• v = (vn)n≥1 is a sequence of non-zero complex numbers such that

∑
n≥1 |vn| < ∞;

• w = (wj )j≥1 is a sequence of complex numbers such that 0 < infk≥1 |wk| ≤
supk≥1 |wk| < ∞;

• ϕ is a map from Z+ into itself, such that ϕ(0) = 0, ϕ(n) < n for every n ≥ 1, and the
set ϕ−1(l) = {n ≥ 0 ; ϕ(n) = l} is infinite for every l ≥ 0;

• b = (bn)n≥0 is a strictly increasing sequence of positive integers such that b0 = 0 and
bn+1 − bn is a multiple of 2(bϕ(n)+1 − bϕ(n)) for every n ≥ 1.

If w and b are such that

inf
n≥0

∏
bn<j<bn+1

|wj | > 0,

then, by [31, Lemma 6.2], there is a unique bounded operator Tv, w, ϕ, b on �p(Z+) such
that
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Tv, w, ϕ, b ek =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk+1 ek+1 if k ∈ [bn, bn+1 − 1), n ≥ 0,

vn ebϕ(n) −
( bn+1−1∏
j=bn+1

wj

)−1

ebn if k = bn+1 − 1, n ≥ 1,

−
( b1−1∏
j=b0+1

wj

)−1

e0 if k = b1 − 1.

Any such operator Tv, w, ϕ, b is called a C-type operator. A notable fact to be pointed
out immediately is that C-type operators have lots of periodic points; indeed, we have the
following fact, which is [31, Lemma 6.4].

Fact 5.6. If T = Tv, w, ϕ, b is a C-type operator, then

T 2(bn+1−bn)ek = ek if k ∈ [bn, bn+1), n ≥ 0.

It follows that every finitely supported vector is periodic for Tv, w, ϕ, b ; in particular, a
C-type operator is chaotic as soon as it is hypercyclic.

A C+-type operator is a C-type operator for which the parameters satisfy the following
additional conditions: for every k ≥ 1:
• ϕ is increasing on each interval [2k−1, 2k) with ϕ([2k−1, 2k)) = [0, 2k−1), that is,

ϕ(n) = n− 2k−1 for every n ∈ [2k−1, 2k);

• the blocks [bn, bn+1), n ∈ [2k−1, 2k) all have the same size, which we denote by
(k):

bn+1 − bn = 
(k) for every n ∈ [2k−1, 2k);

• the sequence v is constant on the interval [2k−1, 2k): there exists v(k) such that

vn = v(k) for every n ∈ [2k−1, 2k);

• the sequences of weights (wbn+i )1≤i<
(k) are independent of n ∈ [2k−1, 2k): there
exists a sequence (w(k)i )1≤i<
(k) such that

wbn+i = w
(k)
i for every n ∈ [2k−1, 2k) and 1 ≤ i < 
(k).

Finally, a C+,1-type operator is a C+-type operator whose parameters are such that for
all k ≥ 1,

v(k) = 2−τ (k) and w
(k)
i =

{
2 if 1 ≤ i ≤ δ(k),

1 if δ(k) < i < 
(k),

where (τ (k))k≥1 and (δ(k))k≥1 are two increasing sequences of integers with δ(k) < 
(k)

for each k ≥ 1.
These operators have been studied in detail in [31, §7]. In particular, we have the

following crucial fact [31, Theorem 7.1].
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Fact 5.7. A C+,1-type operator Tv, w, ϕ, b is frequently hypercyclic as soon as

lim sup
k→∞

δ(k) − τ (k)


(k)
> 0. (5.2)

5.4. Proof of Theorem 5.2. Let T = Tv, w, ϕ, b be an operator of C+,1-type on �p(Z+),
so that v and w are given by

v(k) = 2−τ (k) and w
(k)
i =

{
2 if 1 ≤ i ≤ δ(k),

1 if δ(k) < i < 
(k).

We assume that 
(k) ∈ 8N for all k ≥ 1, and we choose

δ(k) := 1
4


(k) and τ (k) := 1
8


(k).

So the only ‘free’ parameter is now the sequence (
(k))k≥1.
By Fact 5.7, the operator T is frequently hypercyclic (and hence chaotic since it is a

C-type operator). So we just have to show that if the sequence (
(k)) is suitably chosen,
then T satisfies the assumptions of Theorem 5.3. We will in fact show that this holds as
soon as the sequence (
(k)) grows sufficiently rapidly. Let us set

Kn := b2n and Jn := 2
(n) for every n ≥ 1.

With this choice of the sequences (Kn) and (Jn), condition (a) in Theorem 5.3 is
satisfied by Fact 5.6. So the only thing to check is condition (b).

Let γk := 2 δ
(k−1)−τ (k) (
(k))1−1/p. If (
(k)) grows sufficiently rapidly, then the

sequence (γk) is decreasing and

2n
∑
k≥n+1

2k−1γk ≤ 1 for all n ≥ 0.

Let us also define a sequence (βl)l≥1 as follows:

βl := 4 γk if l ∈ [2k−1, 2k).

Finally, for any l ≥ 1, let Pl be the projection of �p(Z+) defined by

Plx =
bl+1−1∑
k=bl

xkek for every x ∈ �p(Z+).

As in the proof of [31, Theorem 7.2], one can show that the following estimate holds
for every k ≥ 0, every l ∈ [2k−1, 2k[, every 0 ≤ m < l and every 0 ≤ j ≤ 
(k) − δ(k) =
3
4


(k):

‖PmT jPlx‖ ≤ βl

4

( 
(k)−1∏
i=
(k)−j+1

|w(k)i |
)

‖Plx‖ ≤ βl

4
‖Plx‖.
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Hence, we have for all n and j ≤ 3
4


(n+1),

‖πKnT j (I − πKn)x‖ ≤
∑
m<2n

∑
l≥2n

‖PmT jPlx‖

≤
∑
m<2n

∑
l≥2n

βl

4
‖Plx‖

≤ 2n
( ∑
l≥2n

βl

4

)
‖(I − πKn)x‖

≤ 2n
( ∑
k≥n+1

2k−1γk

)
‖(I − πKn)x‖ ≤ ‖(I − πKn)x‖.

So, if we take care to ensure that 3
4


(n+1) ≥ (n+ 1)2
Jn
Jn = (n+ 1)2

2
(n)
2
(n) for

all n ≥ 1, then condition (b) in Theorem 5.3 is satisfied. This concludes the proof of
Theorem 5.2.

6. Extending frequently d-hypercyclic tuples
Let us recall the definition of d-F-hypercyclicity, for a given Furstenberg family F ⊂ 2N:
a tuple of operators (T1, . . . , TN) is d-F-hypercyclic if there exists x ∈ X such that
x ⊕ · · · ⊕ x is F-hypercyclic for T1 ⊕ · · · ⊕ TN .

In this section, our aim is to prove the following result, which is a natural analogue
of [39, Theorem 2.1] for d-F-hypercyclicity. Let us denote by SOT the strong operator
topology on L(X), that is, the topology of pointwise convergence.

THEOREM 6.1. Let F ⊂ 2N be a Furstenberg family and let X be a Banach space
supporting a hereditarily F-hypercyclic operator. Let T1, . . . , TN ∈ L(X) and assume
that (T1, . . . , TN) is d-F-hypercyclic. Then, for any countable and linearly independent
set Z ⊂ d -F-HC(T1, . . . , TN), the set

{T ∈ L(X) : Z ⊂ d-F-HC(T1, . . . , TN , T )}
is SOT-dense in L(X).

Applying this result to Z = {x} with x ∈ d -F-HC(T1, . . . , TN), we get the following
corollary.

COROLLARY 6.2. Let X be a Banach space supporting a hereditarily frequently hyper-
cyclic operator. Let T1, . . . , TN ∈ L(X) and assume that (T1, . . . , TN) is d-frequently
hypercyclic. Then, there exists TN+1 ∈ L(X) such that (T1, . . . , TN+1) is d-frequently
hypercyclic.

If (T1, . . . , TN) is densely d-F-hypercyclic then, applying Theorem 6.1 with any
dense linearly independent set Z ⊂ X contained in d -F-HC(T1, . . . , TN), we obtain the
following corollary.

COROLLARY 6.3. Let F ⊂ 2N be a Furstenberg family and let X be a Banach space
supporting a hereditarily F-hypercyclic operator. Let T1, . . . , TN ∈ L(X) and assume
that (T1, . . . , TN) is densely d-F-hypercyclic. Then, the set
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{T ∈ L(X) : (T1, . . . , TN , T ) is densely d-F-hypercyclic}
is SOT-dense in L(X).

In the proof of Theorem 6.1, we will need the following fact (already mentioned in §1).

PROPOSITION 6.4. If T ∈ L(X) is hereditarily F-hypercyclic, then it is in fact densely
hereditarily F-hypercyclic: given a countable family (Ai)i∈I ⊂ F and a family (Vi)i∈I of
non-empty open sets in X, there is a dense set of x ∈ X such that NT (x, Vi) ∩ Ai ∈ F for
all i ∈ I .

Proof. Let U be a non-empty open set in X: we want to find x ∈ U such that NT (x, Vi) ∩
Ai ∈ F for all i ∈ I . For (i, N) ∈ I × N, define Vi,N := T −N(Vi) and Ai,N := Ai .
Since T is hereditarily F-hypercyclic, one can find x0 ∈ X and sets Bi,N ∈ F such that
Bi,N ⊂ Ai,N = Ai and T nx0 ∈ Vi,N for all n ∈ Bi,N . Since we may assume that the family
(Vi) is a basis of open sets for X, the vector x0 is in particular a hypercyclic vector for T.
So one can find an integer NU such that x := T NU x0 ∈ U . Then, for all n ∈ Bi,NU , we see
that T nx = T NU (T nx0) ∈ Vi .
Proof of Theorem 6.1. Let us denote by GL(X) the set of all invertible operators on X. The
core of the proof is contained in the following fact.

FACT 6.5. Let T1, . . . , TN ∈ L(X) and assume that (T1, . . . , TN) is d-F-hypercyclic.
Let T ∈ L(X) be a hereditarily F-hypercyclic operator. For any countable and linearly
independent set Z ⊂ d -F-HC(T1, . . . , TN), for any S ∈ GL(X) and any ε > 0, one can
find L ∈ GL(X) such that ‖L− S‖ < ε and Z ⊂ d -F-HC(T1, . . . , TN , L−1T L).

Proof of Fact 6.5. Without loss of generality, we assume that Z is infinite; we enumerate Z
as a sequence (zl)l∈N, without repetition. Let us fix S ∈ GL(X) and ε > 0. Since GL(X) is
‖ · ‖-open in L(X), we may assume that any operator L ∈ L(X) such that ‖L− S‖ < ε

is invertible.
Let (Wp)p∈N be a countable basis of open sets for XN+1 = XN ×X, and assume that

each set Wp has the form Wp = Up × Vp where Up is open in XN and Vp is open in X.
For each (l, p) ∈ N × N, we may fix a set Al,p ∈ F such that

(T n1 zl , . . . , T nNzl) ∈ Up for all n ∈ Al,p.

We construct, by induction, a sequence (Ll)l≥0 in L(X) with L0 = S, a sequence
(xl)l≥1 of vectors of X and a family (Bl,p)l,p≥1 of sets in F , such that the following holds
true for every l, p ≥ 1:

(i) Bl,p ⊂ Al,p and T nxl ∈ Vp for all n ∈ Bl,p;
(ii) Ll(zs) = xs for all s ≤ l;

(iii) ‖Ll − Ll−1‖ < 4−lε.
The inductive step is as follows. Choose a linear functional v∗

l ∈ X∗ such that
v∗
l (zs) = 0 for all s < l and v∗

l (zl) = 1, which is possible by linear independence of Z.
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Next, since T is densely hereditarily F-hypercyclic by Proposition 6.4, we can find a vector
xl ∈ X and sets Bl,p ⊂ Al,p with Bl,p ∈ F for each p ≥ 1, such that

‖xl − Ll−1(zl)‖ < ε

4l ‖v∗
l ‖

and T nxl ∈ Vp for all n ∈ Bl,p.

Then, define Ll := Ll−1 + v∗
l ⊗ (xl − Ll−1(zl)) ∈ L(X), that is,

Ll(x) = Ll−1(x)+ v∗
l (x) (xl − Ll−1(zl)).

Clearly, Ll(zs) = Ll−1(zs) for all s < l, so that Ll(zs) = xs by the induction hypothesis,
Ll(zl) = xl and ‖Ll − Ll−1‖ < 4−lε.

By properties (ii) and (iii), the sequence (Ll) converges to some L ∈ L(X), which
satisfies L(zl) = xl for all l ∈ N and ‖L− S‖ < ε; in particular, L is invertible. Moreover,
T nxl ∈ Vp for all l, p ≥ 1 and n ∈ Bl,p. Since Bl,p ⊂ Al,p, it follows that

(T n1 zl , . . . , T nNzl , (L
−1T L)nzl) ∈ Up × L−1(Vp) =: W̃p for all n ∈ Bp,l .

Now, (W̃p)p∈N is a basis of the topology of XN+1 = XN ×X because I ⊕ L−1 is a
homeomorphism of XN+1; so we see that zl ∈ d -F-HC(T1, . . . , TN , L−1T L) for each
l ≥ 1.

To conclude the proof of Theorem 6.1, we observe that since the operator T is
hypercyclic, the similarity orbit of T, that is, the set {S−1T S : S ∈ GL(X)}, is SOT-dense
in L(X); see for example [7, Proposition 2.20]. By Fact 6.5, it follows that the set

{L−1T L : Z ⊂ d -F-HC(T1, . . . , TN , L−1T L), L ∈ GL(X)}
is SOT-dense in L(X).

Remark 6.6. Our proof of Theorem 6.1 differs from that of [39, Theorem 2.1] regarding
d-hypercyclicity, where a Baire category argument was used; and it must be so at least for
d-frequent hypercyclicity, since FHC(T ) is always meagre in X, for any operator T ∈ L(X)

(see [43] or [9]). However, there may be a Baire category proof of Theorem 6.1 when F is
the family of sets with positive upper density (or, more generally, an ‘upper’ Furstenberg
family in the sense of [17]).

To apply Theorem 6.1, in the frequently hypercyclic case, it would be nice to exhibit a
class of Banach spaces as large as possible supporting hereditarily frequently hypercyclic
operators. It is easy to see that any Banach space with a symmetric Schauder basis has
this property: it suffices to take T := 2B, where B is the backward shift associated with
the basis. In view of Corollary 3.27, a natural (and much broader) class would be that of
complex Banach spaces admitting an unconditional Schauder decomposition, but we are
not able to prove that every such space has the required property. In any event, we can use
the method of [54] to prove the existence of d-frequently hypercyclic tuples of arbitrary
length for this class of spaces.

PROPOSITION 6.7. Let X be a complex separable infinite-dimensional Banach space with
an unconditional Schauder decomposition. For anyN ≥ 1, there exist T1, . . . , TN ∈ L(X)

such that (T1, . . . , TN) is d-frequently hypercyclic.
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Proof. By [22], X supports an operator T with a perfectly spanning set of T-eigenvectors.
Then, T ⊕ · · · ⊕ T has the same property and, in particular, it is frequently hypercyclic;
let x1 ⊕ · · · ⊕ xN be a frequently hypercyclic vector for T ⊕ · · · ⊕ T . Now, let y ∈
X \ {0} be arbitrary. Since GL(X) acts transitively on X, we may choose S1, . . . , SN ∈
GL(X) such that Si(xi) = y for i = 1, . . . , N . Then, setting Ti := SiT S

−1
i , we see that

y ∈ d - FHC(T1, . . . , TN).

7. Frequent d-hypercyclicity versus dense frequent d-hypercyclicity
Despite the similarity of the definitions, there are strong differences between hypercyclicity
and d-hypercyclicity. For instance, if T ∈ L(X) is hypercyclic, then HC(T ) is always dense
in X, and HC(T ) ∪ {0} contains a dense linear subspace of X. In contrast, for two operators
T1 and T2, the set d - HC(T1, T2) ∪ {0} may be equal to some finite-dimensional subspace
(see [51, Theorem 3.4]). In particular, d-hypercyclic tuples are not necessarily ‘densely
d-hypercyclic’.

However, since frequent d-hypercyclicity is a strong form of d-hypercyclicity, it is
natural to ask whether some properties that are not true for d-hypercyclic tuples might
be true for d-frequently hypercyclic tuples. In this spirit, the following question was asked
in [36–38].

Question 7.1. Let (T1, T2) be a d-frequently hypercyclic pair of operators on a Banach
space X. Is (T1, T2) necessarily densely d-hypercyclic?

The next theorem provides a solution to this problem.

THEOREM 7.2. There exist a Banach space X and T1, T2 ∈ L(X) such that (T1, T2) is
d-frequently hypercyclic but not densely d-hypercyclic.

Our proof is inspired by [51], where the authors construct a d-hypercyclic pair
which is not densely d-hypercyclic. A key role will be played by the similarity orbit of
some well-chosen operator T. The next two lemmas point out the relationship between
(frequently) hypercyclic vectors of T and T ⊕ T , and (frequently) d-hypercyclic vectors of
(T1, T2) when T1 and T2 belong to the similarity orbit of T.

LEMMA 7.3. Let T ∈ L(X) and L1, L2 ∈ GL(X), and set Tm := L−1
m T Lm, m = 1, 2.

Let also x ∈ X. If x ∈ d - HC(T1, T2), then L2x − L1x ∈ HC(T ).

Proof. This is [51, Lemma 3.1].

LEMMA 7.4. Let T ∈ L(X) and L1, L2 ∈ GL(X), and set Tm := L−1
m T Lm. Let also

F ⊂ 2N be a Furstenberg family and let x ∈ X. Then, x ∈ d -F-HC(T1, T2) if and only
if (L1x, L2x) ∈ F-HC(T ⊕ T ).

Proof. It is identical to the proof of [51, Lemma 2.1]. Just observe that for any positive
integer n and any pair of non-empty open subsets (U , V ) in X,

(T nL1x, T nL2x) ∈ U × V ⇐⇒ (T n1 x, T n2 x) ∈ L−1
1 (U)× L−1

2 (V ),

and apply the definition of F-hypercyclicity.
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The operators T1 and T2 that we are going to construct will be such that
T2 = (cI + R)−1T1(cI + R) for some R ∈ L(X) and c > 0. By Lemma 7.3 (with T = T1

and L1 = cI ), any x ∈ d - HC(T1, T2) is such that Rx ∈ HC(T1). We shall construct T1

and R in such a way that this condition prevents d - HC(T1, T2) from being dense in X. The
following result will be useful to prove that the pair (T1, T2) is d-frequently hypercyclic.

LEMMA 7.5. Let T1, R ∈ L(X) and c > 0 be such that L2 = cI + R is invertible, and
let T2 := L−1

2 T1L2. Let also F ⊂ 2N be a Furstenberg family. If x ∈ X is such that
(x, Rx) ∈ F-HC(T1 ⊕ T1), then x ∈ d -F-HC(T1, T2).

Proof. Let us set L1 := cI . By Lemma 7.4, it suffices to show that the condition
(x, Rx) ∈ F-HC(T1 ⊕ T1) implies (L1x, L2x) ∈ F-HC(T1 ⊕ T1). Now it is clear that
(cx, Rx) ∈ F-HC(T1 ⊕ T1). Let U , V be two non-empty open subsets of X, and let
U ′ ⊂ U and W be non-empty open sets such that U ′ +W ⊂ V . There exists a set A ∈ F
such that T n1 (cx) ∈ U ′ and T n1 (Rx) ∈ W for all n ∈ A. Then, for all n ∈ A, we have

T n1 L1x = T n1 (cx) ∈ U and T n1 L2x = T n1 (cx + Rx) ∈ U ′ +W ⊂ V .

We now go into the details of the construction. First, we define the Banach space X as

X :=
( ⊕

l≥1

X(l)

)
c0

where X(l) = �1(Z+) for every l ≥ 1.

(Following a standard notation, the subscript ‘c0’ indicates that the direct sum is a c0-sum.)
Next, we introduce the following operator T ∈ L(X): denoting by B the canonical

backward shift on �1(Z+), let

T :=
⊕
l≥1

T (l), where T (l) = I + 2−lB ∈ L(X(l)) for every l ≥ 1.

LEMMA 7.6. The operator T ⊕ T is frequently hypercyclic.

Proof. It is enough to prove that T has a perfectly spanning set of T-eigenvectors. Indeed,
T ⊕ T will have the same property and hence will be frequently hypercyclic.

We now define our first operator T1:

T1 :=
⊕
l≥1

(I + B) ∈ L(X).

Note that the same proof as that of Lemma 7.6 shows that T1 ⊕ T1 is frequently
hypercyclic. However, we will use the above operator T to produce a frequently hypercyclic
vector for T1 ⊕ T1 with specific properties.

In what follows, we denote by (ek(l))k≥0 the canonical basis of the lth component
X(l) = �1(Z+) of X and by (e∗k (l))k≥0 the associated sequence of coordinate functionals,
which we will consider as linear functionals on X. A vector x ∈ X will be written as
x = (x(l))l≥1 and we will use the notation xk(l) = 〈e∗k (l), x〉 for every k ≥ 0.

LEMMA 7.7. There exists (u, v) ∈ FHC(T1 ⊕ T1) such that u0(1) �= 0 and |vk(l)| ≤ 2−lk
for all k ≥ 0 and all l ≥ 1.
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Proof. For l ≥ 1, Let us consider the diagonal operator D(l) on X(l) defined by

D(l)(x(l)) :=
∑
k≥0

2−lkxk(l)ek(l)

and set

D :=
⊕
l≥1

D(l) ∈ L(X).

It is easy to check that (I + B)D(l) = D(l)(I + 2−lB) for each l ≥ 1, so that
T1D = DT . Moreover, the operator D has dense range. So T1 is a quasi-factor of T with
quasi-factoring map D and, hence, T1 ⊕ T1 is a quasi-factor of T ⊕ T with quasi-factoring
map D ⊕D. Let (x, y) ∈ FHC(T ⊕ T ) with ‖y‖ ≤ 1 and x0(1) �= 0, and let us set
(u, v) := (Dx, Dy). Then, (u, v) ∈ FHC(T1 ⊕ T1). Moreover, u0(1) = x0(1) �= 0 and, for
k ≥ 0 and l ≥ 1,

|vk(l)| = |2−lkyk(l)| ≤ 2−lk .

We now give a result which provides a condition preventing a vector from being
hypercyclic for T1.

LEMMA 7.8. Let x ∈ X. Assume that there exist l ≥ 1 and λ �= 0 such that, for all k ≥ 1
sufficiently large, �e 〈e∗k (l), x/λ〉 ≥ 0. Then, x /∈ HC(T1).

Proof. Since x ∈ HC(T1) if and only if x/λ ∈ HC(T1), we may assume λ = 1. Now, if
�e(xk(l)) = �e 〈e∗k (l), x〉 ≥ 0 for all sufficiently large k, then the arguments of [51] (see
the proof of Claim 1, p. 845) show that either x(l) is finitely supported or

�e
〈
e∗0(l), (I + B)n(x(l))

〉
≥ 0 for all sufficiently large n.

Therefore, x(l) cannot be a hypercyclic vector for I + B and, hence, x /∈ HC(T1).

Let us fix a sequence of positive real numbers (εl)l≥1 going to zero. Let also
V : �1(Z+) → �1(Z+) be the (bounded) operator defined by

Vy :=
∑
k≥1

( ∑
j≥1

2−jkyj
)
ek for every y ∈ �1(Z+)

and let R0 : X → X be the (bounded) operator on X defined by

R0(x) := (ε1V (x(1)), . . . , εlV (x(1)), . . .).

The operator R0 satisfies the following crucial estimates.

LEMMA 7.9. Let x ∈ X and m ≥ 1 be such that 〈e∗m(1), x〉 �= 0 and 〈e∗j (1), x〉 = 0 for
1 ≤ j < m. Then, there exists δ : Z+ −→ R+ such that δ(k) −→ 0 as k → ∞ and such
that for all l ≥ 1 and k ≥ 0, we can write

〈e∗k (l), R0(x)〉 = εl 〈e∗m(1), x〉 2−mk(1 + δ(k)).
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Proof. We just write

〈e∗k (l), R0(x)〉 = εl

∞∑
j=1

2−jk〈e∗j (1), x〉

= εl

∞∑
j=m

2−jk〈e∗j (1), x〉

= εl2−mk〈e∗m(1), x〉
(

1 +
∞∑
j=1

2−jk 〈e∗j+m(1), x〉
〈e∗m(1), x〉

)
;

and we conclude because∣∣∣∣ ∞∑
j=1

2−jk 〈e∗j+m(1), x〉
〈e∗m(1), x〉

∣∣∣∣ ≤ 2−k

〈e∗m(1), x〉
‖x(1)‖1

k→∞−−−→ 0.

We consider (u, v) given by Lemma 7.7. We set, for x ∈ X,

R(x) := R0(x)+ x0(1)
u0(1)

(v − R0(u)).

This defines a bounded operator such that R(u) = v ∈ HC(T1). It turns out that there are
not so many vectors x ∈ X such that R(x) ∈ HC(T1).

LEMMA 7.10. Let x ∈ X be such that R(x) ∈ HC(T1). Then, x(1) is a scalar multiple
of u(1).

Proof. Let us set z := x − (x0(1)/u0(1))u, so that

R(x) = R0(z)+ x0(1)
u0(1)

v.

Assume first that z(1) /∈ span(e0(1)). Then, there exists m ≥ 1 such that 〈e∗m(1), z〉 �= 0,
whereas 〈e∗j (1), z〉 = 0 for 1 ≤ j < m. Let l > m. By Lemma 7.9, it follows that

〈e∗k (l), R0(z)〉 = εl〈e∗m(1), z〉2−mk(1 + δ(k)),

so that

〈e∗k (l), R(x)〉 = εl〈e∗m(1), z〉2−mk(1 + δ(k))+ x0(1)
u0(1)

vk(l)

= εl〈e∗m(1)(z)2−mk(1 + δl(k)),

where for all l > m, δl(k) → 0 as k → ∞, since |vk(l)| ≤ 2−lk = o(2−mk). By Lemma
7.8, R(x) /∈ HC(T1), which is a contradiction.

Hence, there exists a complex number α(1) such that

x(1)− x0(1)
u0(1)

u(1) = α(1)e0(1).

Applying the functional e∗0(1) to this equation, we easily get α(1) = 0, which implies that
x(1) belongs to span(u(1)).

We can now give the proof.
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Proof of Theorem 7.2. Let us fix c > ‖R‖. We set L2 := cI + R (which is invertible) and
T2 := L−1

2 T L2. We show that the pair (T1, T2) is d-frequently hypercyclic but not densely
d-hypercyclic.

By construction, (u, Ru) = (u, v) ∈ FHC(T1 ⊕ T1). Hence, u ∈ d - FHC(T1, T2)

by Lemma 7.5. Moreover, setting T = T1 and L1 = cI , Lemma 7.3 implies that
if x ∈ d - HC(T1, T2), then R(x) ∈ HC(T1). By Lemma 7.10, it follows that x(1) ∈
span(u(1)) for every x ∈ d - HC(T1, T2). In particular, d - HC(T1, T2) cannot be dense
in X.

8. Eigenvectors and d-frequent hypercyclicity
In this section, we give a criterion relying on properties of the eigenvectors for showing that
a tuple of operators is (densely) d-frequently hypercyclic. The initial motivation was the
following question asked by K. Grosse-Erdmann: let D be the derivation operator acting on
the space of entire functionsH(C), and for every a ∈ C \ {0}, denote by τa the operator of
translation by a onH(C), defined by τaf (z) := f (z+ a). It is well known (see [7] or [33])
that both D and τa are frequently hypercyclic. Now one can ask the following question.

Question 8.1. Do the operators D and τa have common frequently hypercyclic vectors?

It will follow from the next theorem that the answer to Question 8.1 is positive.

THEOREM 8.2. Let N ≥ 2, let X be a complex Fréchet space and let T1, . . . , TN ∈ L(X).
Assume that there exist a holomorphic vector fieldE : O → X, defined on some connected
open set O ⊂ C, and non-constant holomorphic functions φ1, . . . , φN , defined on some
connected open set containing O, such that:
• span E(O) = X;
• TiE(z) = φi(z)Ei(z) for every i = 1, . . . , N and z ∈ O;
• O ∩ φ−1

i (T) ∩ ⋂
j �=i φ

−1
j (D) �= ∅ for every i = 1, . . . , N .

Then, the N-tuple (T1, . . . , TN) is densely d-frequently hypercyclic.

Before proving this result, let us state two consequences and give some examples.

COROLLARY 8.3. Let D be the derivation operator on X := H(C). If φ1 and φ2 are
two entire functions of exponential type such that φ−1

1 (T) ∩ φ−1
2 (D) �= ∅ and φ−1

2 (T) ∩
φ−1

1 (D) �= ∅, then the pair (φ1(D), φ2(D)) is densely d-frequently hypercyclic.

Proof. Let E : C → X be the holomorphic vector field defined by E(z) := ez · . We have
DE(z) = zE(z) for all z ∈ C and span E(C) = X; so we may apply Theorem 8.2 to the
operators Ti := φi(D).

Since τa = �a(D), where φa(z) := eaz, Corollary 8.3 applies to pairs of operators
involving D and τa :

Example 8.4. Taking φ1(z) := z and φ2(z) := eaz, we see that for any a �= 0, the pair
(D, τa) is densely d-frequently hypercyclic (so that, in particular, FHC(D)∩FHC(τa) �= ∅).
Indeed, any complex number z such that |z| = 1 and �e(az) < 0 belongs to
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φ−1
1 (T) ∩ φ−1

2 (D), while any z ∈ ia R such that |z| < 1 belongs to φ−1
2 (T) ∩ φ−1

1 (D).
Similarly, if a, b �= 0 and a/b �∈ R, then (τa , τb) is densely d-frequently hypercyclic.

COROLLARY 8.5. Let B be the canonical backward shift acting on X = �p(Z+) or
c0(Z+). If φ1 and φ2 are two holomorphic functions defined in a neighbourhood of the
closed unit disk D such that D ∩ φ−1

1 (T) ∩ φ−1
2 (D) �= ∅ and D ∩ φ−1

2 (T) ∩ φ−1
1 (D) �= ∅,

then the pair (φ1(B), φ2(B)) is densely d-frequently hypercyclic.

Proof. The operators Ti := φi(B) are well defined since σ(B) = D. Let E : D → X be
the holomorphic vector field defined by E(z) := ∑∞

n=0 z
nen. We have BE(z) = zE(z) for

all z ∈ D and span E(C) = X; so Theorem 8.2 applies.

Example 8.6. If |λ| > 1 and 0 < |α| < 2|λ|, the pair (λB, I + αB) is densely d-frequently
hypercyclic. If |λ| > 1 and a �= 0, the pair (λB, eaB) is densely d-frequently hypercyclic.
However, Theorem 8.2 is completely inefficient to show, for example, that the pair
(aB, bB2) is d-frequently hypercyclic if 1 < a < b, which is nevertheless true by [36].

In the proof of Theorem 8.2, we will make use of the following straightforward
observation.

Fact 8.7. Let T1, . . . , TN ∈ L(X) and let x1, . . . , xN ∈ X. Assume that (x1, . . . , xN) ∈
FHC(T1 ⊕ · · · ⊕ TN) and that T mj xi → 0 as m → ∞ whenever i �= j . Then, x :=
x1 + · · · + xN is a d-frequently hypercyclic vector for (T1, . . . , TN).

Proof of Theorem 8.2. We first note that for i = 1, . . . , N , there is a non-empty open set
Vi ⊂ O and ri ∈ (0, 1) such that (φi)|Vi is a diffeomorphism (onto its range), φi(Vi) ∩
T �= ∅ and φj (Vi) ⊂ D(0, ri) for j �= i. Indeed, let a ∈ O be such that φi(a) ∈ T and
φj (a) ∈ D for j �= i. Choose an open neighbourhood W of a and ri ∈ (0, 1) such that
φj (W) ⊂ D(0, ri) for all j �= i. By the open mapping theorem, φi(W) is an open set
intersecting T, so φi(W) ∩ T is uncountable. Hence, one can find b ∈ W such that
φi(b) ∈ T and φ′

i (b) �= 0; and the claim follows from the inverse function theorem.
Taking the open set Vi smaller if necessary, we may assume that �i := φi(Vi) ∩ T is a

proper open arc of T. We choose a ‘cut-off’ function χi ∈ C∞(T) such that χi(λ) = 0
outside �i and χi(λ) > 0 on �i , and (with the obvious abuse of notation) we define
Fi : T → X by setting

Fi(λ) := χi(λ)E(φ
−1
i (λ)) for every λ ∈ T.

Thus, Fi is a C∞-smooth T-eigenvector field for Ti , that is, TiFi(λ) = λFi(λ) for every
λ ∈ T. Let us denote by F̂i(n) the Fourier coefficients of Fi :

F̂i(n) =
∫
T

Fi(λ) λ
−n dλ, n ∈ Z.

Since Fi is a T-eigenvector field for T, we have TiF̂i(n) = F̂i(n− 1) for all n ∈ Z,
that is, the sequence (F̂i(n))n∈Z is a bilateral backward orbit for Ti . Moreover, since
span E(O) = X, it follows from the Hahn–Banach theorem, together with the identity
principle for analytic functions, that span (F̂i(n) : n ∈ Z) = X.
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In the remainder of the proof, we fix a family (gi,n)1≤i≤N ,n∈Z of independent, standard
complex Gaussian variables defined on some probability space (�, A, P).

CLAIM 8.8. For every i = 1, . . . , N , the series∑
n∈Z

gi,nF̂i(n)

is almost surely convergent and defines an X-valued random variable ξi on (�, A, P),
which is such that

for every i, j = 1, . . . , N with j �= i, T mj ξi
m→∞−−−−→ 0 almost surely.

Proof of Claim 8.8. Since Fi is C2-smooth, two integrations by parts show that for any
continuous semi-norm q on X, we have q(F̂i(n)) = O(1/n2) as |n| → ∞, so that

∞∑
n=−∞

E(q(gi,nF̂i(n))) < ∞.

This implies that the series
∑
n∈Z gi,nF̂i(n) is almost surely convergent.

Let us fix j �= i. By the definition of Fi , we have TjFi(λ) = ψi,j (λ)Fi(λ) for every
λ ∈ �i , where ψi,j (λ) := φj (φ

−1
i (λ)); and TjFi(λ) = 0 if λ �∈ �i . Hence, for almost

every ω ∈ � and every m ∈ N, we have

T mj (ξi(ω)) =
∑
n∈Z

gn(ω)

∫
�i

ψi,j (λ)
mFi(λ) λ

−n dλ.

Let q be a continuous semi-norm on X. Since |ψi,j (λ)| < ri for every λ ∈ �i by
definition of ψ , two integrations by parts show that there is a constant Cq such that

q
(∫

�

ψi,j (λ)
mF(λ) λ−n dλ

)
≤ Cq × m2rmi

1 + n2 for every m ≥ 0 and every n ∈ Z.

Moreover, it follows from the Borel–Cantelli lemma that for almost every ω ∈ �, there
exists an integer N(ω) such that

for all |n| > N(ω) : |gn(ω)| ≤ √
n.

Hence, given a continuous semi-norm q on X, one can find for almost every ω ∈ �,
some constant Mq,ω such that

for all m ∈ N : q(T mj ξi(ω)) ≤ Mq,ω m
2rmi .

Hence, q(T mj ξi(ω)) → 0 almost surely asm → ∞ for any given continuous semi-norm
q, that is, T mj ξi → 0 almost surely.

We can now conclude the proof of Theorem 8.2. For i = 1, . . . , N , let us denote by μi
the distribution of the random variable ξi : � → X. By definition, μi is a Ti-invariant
Gaussian measure with full support; and by [1], Ti is strongly mixing with respect
to μi . Hence, the measure μ1 ⊗ · · · ⊗ μN is a (T1 ⊕ · · · ⊕ TN)-invariant measure on
XN with full support and T1 ⊕ · · · ⊕ TN is mixing with respect to μ1 ⊗ · · · ⊗ μN .
Since μ1 ⊗ · · · ⊗ μN is the distribution of the random vector ξ := (ξ1, . . . , ξN) by
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independence of ξ1, . . . , ξN , it follows that the vector ξ(ω) is almost surely frequently
hypercyclic for T1 ⊕ · · · ⊕ TN . Moreover, by Claim 8.8, we see that T mj ξi(ω) → 0
almost surely as m → ∞, whenever i �= j . By Fact 8.7, it follows that the vector
ξ1(ω)+ · · · + ξN(ω) is almost surely d-frequently hypercyclic for (T1, . . . , TN). In other
words, (μ1 � · · · � μN)-almost every x ∈ X is d-frequently hypercyclic for (T1, . . . , TN).
Since the measure μ1 � · · · � μN has full support, this terminates the proof of
Theorem 8.2.

9. Remarks and questions
9.1. Hereditary frequent hypercyclicity in a weak sense. Another natural definition
for hereditary F-hypercyclicity could be the following: an operator T ∈ L(X) is
hereditarily F-hypercyclic in the weak sense if, for every A ∈ F , the sequence (T n)n∈A
is F-hypercyclic, that is, there exists x ∈ X such that NT (x, V ) ∩ A ∈ F for all
non-empty open sets V ⊂ X. Equivalently, T is FA-hypercyclic for every A ∈ F , where
FA := {B ⊂ N : B ∩ A ∈ F}. Of course, hereditary F-hypercyclicity implies hereditary
F-hypercyclicity in the weak sense. Note also that Theorem 5.2 says precisely that there
exist frequently hypercyclic operators which are not hereditarily frequently hypercyclic in
the weak sense.

When F is the family of all infinite subsets of N, an operator T is hereditarily
F-hypercyclic in the weak sense if and only if it is ‘hereditarily hypercyclic with respect
to the whole sequence of integers’ in the sense of [13]; and this means exactly that T is
topologically mixing (see for example [27, Lemma 2.2]). The next result shows that this is
also equivalent to hereditary F-hypercyclicity.

PROPOSITION 9.1. Let F be a Furstenberg family with the following property: for any
operator T and any A ⊂ N, the set FA-HC(T ) is either empty or comeagre in the
underlying space. Then, hereditary F-hypercyclicity and hereditary F-hypercyclicity in
the weak sense are equivalent. In particular, when F is the family of all infinite subsets of
N, an operator T is hereditarily F-hypercyclic if and only if it is topologically mixing.

Proof. Assume that T is hereditarily F-hypercyclic in the weak sense. Let (Ai)i∈I be a
countable family of sets in F and let (Vi)i∈I be a family of non-empty open subsets of X.
By assumption on F , for each i ∈ I , the set Gi of F-hypercyclic vectors for the sequence
(T n)n∈Ai is comeagre in X; so G := ⋂

i∈I Gi is non-empty. Then, any x ∈ G satisfies the
required property: for every i ∈ I , there is a set Bi ∈ F such that Bi ⊂ Ai and T nx ∈ Vi
for all n ∈ Bi .

We can now ask the following question.

Question 9.2. For which Furstenberg families F do hereditary F-hypercyclicity and
hereditary F-hypercyclicity in the weak sense coincide?

In view of the results of [17], upper Furstenberg families may be good candidates.
However, we are unable to handle even the case of sets with positive upper density.
Proposition 9.1 leads naturally to the following question.
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Question 9.3. Let us denote by D the family of all sets A ⊂ N with positive upper density.
Is it true that if A ∈ D and T ∈ L(X) is DA-hypercyclic, then DA-HC(T ) is comeagre
in X?

However, it might seem more than plausible that the two notions are not equivalent in
the case of frequent hypercyclicity, that is, when F is the family of sets with positive lower
density. However again, we do not know how to prove this.

One may also think of ‘local’ versions of hereditary frequent hypercyclicity. For
example, one could say that an operator T ∈ L(X) is:
• hereditarily F-hypercyclic with respect to some sequence (�i)i∈N ⊂ F if, for any

sequence (Ai) ⊂ F with Ai ⊂ �i and for any sequence of non-empty open sets (Vi)
in X, one can find a vector x ∈ X such that NT (x, Vi) ∩ Ai ∈ F for all i ∈ N;

• hereditarily F-hypercyclic with respect to some set � ∈ F if it is hereditarily F-HC
with respect to the constant sequence �i = �;

• hereditarily F-hypercyclic in the weak sense with respect to some set � ∈ F if it is
FA-hypercyclic for any A ∈ F ∩ 2�.

When F is the family of all infinite subsets of N, hereditary F-hypercyclicity in
the weak sense with respect to some set � = {nk : k ≥ 0} is the same as hereditary
hypercyclicity with respect to the sequence (nk) in the sense of [13]; and hence, by [13,
Theorem 2.3], an operator T is hereditarily F-hypercyclic in the weak sense with respect
to some set� if and only if it is topologically weakly mixing, that is, T ⊕ T is hypercyclic.
Also, the proof of Proposition 4.1 makes it clear that if T is hereditarily F-hypercyclic with
respect to some sequence (�i), then T ⊕ T is F-hypercyclic. This leads to the following
question.

Question 9.4. If T ∈ L(X) is hereditarily F-hypercyclic in the weak sense with respect to
some set � ∈ F , does it follow that T ⊕ T is F-hypercyclic? And conversely?

In the same spirit and with [24] in mind, one may ask another question.

Question 9.5. Does U -frequent hypercyclicity imply some weak form of hereditary
U -frequent hypercyclicity, yet strong enough to ‘explain’ why T ⊕ T is U -frequently
hypercyclic as soon as T is?

9.2. F-transitivity and hereditary F-transitivity. In topological dynamics, there is
a natural notion of ‘transitivity’ associated with a given Furstenberg family F (see
for example [12, 26] in the linear setting): if X is a topological space, a continuous
map T : X → X is said to be F-transitive if NT (U , V ) ∈ F for every pair (U , V ) of
non-empty open sets in X, where

NT (U , V ) := {n ∈ N : T n(U) ∩ V �= ∅}.
Following [12], one can consider a ‘hereditary’ version of F-transitivity: let us say

that an operator T ∈ L(X) is hereditarily F-transitive if N (U , V ) ∩ A ∈ F for every
A ∈ F and all non-empty open sets U , V . There is an obvious link with hereditary
F-hypercyclicity.
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Remark 9.6. Hereditarily F-hypercyclic operators are hereditarily F-transitive.

Proof. By Proposition 6.4, we know that if T is hereditarily F-hypercyclic, then T is
densely hereditarily F-hypercyclic. Let U , V be non-empty open sets in X and let A ∈ F .
By dense hereditary F-hypercyclicity, there exists x ∈ U such that N(x, V ) ∩ A ∈ F . In
particular, N(U , V ) ∩ A ∈ F , so T is hereditarily F-transitive.

The converse is definitely not true in general, for the following reason: there exist
topologically mixing operators that are not frequently hypercyclic. In particular, any such
operator is hereditarily D-transitive, where D is the family of sets with positive lower
density, but not frequently hypercyclic (that is, not D-hypercyclic). This leads to the
following questions (the third one was suggested by the referee).

Question 9.7. Are there operators which are frequently hypercyclic and topologically
mixing, but not hereditarily frequently hypercyclic?

Question 9.8. Are there at least operators which are hereditarily D-transitive and fre-
quently hypercyclic, but not hereditarily frequently hypercyclic?

Question 9.9. Assume that T ∈ L(X) admits an invariant measure with full support with
respect to which it is a strongly mixing transformation. Does it follow that T is hereditarily
frequently hypercyclic? What if, additionally, the measure is Gaussian?

Given a Furstenberg family F , one can define the dual family F∗ as the collection of
all subsets A of N such that A ∩ B �= ∅ for every B ∈ F . It is clear by definition that every
hereditarily F-transitive operator is F∗-transitive; and it is also clear that (D)∗ = D1,
the family of sets with upper density equal to 1. Hence, every hereditarily frequently
hypercyclic operator is D1-transitive. It is natural to wonder if every frequently hypercyclic
operator is D1-transitive too. The next proposition shows that this is not the case. This is
an improvement of [12, Proposition 5.1], where it is shown that reiterative hypercyclicity
does not imply D1-transitivity. Moreover, the example we give is any of the weighted shifts
introduced in the proof of Theorem 4.2; so this provides another proof that these shifts are
not hereditarily frequently hypercyclic.

PROPOSITION 9.10. There exists a frequently hypercyclic weighted shift Bw on c0(Z+)
which is not D1-transitive.

Proof. Let Bw be one of the weighted shifts introduced in the proof of Theorem 4.2. By
[12, Proposition 3.3], to show that Bw is not D1-transitive, it is enough to findM > 0 such
that

CM := {n ∈ N : |w1 · · · wn| > M} �∈ D1.

With the notation of the proof of Theorem 4.2, we know that for every p ≥ 1,

C2p ⊂
⋃
q≥p

(bqN + [−q, q]) ∪
⋃
q≥1

⋃
u∈A2q

I a,4ε
u .
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Moreover, by assumption on (bq), we have

lim
p→∞ dens

( ⋃
q≥p

(bqN + [−q, q])
)

= 0;

and we also have ⋃
q≥1

⋃
u∈A2q

I a,4ε
u ⊂

⋃
u≥1

I a,4ε
u .

Since

dens
( ⋃
u≥1

I a,4ε
u

)
≤ lim
u→∞

∑u
k=1 8εak

(1 + 4ε)au
= 8ε

1 + 4ε

∞∑
k=0

a−k < 1 if a is sufficiently big,

it follows that if p is sufficiently big, then

dens C2p < 1.

This concludes the proof of Proposition 9.10.

9.3. About disjointness. The original definition of disjointness in topological dynamics
goes back to Furstenberg’s seminal paper [25]. The setting is that of compact dynamical
systems (X, T ), that is, X is a compact metric space and T : X → X is a continuous
map. Two compact dynamical systems (X1, T1) and (X2, T2) are said to be disjoint
if the only closed, (T1 × T2)-invariant set � ⊂ X1 ×X2 such that πX1(�) = X1 and
πX2(�) = X2 is � = X1 ×X2. Note that since the spaces are compact, one could replace
πXi (�) by πXi (�) in the definition. For dynamical systems (X, T ) whose underlying
space is not necessarily compact, both definitions make sense and lead to a priori
different notions of disjointness (the one ‘with closure’ being stronger than the one
‘without closure’). In particular, one could consider these notions in the linear setting.
However, there are no disjoint pairs of linear dynamical systems in this sense, even
‘without closures’. Indeed, if T1 ∈ L(X1) and X2 ∈ L(X2), then � := ({0} ×X2) ∪
(X1 × {0}) shows that disjointness cannot be met. One can get round this difficulty
by changing the definitions a little bit as follows: instead of πXi (�) = Xi , require
that πXi (� ∩ (X1 \ {0})× (X2 \ {0})) = Xi \ {0}; and likewise for the definition ‘with
closures’.

Even though these definitions of disjointness are likely to be artificial, one can try to play
with them a little. For example, copying out the relevant parts of [25]—namely, the proofs
of Theorems II.1 and II.2—one gets the following results. Let us say that a linear dynamical
system (X, T ) is minimal apart from 0 if every non-zero vector x ∈ X is hypercyclic for
T; equivalently, if the only closed T-invariant subsets of X are {0} and X. Famous examples
of Read [50] show that this can indeed happen.

PROPOSITION 9.11. Let (X1, T1) and (X2, T2) be two linear dynamical systems. If
(X1, T1) and (X2, T2) are disjoint ‘without closures’, then at least one of them is minimal
apart from 0.
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Proof. Assume that (X1, T1) and (X2, T2) are not minimal apart from 0. Then,
for i = 1, 2, one can find a closed Ti-invariant set Ci ⊂ Xi such that Ci �= Xi and
Ci ∩ (Xi \ {0}) �= ∅; and � := (C1 ×X2) ∪ (X1 × C2) shows that (X1, T1) and (X2, T2)

are not disjoint ‘without closures’.

PROPOSITION 9.12. Let (X1, T1) and (X2, T2) be two linear dynamical systems. Assume
that the periodic points of T1 are dense in X1 and that (X2, T2) is minimal apart from 0.
Then, (X1, T1) and (X2, T2) are disjoint ‘without closures’.

Proof. Let � ⊂ X1 ×X2 be a closed, (T1 × T2)-invariant set such that πXi (� ∩ (X1 \
{0})× (X2 \ {0})) = Xi \ {0} for i = 1, 2. We have to show that � = X1 ×X2; and since
the periodic points of T1 are dense in X1, it is enough to show that (Per(T1) \ {0})×
X2 ⊂ �.

Let u ∈ X1 be any non-zero periodic point of T1 and choose d ∈ N such that T du = u.
By assumption on �, one can find v ∈ X2 \ {0} such that (u, v) ∈ �. Then, (u, T dn2 v) ∈ �
for all n ∈ N by (T1 × T2)-invariance of �. Moreover, v ∈ HC(T2) by assumption on
(X2, T2). Hence, by Ansari’s theorem [3], v is also a hypercyclic vector for T d2 ; and since
� is closed in X1 ×X2, it follows that {u} ×X2 ⊂ �.

Proposition 9.12 implies in particular that linear dynamical systems which are disjoint
‘without closure’ do exist. We do not know if this is also true ‘with closure’; so one
could think of possible weakenings of the definition of disjointness ‘with closures’. For
hypercyclic operators, one possible such weakening could be the following: one could
say that two hypercyclic operators T1 ∈ L(X1) and T2 ∈ L(X2) are pseudo-disjoint (just
to give a name) if, whenever x1 is a hypercyclic vector for T1 and x2 is a hypercyclic
vector for T2, it follows that (x1, x2) is hypercyclic for T1 × T2. This is indeed weaker
than the definition of disjointness ‘with closures’ (consider � := Orb((x1, x2), T1 × T2) ),
yet formally much stronger than the disjointness notion introduced in [10, 14], that is,
diagonal hypercyclicity. We are not much further ahead since we do not know if there are
any pseudo-disjoint pairs of linear operators (whereas there are lots of interesting examples
for diagonal hypercyclicity). So we ask the following question.

Question 9.13. Are there any pseudo-disjoint pairs of operators, that is, pairs of hyper-
cyclic operators (T1, T2) such that HC(T1)× HC(T2) ⊂ HC(T1 × T2)?

Regarding this question, one may observe that two linear operators T1 and T2 are
trivially pseudo-disjoint if it happens that every vector x ∈ X1 ×X2 with non-zero
coordinates is hypercyclic for T1 × T2. This leads to the following ‘strong’ form of
Question 9.13.

Question 9.14. Are there pairs of operators (T1, T2) such that every x ∈ (X1 \ {0})×
(X2 \ {0}) is hypercyclic for T1 × T2?

Let us point out the following amusing fact: if such a pair (T1, T2) can be found, then the
operator T = T1 × T2 acting on X = X1 ×X2 is a hypercyclic operator such that HC(T )
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is an open set but HC(T ) �= X \ {0}. We do not know of any example of operators with
that property.

Finally, we note that if one extends the definition of pseudo-disjointness to possibly
nonlinear systems in the obvious way, it follows from the main result of [52] that any
irrational rotation of the circle is pseudo-disjoint from any hypercyclic operator. In view
of that, one may consider the following variant of Question 9.13.

Question 9.15. Are there natural classes of hypercyclic operators C1, C2 such that any
T1 ∈ C1 is pseudo-disjoint from any T2 ∈ C2?

9.4. Other questions. We conclude the paper by adding some other possibly interesting
questions motivated by the results obtained in the paper.

The first question asks for a converse to Observation 1.3.

Question 9.16. Let F be a Furstenberg family and let T ∈ L(X). Assume that S ⊕ T is
F-hypercyclic for every F-hypercyclic operator S. Does it follow that T is hereditarily
F-hypercyclic?

The next two questions are related to an already mentioned ‘trap’ into which it is easy to
fall: if F and F ′ are two Furstenberg families, the fact that F ⊂ F ′ does not formally imply
that hereditary F-hypercyclicity is a stronger property than hereditary F ′-hypercyclicity.

Question 9.17. Are there hereditarily frequently hypercyclic operators which are not
topologically mixing?

Question 9.18. Does hereditary frequent hypercyclicity imply hereditary U -frequent
hypercyclicity?

In the theory of frequently hypercyclic operators, there are non-trivial counterexamples
to some tempting ‘conjectures’. It is natural to ask if these examples are in fact hereditarily
frequently hypercyclic or if it is possible to modify them to get hereditarily frequently
hypercyclic examples. In particular, with [4, 42] in mind, this leads to the following
questions (the second one is a strengthening of Question 9.17).

Question 9.19. Are there invertible hereditarily frequently hypercyclic operators whose
inverse is not frequently hypercyclic?

Question 9.20. Are there operators which are both hereditarily frequently hypercyclic and
chaotic but not topologically mixing?

The next two questions are related to the sufficient conditions we found for hereditary
frequent hypercyclicity. Observe first that in addition to the FHCC and the unimodular
eigenvectors machinery, there are other criteria to prove frequent hypercyclicity (see [11]
or [31, Theorem 5.35]). They do not imply hereditarily frequent hypercyclicity. Indeed, the
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criterion of [11] is equivalent to frequent hypercyclicity for weighted shifts on c0, whereas
the C-type operator of Theorem 5.2 satisfies [31, Theorem 5.35].

Question 9.21. If T ∈ L(X) is such that the T-eigenvectors of T are spanning with respect
to the Lebesgue measure, does it follow that one can find a T-invariant measure μ with full
support such that (X, B, μ, T ) is a factor of a dynamical system with countable Lebesgue
spectrum? Does it follow at least that T is hereditarily frequently hypercyclic?

Question 9.22. Let T ∈ L(X). Is it true that if the T-eigenvectors of T are perfectly
spanning, then T is hereditarily frequently hypercyclic?

Concerning the invariant measure business, the next two questions seem natural. The
first one is motivated by Theorem 3.24.

Question 9.23. Does there exist an operator T which is not hereditarily U -frequently
hypercyclic but admits an ergodic measure with full support?

Question 9.24. If X is a reflexive Banach space, then any frequently hypercyclic operator
T on X admits a continuous invariant probability measure with full support (see [30]). Is it
possible to improve this result if T is assumed to be hereditarily frequently hypercyclic?

The next question is, of course, strongly reminiscent of the Bès–Peris theorem [13],
according to which the hypercyclicity criterion characterizes topological weak mixing.

Question 9.25. Given a Furstenberg family F , is there some ‘F-hypercyclicity criterion’
characterizing the operators T such that T ⊕ T is F-hypercyclic?

Finally, our last three questions concern the links between (hereditary) frequent
hypercyclicity and the geometry of the underlying space X.

Question 9.26. On which spaces X is it possible to find hereditarily frequently hypercyclic
operators? Is it possible at least on any complex Banach space admitting an unconditional
Schauder decomposition?

Question 9.27. Are there spaces X which support frequently hypercyclic operators, but no
hereditarily frequently hypercyclic operator?

Question 9.28. On which Banach spaces X is it possible to construct d-frequently
hypercyclic pairs (T1, T2) which are not densely d-frequently hypercyclic?
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