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We study the injection flow of a heavy viscoplastic fluid into a light Newtonian fluid,
via modelling and experiments. The injection is carried out downward, via an eccentric
inner pipe inside a vertical closed-end outer pipe. This configuration results in a core
viscoplastic fluid surrounded by an annular Newtonian fluid. The flow is structured
and mixing is negligible. As the injection rate increases in a typical experiment, we
observe three distinct flow regimes, associated with the core fluid behaviour, namely
the breakup, coiling and buckling (bulging) regimes. In the breakup regime, the core
fluid is yielded due to the extension caused by buoyancy, while in the buckling regime
the yielding occurs due to the compression promoted by the pressure and the interfacial
shear stress applied by the upward flow of the annular fluid. For the coiling regime, the
core fluid remains largely unyielded until it exhibits a coiling behaviour. We develop a
lubrication approximation model, using the Herschel–Bulkley constitutive equation, with
dimensionless flow parameters including the Bingham number, the power-law index, the
buoyancy number, the viscosity ratio, the diameter ratio, the eccentricity and the aspect
ratio. Based on a reasonable prediction to the yielding onset, the model allows us to
classify the flow regimes versus an elegant combination of the dimensionless numbers.

Key words: plastic materials, lubrication theory, core-annular flow

1. Introduction

The injection of a viscoplastic fluid into another fluid occurs in many industrial
applications, such as the plug and abandonment (P&A) of oil and gas wells (Nelson
& Guillot 2006; Khalifeh & Saasen 2020; Akbari & Taghavi 2021), three-dimensional
printing (Karyappa, Ohno & Hashimoto 2019; Lawson et al. 2021), etc. From a fluid
mechanics perspective, analysing viscoplastic fluid injection processes comes down to
quantifying the interface evolution between the fluids, in particular in terms of the yielding
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behaviour of the viscoplastic fluid (Bonn et al. 2017; Frigaard 2019). However, the flow
analysis may be complex, due to the presence of a large number of flow parameters, e.g.
the density and viscosity ratios, the flow geometry characteristics and the yield stress,
resulting in a variety of flow patterns, e.g. breakup, coiling, dripping and buckling of
viscoplastic fluids (Balmforth, Frigaard & Ovarlez 2014).

Previous works have mainly considered the dynamics of a viscoplastic fluid
injected/extruded under gravity into a dynamically passive exterior fluid, i.e. typically air.
In this context, a dynamically passive fluid represents an exterior fluid that is assumed to
remain stagnant or whose flow is assumed not to affect the injected fluid flow; in fact,
only the exterior fluid’s physical properties (e.g. the surface tension with the injected
fluid) may affect the injected fluid flow dynamics. On the other hand, a dynamically
active fluid, which is in direct contact with the injected fluid at the interface, describes
a medium whose flow accompanied by its physical properties exerts significant forces
on the injected fluid and, consequently, alters the flow dynamics. For example, Coussot
& Gaulard (2005) have experimentally and theoretically investigated the breakup of an
extruded viscoplastic fluid into air, finding that an unyielded layer is developed until its
weight becomes larger than the yield stress force; this leads to the yielding and breakup
of the layer, forming a droplet, the volume of which increases with increasing flow rate.
Similar results have been obtained by Al Khatib & Wilson (2005). Surface tension effects
have been ignored in these studies, due to high viscosities of the viscoplastic materials
considered. Similar observations have been made by Balmforth, Dubash & Slim (2010a,b)
who have developed a rigorous asymptotic model for the extrusion of a viscoplastic
fluid from a nozzle into air, while considering surface tension effects and focusing on
the inertialess and inertial extensional dynamics of the resulting viscoplastic filament.
They have demonstrated how the yielding of the viscoplastic fluid and the subsequent
thinning and progression to pinch-off are governed by rheological, surface tension and
gravitational forces. In a relevant work, German & Bertola (2010) have experimentally
looked into the slow dripping of a viscoplastic fluid from a thin capillary and qualitatively
identified the yield stress effects on the viscoplastic drop stability and the subsequent
breakup. Aytouna et al. (2013) have analysed the breakup phenomenon in viscoplastic
fluid droplets, finding that the pinch-off dynamics in their viscoplastic fluids is similar to
that in Newtonian fluids. Zhang et al. (2018) have experimentally investigated the yielding
of soft-jammed viscoplastic fluids in elongation, suggesting that, to properly analyse the
flow dynamics, appropriate constitutive models for yielding and slow-flow regimes need to
be developed. Recently, Valette et al. (2019) have numerically studied the deformation and
breakup dynamics of stretched yield stress filaments. They have observed the appearance
of a conical meniscus prior to breakup (as a consequence of yield stress effects) and
hemispherical end drops (as a result of capillary effects). The presence of these interface
shapes in their observations is indicative of the competition between capillary and yield
stress forces. There are, of course, numerous other works on the breakup phenomena in
non-Newtonian fluids, but these have mainly considered elastic and viscoelastic fluids (see,
for example, Anna & McKinley (2001) as a classical work and Chan et al. (2021) as a
recent one); therefore, these fall out of the scope of our interest.

When an injected/extruded fluid filament front reaches a solid surface before breaking
up, it lies on the surface and starts coiling; this is a well-known feature that has
been most rigorously studied for Newtonian fluids by Ribe (2004), e.g. via developing
rod-type models considering the stretching, bending and twisting of the viscous
filament. For a Newtonian fluid, four distinct coiling regimes (i.e. viscous, gravitational,
inertio-gravitational and inertial) have been found, depending on the viscosity, the falling
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Breakup, coiling and buckling in viscoplastic injections

height and the flow rate (Habibi et al. 2006; Ribe, Habibi & Bonn 2012; Habibi et al.
2014; Ribe 2017). In the absence of a yield stress, the coiling of power-law fluids has
been examined by Pereira, Hachem & Valette (2020) using direct numerical simulations
and providing scaling laws. They have observed that both the coil radius and the coiling
frequency are a function of the Reynolds number and the power-law index, when viscous
and inertial stresses are balanced in the coil. For a viscoplastic fluid, while the gravitational
and viscous regimes have been found, the inertial regime has not been observed due to the
breakup of the viscoplastic filaments at large falling heights or instabilities at high flow
rates (Rahmani et al. 2011).

When the axial compression of a straight viscoplastic filament exceeds a critical value,
its deformation from the straight configuration, called the buckling phenomenon, can be
observed (Balmforth & Hewitt 2013; O’Bryan et al. 2021). For example, Rasschaert et al.
(2018) have experimentally studied the filling of a container by a viscoplastic fluid and
characterized dripping, buckling, mounding, planar filling and air entrainment regimes.
However, they have found that, at high inertia, the transitions between these patterns are
less dependent on the rheological properties of the viscoplastic fluid. There are also a
few works on the buckling of pseudoplastic fluids under compression stresses (Pereira
et al. 2019), identifying capillary and compressive viscous regimes. For such pseudoplastic
(shear-thinning) fluids, the effective viscosity decreases with increasing shear rate, but
these fluids do not possess a yield stress. In general, the literature of buckling of
viscoplastic fluids is not well developed. In fact, despite substantial studies regarding
various buckling-associated patterns in viscous or viscoelastic fluid flows, e.g. folding
(Ribe 2003; Pan, Phani & Green 2020), bending (Ribe 2001; Teichman & Mahadevan
2003; Tian et al. 2020), twisting (Charles, Gazzola & Mahadevan 2019; Wisinger, Maynard
& Barone 2019), deflecting (Brun et al. 2015), etc., many aspects and patterns in the
buckling problem of viscoplastic fluids remain obscure.

In order to better position our study with regard to the developed knowledge in previous
works, it may be necessary to further clarify feature classifications for the case of a
viscoplastic fluid injected vertically into air (i.e. a dynamically inactive fluid). For such
a flow, the main parameters are the yield stress and gravity (and to a lesser extent the
surface tension depending on the scale/configuration). For a continuous injection, while
the latter (gravity) attempts to yield the viscoplastic fluid, the former (yield stress) resists
the yielding. In a downward injection, as the length of the viscoplastic fluid increases, at
some point, the gravity force (loosely speaking the material weight) starts to dominate the
flow and overcome the yield stress force; therefore, the viscoplastic fluid filament (formed
by the injection) can yield, thin and eventually break up, as carefully studied by several
researchers (Coussot & Gaulard 2005; Balmforth et al. 2010a,b; Geffrault et al. 2021). If
the flow domain is vertically bounded, e.g. by a solid surface positioned at some distance
with the respect to the injection inlet, the filament front can reach the surface before
the breakup occurs, in which case the filament can exhibit various coiling behaviours,
as studied and classified by Rahmani et al. (2011) in terms of gravitational, viscous and
elastic-dominated dynamics. On the other hand, an upward injection creates an upright
column of the viscoplastic fluid, which can eventually yield and bend (buckle) as its
length exceeds some limit, e.g. as studied by Balmforth & Hewitt (2013). Although the
yielding mechanism may be conceptually similar to that in the downward injection (i.e.
the material weight overcoming the yield stress), the yielding in the upward direction is
eventually manifested via a form of Euler buckling (Balmforth & Hewitt 2013), as the
initially vertical filament bends and finally falls sideway. To summarize, the downward
injection of a viscoplastic fluid into air presents two main regimes (breakup and coiling)

940 A42-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

25
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.254


S. Akbari and S.M. Taghavi

and no buckling regime, while the upward injection can typically exhibit a specific
bending/buckling behaviour.

As mentioned above, several previous works have considered the extrusion of
viscoplastic filaments under the force of gravity, for which the surface tension also plays
an important role in governing the flow dynamics. In a more general context, a relevant
body of work concerns the competition between the capillary stress and the yield stress
in viscoplastic extrusions, via considering the spreading of viscoplastic droplets. For
instance, Jalaal, Stoeber & Balmforth (2021) have found that, in contrast to a Newtonian
droplet, the resulting viscoplastic droplet reaches a final shape when it is spread on a
pre-wetted surface. This and a growing number of similar works find interest in design
and manufacturing, e.g. in three-dimensional printing (Jalaal 2016) and coatings processes
(Zhang et al. 2021).

When multiple and multilayer fluids are considered, a relevant research area
to viscoplastic injection flows may include viscoplastic displacements. Significant
contributions in this area are numerous, including a wide range of studies over the
last two decades. Earlier works, such as those of Allouche, Frigaard & Sona (2000),
Dimakopoulos & Tsamopoulos (2007) and Freitas, Soares & Thompson (2011), have
focused on residual and deposited layers of viscoplastic fluids and more recent works,
such as those of Eslami, Frigaard & Taghavi (2017), Taghavi (2018) and Amiri et al.
(2019), have further analysed the viscoplastic displacement dynamics, e.g. front heights,
shapes and speeds. These and many other similar works have used a variety of analytical,
computational and experimental techniques, along with various flows geometries (e.g.
narrow and wide channels, pipes, annuli, etc.), to throw light on the yield stress effects in
the flow development of viscoplastic fluids, various flow patterns and flow regimes. Since
it may not be possible to cite all the relevant viscoplastic displacement studies, to have a
better perspective, the interested reader can refer to the appealing reviews by Balmforth
et al. (2014), Coussot (2014) and Frigaard (2019).

In addition to developing a fundamental understanding, the motivation for the current
study of buoyant viscoplastic injections comes from the P&A processes of oil and gas
wells, which will be a highly active area over the next couple of decades (Trudel et al. 2019;
Hassanzadeh, Eslami & Taghavi 2021a,b). These processes are carried out to preserve
underground water aquifers and atmosphere from the oil and gas migration (Khalifeh &
Saasen 2020). For instance in the dump bailing method, which is a widely used P&A
process, a heavy viscoplastic cement slurry is injected (via an eccentric inner pipe) into a
long circular casing to remove in situ light Newtonian fluids (typically water) and seal the
wellbore (Nelson & Guillot 2006). We have recently studied in detail such injection flows,
albeit for Newtonian fluids (Akbari & Taghavi 2020, 2021), finding highly dispersive
flows. However, to realistically analyse industrially relevant flows, structured viscoplastic
fluid flows must be considered. Thus, the study of the non-dispersive viscoplastic injection
regime has substantial practical applications.

Most of the previous studies on the injection/extrusion of a viscoplastic fluid into
another fluid have considered a dynamically passive in situ fluid, which in turn
significantly limits the range of interesting phenomena that can be observed. In this
work, motivated by P&A applications and inspired by our experiments, we develop a
lubrication approximation model to study the downward injection of a heavy viscoplastic
fluid into a dynamically active light Newtonian fluid filling a long closed-end pipe. Relying
on the Herschel–Bulkley (HB) constitutive equation and a proper asymptotic scaling
and reduction, our model will allow us to consider both extensional and compressional
stresses affecting the viscoplastic fluid and its yielding condition. The model results will
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provide reasonable predictions to our novel experimental observations of three distinct
flow regimes, i.e. the breakup, coiling and buckling (bulging) regimes, in terms of the
viscoplastic fluid behaviour.

The paper is structured as follows. First, § 2 introduces the experimental materials,
apparatus and procedure, and our general experimental observations. Then, § 3 provides
the model derivation and § 4 presents our modelling results, their comparisons with the
experiments and discussions. Finally, § 5 briefly summarizes the main findings.

2. Experiments

In this section, we first describe our experimental materials, apparatus and procedure,
and then we briefly explain our general experimental observations of three distinct flow
regimes. We use the latter to motivate the development of an appropriate model in the
subsequent section.

2.1. Experimental materials, apparatus and procedure
The experiments involve the downward injection of a heavy viscoplastic fluid into a light
in situ Newtonian one (see figure 1 and table 2 for the flow parameters). Motivated by P&A
applications, in general, an eccentric configuration is considered by installing an eccentric
inner pipe inside a vertical closed-end outer pipe (although a limited number of concentric
experiments are also performed for comparison purposes). The inner pipe is connected to
a gear pump (Ismatech 405A) through which the viscoplastic fluid is injected at a precise
flow rate. For the Newtonian fluid filling the outer pipe, water–glycerol mixtures are used.
For the injected viscoplastic fluid, water–glycerol mixtures with the addition of Carbopol
(Carbomer 940, Making Cosmetics Co.) at various concentrations are employed. The
preparation of our viscoplastic fluid follows the established methods in the field (Eslami &
Taghavi 2017). For visualization purposes, the viscoplastic fluid is dyed with 800 (mg l−1)
of ink (Fountain Pen India black ink). The densities are measured using a high-accuracy
density meter (Anton Paar DMA 35).

We perform the rheological measurements of our Carbopol solutions using a rheometer
(DHR-3, TA Instruments) with a parallel-plate geometry, with a diameter of 40 (mm) and
mean gap of 1 (mm). Fine sandpapers (as rough surfaces) are attached to the rheometer
plates to eliminate any possible wall-slip effects in the measurements at low shear rates
(Habibi et al. 2016; Roberts & Barnes 2001). We obtain the steady-state flow curves of
our Carbopol solutions in experiments with controlled shear rate ( ˆ̇γ ), where the samples
are sheared in an upward ramp of 10−2 < ˆ̇γ < 103 (s−1), as shown in figure 2(a). The
figure shows the rheometry data represented by the symbols. The flow curves (figure 2a)
display the characteristics of the materials above the critical stress. At low shear rates, the
shear stress plateaus to a finite value corresponding to the yield stress (τ̂y). In addition to
the yield stress, the samples feature shear-thinning behaviours. As shown, the data points
can be well fitted with the lines corresponding to the HB model parameters (Jaworski
et al. 2021). The model, fitted by the experimental data, has three parameters, i.e. the fluid
consistency κ̂ , the yield stress τ̂y and the power-law index n, defined as

ˆ̇γ = 0, |τ̂ | ≤ τ̂y,

τ̂ = τ̂y + κ̂ ˆ̇γ n, |τ̂ | > τ̂y.

}
(2.1)

The rheological parameters of our Carbopol solutions, obtained using the HB model,
are given in table 1 for the fluids depicted in figure 2(a). As expected, at smaller (larger)
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Annular fluid

(Newtonian)
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LED light source

Core fluid

(viscoplastic)
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Ĥ

V̂0

Gate valve

Optical diffuser

Figure 1. Schematic of the experimental apparatus, wherein a viscoplastic fluid is injected into a vertical
closed-end pipe filled with a Newtonian fluid.

Sample τ̂y (Pa) κ̂ (Pa sn) n

I 12.24 30.19 0.260
II 10.25 9.70 0.314
III 6.05 3.02 0.388
IV 4.28 1.56 0.457
V 1.84 0.97 0.481
VI 0.42 0.84 0.532

Table 1. The rheological parameters of Carbopol solutions determined from fitting the shear stress–shear rate
curves to the HB model: the yield stress (τ̂y), the consistency index (κ̂) and the power-law index (n). The
Carbopol concentration decreases from Sample I to Sample VI.

Carbopol concentrations, the yield stress values are lower (higher), i.e. the solid-like
behaviour of the material is less (more) pronounced, and the required stress to result in
yielding is lower (higher).

Although our rheological model choice is the classical HB model, there are also
alternative procedures to fit viscoplastic flow curves, e.g. by taking the HB model
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Figure 2. (a) Flow curves of shear stress τ̂ versus shear rate ˆ̇γ from the shear-rate-controlled tests. The
symbols mark Sample I (�), Sample II (�), Sample III (•), Sample IV (�), Sample V (�) and Sample VI
(�). The green dashed lines correspond to the HB fits, (2.1), with the rheological parameters that are reported
for each fluid in table 1. (b) The results of the oscillation amplitude sweep tests for Samples II, III, V and VI.
The symbols and dotted lines correspond to the storage (Ĝ′) and loss (Ĝ′′) moduli, respectively. The vertical
lines show the intersection of Ĝ′ and Ĝ′′ as an indication of τ̂y. (c) Shear stress as a function of shear strain
at constant shear rates for Sample II at ˆ̇γ = 0.0001, 0.001, 0.01 and 0.1 s−1 indicated by square, diamond,
triangle and circle symbols, respectively. The scattered data at very low shear strains (γ < 10−2) are due to
instrument artifacts. (d) Creep tests showing shear rate as a function of time for Sample II at τ̂ = 1, 7, 13 and
19 Pa, marked by square, diamond, triangle and circle symbols, respectively. The shear rate variations at early
times are due to instrument artifacts. Note that, to make the presented data visually distinguishable, the results
for some samples are depicted, while the other sample data (not shown) exhibit similar trends. The size and
the colour intensity of the symbols represent the following: in (a,b) the Carbopol concentration (i.e. larger and
darker symbols represent higher Carbopol concentrations), in (c) the power of the applied shear rate and in (d)
the intensity of the applied stress.

as a base. An example is the three-component (TC) model (Caggioni, Trappe & Spicer
2020), defined by τ̂ = τ̂y + τ̂y( ˆ̇γ / ˆ̇γ c)

1/2 + η̂bg ˆ̇γ , where ˆ̇γc and η̂bg are the critical shear
rate and the viscosity of the continuous phase, respectively. The TC model represents
three regimes of deformation, i.e. the elastic, plastic and viscous regimes. At low shear
rates in this model, elastic straining determines the stress and, when the shear rate exceeds
a critical value ( ˆ̇γc), a transition takes place from elastic to plastic. Since the yield stress is
an utmost important parameter in our study, we have also used the TC model to extract its
value from the rheological data (results omitted for brevity), finding that the yield stresses
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Parameter Name Range (unit)

R̂c Inner radius of inner pipe 6.35 (mm)
R̂ Inner radius of outer pipe 19.05 (mm)
Ê Eccentricity (radial distance

between pipe centres)
0, 6.35 (mm)

Ĥ Falling height 20–600 (mm)
V̂0 Inflow velocity 0.5–675 (mm s−1)
ρ̂c Core fluid density 998–1110 (kg m−3)
ρ̂a Annular fluid density 997–1021 (kg m−3)
μ̂c Core fluid viscosity 0.087–430 (Pa s)
μ̂a Annular fluid viscosity 0.001–0.025 (Pa s)
τ̂y Core fluid yield stress 0.42–12.24 (Pa)
κ̂ Core fluid consistency index 0.84–30.19 (Pa sn)
ĝ Gravitational acceleration 9.81 (m s−2)

Table 2. The dimensional parameters and their ranges in our experiments.

obtained by the TC model are on average less than 10 % lower than those fitted by the
HB model. Such closeness of yield stress values using these two models has been also
reported by Caggioni et al. (2020). That said, in this study, we still use the classical HB
model, as a simple, common, reliable and accurate model (Frigaard 2019) for describing
the rheological behaviours of our Carbopol solutions, in particular the yield stress values.

For the sake of completeness of the rheological characterization, we also perform
oscillatory rheometry tests, to characterize elastic and viscous behaviours of our samples at
a fixed frequency of 1 (Hz), with applied shear stresses (τ̂ ) ranging from 0.01 to 200 (Pa).
This allows us to evaluate the storage modulus (Ĝ′) and loss modulus (Ĝ′′), which represent
the elastic and viscous characteristics, respectively. As shown in figure 2(b), initially (at
small τ̂ ) Ĝ′ is found to be higher than Ĝ′′ for all the sample solutions. This indicates a
solid-like behaviour before yielding. For each sample, when the stress exceeds a critical
value, an increase in Ĝ′′ accompanied by a decrease in Ĝ′ is observed. Such behaviour
has been reported to occur in soft glassy materials (Hyun et al. 2011), such as Carbopol
gels (Ovarlez, Barral & Coussot 2010). Beyond this critical stress, the viscous response
of the material overcomes the elastic one, and both Ĝ′ and Ĝ′′ vary with τ̂ . Here, Ĝ′
significantly and Ĝ′′ slightly decrease versus τ̂ , in such a way that Ĝ′′ becomes greater than
Ĝ′, indicating that the material is indeed flowing and implying negligible elastic effects.
Although the elastic effects of Carbopol solution may be important in certain situations,
in this study, we neglect these effects on the flow patterns and dynamics.

The vertical lines in figure 2(b) represent the stress values at which the Ĝ′ and Ĝ′′
curves cross over, implying a rough estimation to the yield stress, as an alternative method
(however, note that, as argued by Fernandes et al. (2017), estimating the yield point using
the crossover must be made with caution). One can also compare these yield stress values
with those reported in table 1. The values obtained from the HB model fitting in figure 2(a)
are slightly different from the ones computed at the crossover of the Ĝ′ and Ĝ′′ curves. This
is in line with recent measurements of similar types of viscoplastic fluids (Dinkgreve et al.
2016; Fernandes et al. 2017; Jalaal, Kemper & Lohse 2019).

To further complete our rheological characterization, figure 2(c) presents an example of
our results in terms of the shear stress as a function of the shear strain for different applied
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shear rates. Each curve presents the average of three rheological tests. At low shear strains,
the stress curves are close to one another, implying nearly constant properties, regardless
of the applied shear rate, hinting at a linear viscoelastic response (Fernandes et al. 2017).
At higher shear strains, however, the shear stress in each curve rises up as a function of
the shear strain, and then deviates from the nearly linear viscoelastic region, to reach a
maximum value associated with yielding and rupturing (Bonn et al. 2017; Fernandes et al.
2017). The maximum shear stress, however, increases with an increase in the applied shear
rate value. On the other hand, the yield stress obtained from the shear stress–shear rate
flow curve (figure 2a, table 1) is slightly lower than the maximum stress at the lowest
shear rate in figure 2(c) ( ˆ̇γ = 10−4 (s−1)).

As a final rheological characterization method, figure 2(d) presents the results of the
creep tests for a given sample, by imposing a constant shear stress and recording the shear
rate as a function of time. As seen, for τ̂ = 1 (Pa) and τ̂ = 7 (Pa), the shear rate approaches
zero at long time, implying that the applied stress is lower than the yield stress, i.e. τ̂y =
10.25 (Pa) evaluated from the shear stress–shear rate flow curve (figure 2a, table 1). On
the other hand, for τ̂ = 13 (Pa) and τ̂ = 19 (Pa), the shear rate tends to a constant non-zero
value (Espinoza et al. 2022), implying that the applied stress is above the yield stress, i.e.
an observation generally consistent with the previous measurements.

Note that we consider our experimental pair of fluids (i.e. Carbopol solution and water)
to be fully miscible, which means that there are no surface tension effects in our work.
This consideration is in line with recent studies demonstrating that the difference between
the surface tension of Carbopol solutions and pure water is very small (less than 10 %),
and this difference does not vary significantly with the Carbopol concentration (Boujlel &
Coussot 2013; Jørgensen et al. 2015; Jalaal et al. 2019).

Before running each experiment, a movable piston is used to adjust the falling height
(Ĥ). Then, the inner and outer pipes are filled with the viscoplastic and Newtonian
fluids, respectively, while a gate valve at the inlet initially separates the two fluids. Each
experiment begins with opening the gate valve and injecting/extruding the viscoplastic
fluid into the Newtonian fluid at a fixed flow rate; simultaneously, the flow images are
obtained using a camera (Basler acA2040) at 20 frames per second and transmitted to a
computer for subsequent post-processing (via MATLAB). As the injection flow behaviour
is expected to be observed below the inlet area, our camera’s field of view is focused on
this region. A large number of experiments (>300) are performed for different flow rates,
falling heights, rheological parameters and density and viscosity ratios.

2.2. Experimental observations of three distinct flow regimes
In this section, we describe the general observations made in our experiments. As
mentioned before, our experiments are focused on analysing the viscoplastic fluid flow
below the inlet area. For each experiment, the flow rate is chosen and the falling height
is fixed. Upon opening the gate valve, which initially separates the fluids, the heavy fluid
enters the flow domain below the gate valve and penetrates into the in situ light fluid.

Via our experiments, we have identified the following three distinct flow regimes during
the injection of the heavy viscoplastic fluid into the light Newtonian fluid (as demonstrated
in figure 3):

(i) Breakup regime. A flow example in this regime is illustrated in figure 3(a1). The
breakup regime is typically observed at small injection rates (small V̂0), large
buoyancy forces, small to moderate yield stresses of the viscoplastic fluid, small
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viscosities of the in situ fluid and large falling heights. In this regime, the viscoplastic
core fluid is initially extruded as a stable cylinder from the inlet and it advances
towards the pipe end. At short times and axial lengths of the core, the stress in
the viscoplastic core fluid is below the yield stress, so that a long stable filament can
advance downward, holding up against the gravitational forces that attempt to extend
it more rapidly. While propagating downward, the core fluid axial length naturally
increases and, at a certain point, the core fluid can no longer resist the progressively
increasingly buoyancy, which overcomes the yield stress; the core fluid starts to yield
and thin near the inlet and it is eventually broken/ruptured. Increasing the buoyancy
force (e.g. by increasing the density difference) promotes this flow regime and eases
the breakup of the core fluid. After the break of the filament, its upper part which is
still connected to the injection inlet is restored fairly rapidly to form a new filament.
If the injection continues for a long time in this regime, several filaments can be
formed and subsequently break up; the broken parts fall down evenly and make a
structure of broken filaments at the bottom end of the pipe.

(ii) Coiling regime. A flow example in this regime is illustrated in figure 3(a2). The
coiling regime is typically observed at moderate injection rates (moderate V̂0),
moderate to large yield stresses of the viscoplastic fluid and relatively short falling
heights. In typical situations in this regime, the viscoplastic core fluid is initially
extruded, as a stable cylinder, with a diameter that remains typically unchanged as
the filament front moves downward. In most cases, the core fluid front can reach the
pipe end before the core fluid is broken; then, its front sits on the pipe end and starts
coiling evenly, with a fixed centre and a constant coiling frequency (termed regular
coiling). As the heavy viscoplastic fluid is injected continuously, the viscoplastic
fluid layers are positioned on top of one another, with a thickness initially equal to
the nozzle diameter and the coiling of the core fluid gradually continues up to the
inlet area. At large velocities, secondary or irregular behaviour (termed irregular
coiling) may be observed; at small buoyancy, in some cases the coiling may start to
occur before the viscoplastic fluid front reaches the pipe end (termed free coiling).
For simplicity, we collectively classify all these as the coiling regime. In general,
the coiling behaviour observed in our experiments is reminiscent of the coiling of
a viscous fluid filament or an elastic rope falling onto a solid surface, as studied
by previous works (Habibi et al. 2006; Ribe et al. 2012; Ribe 2017), explaining the
coiling mechanism via a balance among viscous, gravitational, inertial and elastic
stresses.

(iii) Buckling regime. A flow example in this regime is illustrated in figure 3(a3).
The buckling (bulging) regime is typically observed at large injection rates (large
V̂0), small buoyancy forces, low yield stresses of the viscoplastic fluid and high
viscosities of the in situ fluid. In this regime, as the heavy core fluid penetrates
into the in situ light fluid, it undergoes axial compressions, due to the pressure
gradient and shear stresses at the interface, applied by the resistive upward flow
of the annular fluid, resulting in the yielding of the core fluid. As the yield stress is
overcome, the core fluid buckles and it quickly expands radially. With time, the radial
expansion continues until the injected fluid completely blocks the region near the
inlet boundary, and impedes the removal of the light in situ fluid from the bottom of
the pipe. Increasing the injection velocity and viscosifying the in situ fluid promote
the viscous compressional stresses towards yielding and buckling of the core fluid.
Note that, in the context of our results throughout the text, the buckling regime
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Breakup, coiling and buckling in viscoplastic injections

concerns a radial expansion and buckling of the viscoplastic core fluid and, therefore,
can be also called the bulging regime.

In general, the flow regimes observed and explained above can be also visualized
in a concentric flow configuration. To illustrate this, we have conducted a number of
experiments in a second apparatus, made of two concentric pipes, for which the results are
shown in figure 3(b). As seen, the observed flow regimes in the injection of a viscoplastic
fluid into the in situ fluid using the concentric inner pipe are similar to the regimes that
occur in the eccentric case (compare top and bottom panel groups in figure 3).

Let us clarify the criterion for classifying our experimental observations into the
three defined regimes. To be systematic, this is based on analysing the variation of the
viscoplastic filament radius in the upper half of the domain, which renders consistent
measurements. To do so, the variation of the ratio between the minimum and maximum
radii of the filament, R̂min/R̂max, is quantified versus time, as exemplified in figure 4(a).
If this ratio (R̂min/R̂max) tends to zero at long time, implying that the core fluid is yielded
towards breakup, we quantify the flow as the breakup regime. When the core buckles
(bulges), R̂min/R̂max tends to a constant value, i.e. R̂min/R̂c ≈ 1/3 at long times (marked
by the dashed line in figure 4a). For the experiments in which R̂min/R̂max does not reach
zero or the constant value of ∼ 1/3 at long times (and in fact R̂min/R̂max ≈ 1), the type
of flow regime is classified as the coiling regime. Our classification criterion/approach
allows us to circumvent various flow complexities and secondary flow behaviours, e.g.
in the coiling regime (which may exhibit regular, free and irregular coiling), providing a
simple way to classify our complex flow in terms of the main behaviours.

We have experimentally observed that, in some cases categorized within the coiling
regime, as the flow develops the core fluid is actually yielded and starts thinning, while
its radius decreases; however, the core fluid front eventually reaches the pipe end before
any breakup can occur and starts coiling. A typical example of such a case is presented in
figure 4(b). As can be seen, the value of the core radius recovers after the initial decrease.
Note that increasing the falling height (H) in such cases would lead to the breakup of
the core. However, since the breakup does not actually occur for the used experimental
falling height, we still classify these flows as the coiling regime (while highlighting the
corresponding results in the results section).

It may be worth mentioning that, in terms of the breakup regime, previous relevant
studies (e.g. those considering the injection of a viscoplastic fluid into air) have reported
a strong conical shape of the core at the breakup point, which also highly depends on the
capillary effects and the core density (Balmforth et al. 2010b; Moschopoulos et al. 2020;
Geffrault et al. 2021). However, in our miscible buoyant flow, the surface tension effects
are neglected, the density differences are small and the core plasticity is more pronounced,
resulting in a relatively more flat shape at the breakup point (e.g. figure 3a). This may be
conceptually in line with the finding of Balmforth et al. (2010b) who have shown that,
when the yield stress effects dominate the surface tension ones, the breakup point shape
changes to a flatter end cone.

Before we proceed, it may be worth mentioning that viscoplastic fluids are known
to slip on smooth solid surfaces, for example glass plates (Jalaal, Balmforth & Stoeber
2015) and hydrophobic surfaces (Rahmani & Taghavi 2020). However, in this study, we
do not expect the viscoplastic Carbopol flow in the pipe to be influenced by slippage
on the surface of the outer pipe, since there is no direct contact between the injected
viscoplastic fluid and the outer pipe wall. In fact, in the time scale of our interest, the
in situ (Newtonian) fluid always exists and separates the injected viscoplastic fluid and
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t̂  = 3.00 s

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

�t̂  = 8.25 s �t̂  = 4.95 s �t̂  = 0.15 s �t̂  = 0.45 s

t̂  = 5.00 s �t̂  = 7 s �t̂  = 58 s �t̂  = 30 s �t̂  = 30 s

t̂  = 0.15 s �t̂  = 0.35 s �t̂  = 0.10 s �t̂  = 0.15 s �t̂  = 1.25 s

t̂  = 6.65 s �t̂  = 19 s �t̂  = 12.1 s �t̂  = 0.2 s �t̂  = 0.4 s

t̂  = 4.25 s �t̂  = 2.75 s �t̂  = 7 s �t̂  = 8 s �t̂  = 8 s

t̂  = 0.25 s �t̂  = 0.3 s �t̂  = 0.1 s �t̂  = 0.6 s �t̂  = 1.5 s

Figure 3. (a) Injection of viscoplastic fluid into closed-end pipe filled with Newtonian fluid through an
eccentric inner pipe (Ê = 6.35 mm): (a1) breakup regime for V̂0 = 5.3 mm s−1, ρ̂a = 998 kg m−3 and
μ̂a = 0.001 Pa s; (a2) coiling regime for V̂0 = 25.5 mm s−1, ρ̂a = 998 kg m−3 and μ̂a = 0.001 Pa s; (a3)
buckling (bulging) regime for V̂0 = 87.5 mm s−1, ρ̂a = 1007.5 kg m−3 and μ̂a = 0.025 Pa s. For all the
snapshots, Ĥ = 200 mm and the field of view is 20 × 3.81 cm2. (b) Injection through a concentric inner pipe
(Ê = 0 mm): (b1) breakup regime for V̂0 = 7.3 mm s−1; (b2) coiling regime for V̂0 = 40.4 mm s−1; (b3)
buckling (bulging) regime for V̂0 = 117.5 mm s−1. For all the snapshots, Ĥ = 100 mm, ρ̂a = 997.5 kg m−3

and μ̂a = 0.001 Pa s and the field of view is 10 × 3.81 cm2. In all panels, the injection fluid is Sample IV (see
table 1), Δt̂ is the time span between the snapshots, the injection inlet is indicated by an arrow and the outlet
area of the flow domain is marked by a red surface.
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Figure 4. Variation of the core fluid minimum radius identified by R̂min/R̂max versus the dimensionless
flow time (t = t̂V̂0/R̂) for Sample V and Ê = 6.35 mm. (a) A typical breakup regime (�) for V̂0 =
8.2 mm s−1, ρ̂a = 998 kg m−3, μ̂a = 0.001 Pa s and Ĥ = 400 mm; a typical coiling regime (◦) for V̂0 =
34.0 mm s−1, ρ̂a = 998 kg m−3, μ̂a = 0.001 Pa s and Ĥ = 400 mm; a typical buckling regime (�) for
V̂0 = 87.50 mm s−1, ρ̂a = 1007.5 kg m−3, μ̂a = 0.0252 Pa s and Ĥ = 260 mm. (b) An example of coiling
case where the viscoplastic core fluid starts to yield but, due to the finite-sized pipe length, its front reaches the
pipe end and it is finally compressed; thus, R̂min/R̂max initially decreases but recovers. The results correspond
to V̂0 = 34.0 mm s−1, ρ̂a = 998 kg m−3, μ̂a = 0.001 Pa s, Ĥ = 100 mm and Ê = 6.35 mm. The inset shows
the initial yielding, the recovering and the eventual coiling of the core fluid, for t = [3.68 4.91 5.35 5.80 7.84]
from left to right.

Parameter Name Definition Experimental range

Re Reynolds number (ρ̂c + ρ̂a)V̂0R̂/(2μ̂c) 10−4–8 × 10
χ Buoyancy number (ρ̂c − ρ̂a)ĝR̂2/(μ̂cV̂0) 10−5–7.5 × 10
B Bingham number τ̂yR̂/(μ̂cV̂0) 1.3 × 10−1–10
n Power-law index — 2.6 × 10−1–6.2 × 10−1

M Viscosity ratio μ̂a/μ̂c 10−6–3 × 10−2

Rc Radius ratio R̂c/R̂ 1/3
E Eccentricity Ê/R̂ 0, 1/3
δ ≡ 1

H Aspect ratio R̂/Ĥ 3.2 × 10−2–9.5 × 10−1

Table 3. The key dimensionless parameters and their ranges in this study. Note that, expect for the Reynolds
number, these flow dimensionless parameters also serve as inputs to the model developed in this study.

the pipe wall. Considering this argument, we do not expect the pipe wall properties to
significantly change the experimental observations, e.g. by causing slippage effects.

Based on the experimental observations, it is clear that the development of a multilayer
viscoplastic model is appropriate to gain a deeper understanding of our results and provide
predictions to the transition between the aforementioned flow regimes; this also allows
an analysis of the effects of certain flow parameters (e.g. the eccentricity or the inner
pipe radius) that cannot be easily changed in our experiments. Thus, in what follows, we
develop such a model, which will include the key governing dimensionless parameters of
table 3, to generalize our results.
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V̂0

R̂c

R̂i
R̂i

R̂

R̂

Ê
ĝ

ρ̂a ρ̂c

ξ̂ = ξ̂c

ξ̂c
ξ

φ = π

π

2π

φ = 0

0

φ

ξ̂ = ξ̂ω

ξ̂ω

	̂

τ̂y, κ̂, nμ̂a

Êŷ

ŷ

x̂

x̂
ẑ

Ĥ

Annular fluid

(Newtonian)
Core fluid

(viscoplastic)

(a) (b)

Figure 5. (a) Schematic and flow parameters in our experiments and model. Here, 	̂ denotes the viscoplastic
core length. The ẑ axis is aligned with the gravity vector. The subscripts c and a refer to the core and
annular fluids, respectively, and the hat symbol is used for dimensional quantities throughout the text.
(b) Representation of the conformal mapping of the eccentric flow from Cartesian coordinates to bipolar
coordinates.

3. Model formulation

We consider an incompressible viscoplastic core fluid, which follows the HB constitutive
model, and an annular fluid, which is Newtonian (see figure 5a for a schematic). Since our
problem involves non-coaxial cylinders (eccentric annuli), we use the bipolar coordinates
(ξ, φ, z), in which the z axis points vertically downward, in the main direction of the
viscoplastic fluid flow. We assume that the pure heavy viscoplastic fluid is injected from
the inlet into the light Newtonian fluid, at a mean velocity V̂0. To render the equations and
parameters dimensionless, we use V̂0 as the velocity scale, R̂ as the length scale, R̂/V̂0 as
the time scale and μ̂cV̂0/R̂ to scale pressure and stresses. Here,

μ̂c = κ̂(V̂0/R̂)n−1 (3.1)

is a characteristic viscosity of the core fluid. Although the two fluids are miscible, we
consider the limit in which the Péclet number is large, i.e.

Pe = V̂0R̂/D̂m � 1, (3.2)

where D̂m ∼ 10−9 (m2 s−1) is the molecular diffusion. This implies that there is no
significant mixing occurring over the time scales of our interest.

The model equations are the motion and continuity equations:

Re[1 ± At](ut + u · ∇u) = −∇p + ∇ · τ + χkeg, (3.3)

∇ · u = 0, (3.4)

where u = (uξ , uφ, uz) denotes the velocity, τ the deviatoric stress and p the pressure. Note
that we have already subtracted the static pressure gradient of the annular fluid from the
pressure gradient term before scaling. Here, eg = (0, 0, 1) and ± refers to the heavy and
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light fluid layers, respectively. In addition, k = a, c refers to the core and annular layers,
respectively; also χa = 0 and χc = χ is the buoyancy number, defined as

χ = (ρ̂c − ρ̂a)ĝR̂
2

μ̂cV̂0
. (3.5)

The two fluids are separated by a single interface, for which the surface is defined as

F(ξ, φ, z, t) = ξ − ξc = 0, (3.6)

in which ξc = ξc(z, t) is the core fluid interface position and t is time. For t > 0, the
no-slip boundary conditions are satisfied at the pipe walls represented by ξ = ξw and,
since the pipe end is closed, outflow conditions are imposed at the eccentric annular space
surrounding the injection inlet.

Regarding (3.3), we take the density difference to be small, i.e.

At = ρ̂c − ρ̂a

ρ̂c + ρ̂a
	 1, (3.7)

implying that At, i.e. the Atwood number, is not a governing dimensionless number of the
flow.

Regarding the constitutive equations, for the Newtonian annular fluid we simply have

τa,ij = Mγ̇ ij(u), (3.8)

where M is the viscosity ratio, i.e.

M = μ̂a

μ̂c
, (3.9)

in which μ̂a is the annular fluid’s constant viscosity. The core viscoplastic fluid follows the
constitutive laws for HB fluids, which includes also the simpler Bingham, power-law and
Newtonian models. In dimensional form, the HB fluids are described by three parameters,
i.e. the fluid consistency κ̂ , the yield stress τ̂y and the power-law index n. This model in
dimensionless form can be written as

γ̇ (u) = 0 ⇔ τc(u) ≤ B,

τc,ij(u) =
[
γ̇ n−1(u) + B

γ̇ (u)

]
γ̇ ij(u) ⇔ τc(u) > B,

⎫⎬
⎭ (3.10)

where the strain rate tensor has the following components:

γ̇ij(u) = {∇u + (∇u)†}ij, (3.11)

and the second invariants, γ̇ (u) and τc(u), are defined by

γ̇ (u) =
⎡
⎣1

2

3∑
i,j=1

[γ̇ij(u)]2

⎤
⎦

1/2

, τc(u) =
⎡
⎣1

2

3∑
i,j=1

[τc,ij(u)]2

⎤
⎦

1/2

. (3.12a,b)

The Bingham number B is defined as

B ≡ τ̂yR̂

μ̂cV̂0
. (3.13)

We focus on a flow that has a long, thin aspect ratio, i.e. after an initial time, the
viscoplastic flow develops axially over a length scale δ−1 � 1 (in which δ can be any
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arbitrary small aspect ratio). For simplicity, we define the aspect ratio as

δ = R̂

Ĥ
≡ 1

H
, (3.14)

in which H is the dimensionless pipe height. Relying on lubrication-type assumptions and
following standard methods (Leal 2007), we rescale the parameters as follows:

δz = Z, δt = T, δp = P, uξ = δUξ , uφ = δUφ, uz = uZ . (3.15)

Considering the limit of δ → 0 (with Re fixed), in the leading order, the motion and
continuity equations become

O(Reδ3) = −∂Pk

∂ξ
+ O(δ), (3.16)

O(Reδ3) = −∂Pk

∂φ
+ O(δ), (3.17)

O(Reδ) = −∂Pk

∂Z
+ 1

�2
∂(�τk,ξZ)

∂ξ
+ 1

�2
∂(�τk,φZ)

∂φ
+ δ

∂τk,ZZ

∂Z
+ χk, (3.18)

0 = 1
�2

∂(�Uk,ξ )

∂ξ
+ 1

�2
∂(�Uk,φ)

∂ξ
+ ∂uk,Z

∂Z
, (3.19)

where � is the scale factor for the bipolar coordinates defined as

� = sinh ξw

cosh ξ − cos φ
. (3.20)

Note that since our problem involves non-coaxial cylinders (forming an eccentric annulus),
it is appropriate to use bipolar coordinates. The conformal mapping from Cartesian
coordinates to bipolar coordinates is schematically shown in figure 5(b), which allows
the eccentric flow to be mapped into a rectangular region. In this orthogonal coordinate
system, the two cylindrical boundaries (i.e. the eccentric core interface and the wall)
coincide with two coordinate surfaces having constant values of ξ . The other coordinate, φ,
represents a set of eccentric cylinders whose centres lie on the x axis, which orthogonally
intersect the boundaries. In this bipolar coordinate system representing our eccentric core
annular flow, the pipe wall is represented by ξ = ξw, while the interface between the two
fluids is ξ = ξc. Therefore, the flow in the domain of x–y (see figure 5b) is mapped into a
semi-infinite strip in the domain of (φ–ξ ) given by

annular phase:ξw < ξ ≤ ξc; 0 ≤ φ ≤ 2π,

core phase:ξc < ξ ≤ ∞; 0 ≤ φ ≤ 2π,

}
(3.21)

where

ξc = cosh−1

[
1 − R2

i − E2

2RiE

]
,

ξw = cosh−1

[
1 − R2

i + E2

2E

]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.22)

where Ri is the dimensionless radius of the core fluid layer (i.e. the dimensionless interface
radius) and E is the dimensionless eccentricity of the core fluid layer. Note that Ri = Rc
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at the inlet. Finally, providing the relation between the (x–y) Cartesian coordinates and the
(φ–ξ ) bipolar coordinates can be useful for result presentation purposes:

x = sinh ξw sinh ξ

cosh ξ − cos φ
+ 1 − sinh2ξw

cosh ξw
,

y = sinh ξw sin φ

cosh ξ − cos φ
.

⎫⎪⎪⎬
⎪⎪⎭ (3.23)

3.1. Analysis of the viscoplastic core fluid flow
Regarding the Newtonian annular fluid in (3.18) (k = a), the term involving τa,ZZ is of
O(δ) and can therefore be ignored. However, for the viscoplastic fluid (k = c in (3.18)),
the term involving τc,ZZ is large and cannot be ignored, as the flow is dominated by the
extensional/compressional dynamics. Therefore, in the leading order, the main equation
(axial momentum) for the viscoplastic fluid is

0 = −∂Pc

∂Z
+ 1

�2
∂(�τc,ξZ)

∂ξ
+ 1

�2
∂(�τc,φZ)

∂φ
+ δ

∂τc,ZZ

∂Z
+ χ. (3.24)

However, in general τc,ZZ (and accordingly the pressure) in the core phase is an unknown
function. This situation results from the fact that the stress is indeterminate in the
viscoplastic fluid below the yield stress and, therefore, the motion equations are not
sufficient to uniquely determine all the stress components, i.e. a complexity that is
frequently encountered in similar problems (Balmforth et al. 2010a). To overcome this
problem, and in the interest of simplicity, we assume that τc,ξξ = τc,φφ , which, in the
spirit of the regularization of the constitutive equation (Frigaard & Nouar 2005), allows us
to use the continuity equation to find

τc,ZZ = −2τc,ξξ = −2τc,φφ. (3.25)

Considering the dominance of τc,ZZ also implies that

uc,Z(T, ξ, φ, Z) = uc,Z(T, Z) + O(δ2). (3.26)

Let us for now assume that the solution to τc,ZZ may be found. The yield condition can
be obtained in the leading order as

√
3

2
|τc,ZZ| + O(δ) > B. (3.27)

The simplified yield condition criterion above is consistent with some previous theoretical
approaches for viscoplastic fluid flows downwardly injected in air, such as the work of
Balmforth et al. (2010b). However, there are more recent works in the literature, such as
the works of Moschopoulos et al. (2020) and Geffrault et al. (2021), emphasizing the
importance of including shear components in the analysis, particularly because, in certain
cases, the flows of our consideration can lead to yielded conical shapes even in slender
filaments. Nevertheless, for the simplicity of our analysis, we assume that such shear
component terms are of higher order in δ and can be ignored. To simplify the analysis,

940 A42-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

25
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.254


S. Akbari and S.M. Taghavi

it is straightforward to apply the normal stress balance at the interface (Leal 2007):

(σa · n) · n = (σc · n) · n, (3.28)

in which σa and σc are the stress tensors for the annular and core phases and n is the unit
normal vector inward to the surface:

n = ∇F
|∇F| = (1/�, 0, −δ∂ξc/∂Z)√

(1/�)2 + (δ∂ξc/∂Z)2
, (3.29)

and, in the leading order, we eventually find

Pc = Pa − δτc,ZZ

2
,

τc,ξZ = τa,ξcZ + 3�δτc,ZZ

2
∂ξc

∂Z
,

⎫⎪⎬
⎪⎭ (3.30)

where τa,ξcZ = τa,ξZ|ξ=ξc . First of all, note that since in our study both fluids are miscible
(at the limit of large Pe), the surface tension effects are neglected in the derivations of the
pressure terms above. Also, note that, again, the term involving δτc,ZZ is large and cannot
be removed compared to the shear stress terms. We now integrate the axial momentum
over the cross-section of the core fluid (ξc < ξ ≤ ∞; 0 ≤ φ ≤ 2π), while using the scale
factor as well as the stress balance conditions, to find after considerable algebra

0 = −R2
i
∂Pa

∂Z
− 1

π

∫ 2π

0
�τa,ξcZ dφ + 3

2
δ
∂(τc,ZZR2

i )

∂Z
+ χR2

i , (3.31)

using which τc,ZZ can be obtained as

τc,ZZ = 2
3δR2

i

∫ L

Z

[
−R2

i
∂Pa

∂Z
− 1

π

∫ 2π

0
�τa,ξcZ dφ + χR2

i

]
dZ, (3.32)

in which, for simplicity, we have applied the free-end boundary condition, i.e.

τc,ZZ(L) = 0. (3.33)

Here, L = L(T) is the core layer length, i.e. an unknown of the problem, which must be
calculated for an evolving core viscoplastic layer. The first and second terms in the integral
above are unknown at this point, as they represent the dynamic of the annular fluid flow;
these will be calculated in the next section, but for now let us assume these terms can be
obtained.

The second invariant, γ̇ (u), in the leading order can be eventually found as⎡
⎣1

2

3∑
i,j=1

[γ̇ ij]
2

⎤
⎦

1/2

=
∣∣∣∣√3δ

∂uc,Z

∂Z

∣∣∣∣+ O(δ2). (3.34)

Therefore, the HB constitutive model can be simplified to

√
3
∣∣∣∣∂uc,Z

∂Z

∣∣∣∣ = 0 ⇔
√

3
2

|τc,ZZ| ≤ B,

∂uc,Z

∂Z
= sgn(τc,ZZ)

δ
√

3

(√
3|τc,ZZ|

2
− B

)1/n

⇔
√

3
2

|τc,ZZ| > B.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.35)
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Thus, the velocity gradient can be written as

∂uc,Z

∂Z
= sgn(τc,ZZ)

δ
√

3

[
max

(√
3|τc,ZZ|

2
− B, 0

)]1/n

. (3.36)

Finally, the velocity can then be obtained as

uc,Z =
∫ Z

0

sgn(τc,ZZ)

δ
√

3

[
max

(√
3|τc,ZZ|

2
− B, 0

)]1/n

dZ + uc,Z0, (3.37)

in which uc,Z0 = 1 comes from the injection boundary condition.
In the next subsection, we analyse the Newtonian annular flow dynamics, which in

return affects the viscoplastic core fluid flow development, e.g. via imposing a pressure
gradient as well as a non-negligible shear stress at the interface (caused by the motion
of the annular fluid). This consideration brings the multiphase nature of the flow into
the analysis, highlighting that our annular fluid is dynamically active. However, such an
analysis would not be relevant for dynamically inactive in-place fluids, e.g. in the simpler
case of the injection of a viscoplastic fluid into air, which has been more frequently studied
in the literature (Coussot & Gaulard 2005; Balmforth et al. 2010a,b; Geffrault et al. 2021).

3.2. Analysis of the Newtonian annular flow
Let us move on to analysing the annular flow, needed to calculate the stress in (3.32),
starting with the leading-order axial momentum equation for the annular phase:

0 = −∂Pa

∂Z
+ 1

�2
∂(�τa,ξZ)

∂ξ
+ 1

�2
∂(�τa,φZ)

∂φ
, (3.38)

which using the Newtonian constitutive relation is simplified to

fa = (cosh ξ − cos φ)2

sin2ξw

(
∂2ua,Z

∂ξ2 + ∂2ua,Z

∂φ2

)
, (3.39)

where fa = (1/M)(∂Pa/∂Z). Also, ua,Z is the leading-order solution to the velocity field
in the annular phase. Note that the dependence of ua,Z(T, ξ, φ, Z) on (T, Z) enters only
via the interface satisfying the kinematic condition, introduced further below.

Here, we extend the approach proposed by Goldstein, Ullmann & Brauner (2017) to
derive our analytical solution for the annular fluid flow in contact with the core viscoplastic
fluid, as the inner boundary. Expectedly, the general solution of the equation is made of two
solution types, i.e. the particular solution (uap,Z) and the homogeneous solution (uap,Z).
The general solution becomes

ua,Z = uah,Z + uap,Z . (3.40)

Considering the form of the motion equations and non-homogeneous terms, following a
classical style, we choose the following particular solution:

uap,Z = fasinh2ξw cosh ξ

2(cosh ξ − cos φ)
. (3.41)

Considering the symmetry condition with respect to the pipe centreline, φ = 0, 2π, i.e.

∂uah,Z(T, ξ, φ, Z)

∂φ

∣∣∣∣
φ=0,π

= 0, (3.42)
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it is possible to propose the following homogeneous solution in the form of the following
Fourier series:

uah,Z =
∞∑

m=0

[αam cosh(mξ) + βam sinh(mξ)] cos mφ. (3.43)

Following the procedure detailed in Appendix A, the solutions to the annular fluid flow
velocity and shear stress are derived as

ua,Z = fasinh2ξw cosh ξ

2(cosh ξ − cos φ)
+ αa00 + βa00 +

∞∑
m=1

[αam cosh(mξ) + βam sinh(mξ)] cos mφ,

(3.44)

τa,ξZ = M
�

∂ua,Z

∂ξ
= M

�

[
− fasinh2ξw sinh ξ cos φ

2(cosh ξ − cos φ)2

]

− M
�

1
ξc − ξw

[
fasinh2ξw cosh ξc

2 sinh ξc
− fa sinh ξw cosh ξw

2
− uc,Z

]

+ M
�

∞∑
m=1

m[αam sinh(mξ) + βam cosh(mξ)] cos(mφ), (3.45)

for which the coefficients are given in Appendix A.

3.3. Solution procedure for interface evolution
The annular and core fluid flux functions can be obtained as

qa = 1
π

∫ ξc

ξw

∫ 2π

0
ua,Z�

2 dφ dξ, (3.46)

qc = uc,ZR2
i , (3.47)

which must satisfy the zero net flux condition, i.e.

qa + qc = 0. (3.48)

In this condition, the main unknown parameter of the flow is fa = (1/M)(∂Pa/∂Z) and
(∂τc,ZZ/∂Z) (or uc,Z), which can be computationally obtained using established nested
iterations for multilayer viscoplastic flows (Taghavi et al. 2009; Taghavi 2018). The
solution of the problem can be computed and it must satisfy the kinematic condition (Leal
2007), i.e.

∂F
∂T

+ u · ∇F = 0, (3.49)

which in combination with the continuity equation and some algebra translates to

∂R2
i

∂T
+ ∂qc

∂Z
= 0. (3.50)

To find the interface motion versus time and space, the kinematic condition above (coupled
to the other equations) is solved. To do so, an initially sharp interface is given at Z = 0,
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typically following a sharp linear function R2
i (Z, T = 0) = −a(R2

c/2)Z + R2
c/2 (with the

coefficient a = 103). Let us recall that, here, Rc = R̂c/R̂ is the inner radius of the injection
pipe.

The discretization of the kinematic condition is implemented in conservative form,
following a scheme that is first-order explicit in time and second-order in space, which
for robust integration is coupled to a (shock-capturing) Van Leer flux limiter scheme (Yee,
Warming & Harten 1985). To calculate uc,Z , an integration scheme is employed.

3.4. Yielding length
Now, it is straightforward to obtain the critical yielding length, Ly, which is the length at
which the viscoplastic core layer starts to yield at the inlet (Z = 0, where the stress is the
highest). To do so, using (3.32) and the critical yield condition, i.e.

√
3

2
|τc,ZZ| = B, (3.51)

and knowing that Ri = Rc and uc,Z = 1 hold before yielding, we find

Ly =
√

3δB∣∣∣∣∣−∂Pa

∂Z
− 1

πR2
c

∫ 2π

0
�τa,ξcZ dφ + χ

∣∣∣∣∣
. (3.52)

Accordingly, the yielding time is Ty = L. Also, fa can be simply found by satisfying

1
π

∫ ξc

ξw

∫ 2π

0
ua,Z�

2 dφ dξ + R2
c = 0, (3.53)

and, then, the shear stress τa,ξcZ can be accordingly found using (3.45). Note that the
sign of the denominator in (3.52) determines if the yielding occurs due to an extension or
compression, i.e.

sgn

(
−∂Pa

∂Z
− 1

πR2
c

∫ 2π

0
�τa,ξcZ dφ + χ

)
> 0: yielding due to extension ⇒ breakup;

sgn

(
−∂Pa

∂Z
− 1

πR2
c

∫ 2π

0
�τa,ξcZ dφ + χ

)
< 0: yielding due to compression ⇒ buckling.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.54)
Also, the critical transition between the buckling (bulging) and breakup regimes occurs

when the denominator in (3.52) becomes zero, i.e.

− ∂Pa

∂Z
− 1

πR2
c

∫ 2π

0
�τa,ξcZ dφ + χ = 0, (3.55)

which corresponds to an infinitely long viscoplastic core layer, which is in a perfect balance
of forces with no yielding.

The model presented in this section so far delivers the transition conditions from
an unyielded to a yielded viscoplastic core fluid, for infinitely long core fluid (e.g.
infinite falling height). The yielding can be due to the extensional or compressional
stresses, eventually leading to the breakup or buckling (bulging) of the viscoplastic
core, respectively. However, if the applied stresses on the core fluid perfectly
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counterbalance one another, the core fluid does not buckle (bulge) nor break up, and it
remains unyielded. On the other hand, considering a finite falling height (H), i.e. the
case in our experiments, (3.52) delivers a yielding length (Ly) that can be compared
with the falling height. Provided that the falling height is larger than the yielding length
(H > Ly/δ), the theory would suggest that the core fluid is yielded (due to extensional or
compressional stresses depending on the parameters), leading to the breakup or buckling
regimes. Conversely, if the falling height is smaller than the yielding length (H ≤ Ly/δ),
the theory would suggest that the core fluid remains radially unyielded over the falling
height (implying that the core fluid front theoretically can reach the pipe end without
bucking/bulging or breakup), which would roughly translate to the coiling regime in the
context of our experiments.

Considering its limit case, our theoretical result for the yielding length is consistent with
those obtained from previous theoretical approaches for viscoplastic fluid flows injected in
air (i.e. a dynamically inactive fluid). In this case, of course, the yielding would be always
due to elongation not compression. If the annular fluid was ignored (as would be the case
for the injection into air), the yielding length of (3.52) would become

Ly

δ
= 	y = 	̂y

R̂
=

√
3B
χ

=
√

3τ̂ y

(ρ̂c − ρ̂a)ĝR̂
, (3.56)

which for air (ρ̂a 	 ρ̂c) becomes

	̂y ≈
√

3τ̂ y

ρ̂cĝ
. (3.57)

The relation above is fully consistent with the yielding length obtained by Balmforth et al.
(2010b) and Coussot & Gaulard (2005). In particular, the yielding length from Balmforth
et al. (2010b) can be transferred to our scaling as

	̂y =
√

3τ̂ y

ρ̂cĝ
+ ς̂

ρ̂cĝR̂c
, (3.58)

in which ς̂ denotes the surface tension. Note that the latter term that includes the surface
tension effects is neglected in our miscible flow (which is also at the limit of large Pe).

3.5. Specific case of concentric injection flows
For concentric injection flows (E = 0), the bipolar coordinates (ξ, φ, Z) simplify to the
cylindrical coordinates (r, θ, Z). In this case, fully analytical expressions can be obtained
for the quantities of interest, such as the pressure gradient and the interfacial shear stress,
respectively:

fa = 1
M

∂Pa

∂Z
= −4uc,Z

ln(Ri)R2
i − R2

i + ln(Ri) + 1
, (3.59)

τa,rZ = uc,ZM(1 − R2
i )

(ln(Ri)R2
i − R2

i + ln(Ri) + 1)Ri
, (3.60)
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where τa,rZ = τa,rZ|r=Ri . The critical yielding length, Ly, can be also obtained
straightforwardly:

Ly =
√

3δB∣∣∣∣∣∣∣∣
2M

(
2 +

(
1

R2
c

− 1
))

(ln(Rc)R2
c − R2

c + ln(Rc) + 1)
+ χ

∣∣∣∣∣∣∣∣

, (3.61)

in which the denominator determines if the yielding occurs due to an extension or
compression, i.e.

sgn

⎛
⎜⎜⎝

2M
(

2 +
(

1
R2

c
− 1

))
(ln(Rc)R2

c − R2
c + ln(Rc) + 1)

+ χ

⎞
⎟⎟⎠ > 0: yielding due to extension ⇒ breakup;

sgn

⎛
⎜⎜⎝

2M
(

2 +
(

1
R2

c
− 1

))
(ln(Rc)R2

c − R2
c + ln(Rc) + 1)

+ χ

⎞
⎟⎟⎠ < 0: yielding due to compression ⇒ buckling.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.62)

4. Model results and comparisons with experiments

4.1. Flow regimes
Let us begin with the transition boundaries between the breakup, coiling and buckling
regimes. First of all, note that (3.52) gives a simple prediction to the onset of yielding of
the viscoplastic core fluid, as a function of Rc, χ, B, M, δ ≡ 1/H and E (note that the onset
of yielding is independent of the power-law index, n). Conservative critical boundaries
between the regimes can be simply obtained by considering the critical yielding length to
be equal to the falling height (Ly/δ = H), which via rearranging (3.52) gives

MH
B

=
√

3∣∣∣∣∣− 1
M

∂Pa

∂Z
− 1

πR2
cM

∫ 2π

0
�τa,ξcZ dφ + χ

M

∣∣∣∣∣
, (4.1)

where the first and second terms in the dominator, corresponding to the annular flow
dynamics (i.e. the pressure gradient and shear stress terms), are directly calculated using
the model. Thus, for given values of E and Rc, the two relevant dimensionless groups of
the flow are

χ

M
= (ρ̂c − ρ̂a)ĝR̂

2

μ̂aV̂0
, (4.2)

MH
B

= μ̂aV̂0Ĥ

τ̂ yR̂
2 . (4.3)
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100 102 10410–4
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Figure 6. Regime classification in terms of the breakup, buckling (bulging) and coiling regimes in the plane
of MH/B and χ/M, for E = 0 and Rc = 0.5, where different regimes are marked by different colours.

Note that, for concentric injection flows (E = 0), (4.1) reduces to a simplified analytical
relation:

MH
B

=
√

3∣∣∣∣∣∣
2
(

2 +
(

1
R2

c
− 1

))
(ln(Rc)R2

c − R2
c + ln(Rc) + 1)

+ χ

M

∣∣∣∣∣∣
. (4.4)

Before we proceed, let us clarify the discussion above on how to calculate the regime
transition boundaries using the model. First of all, note that the model considers the
yielding/non-yielding condition at the inlet of the core liquid since, prior to the yielding,
the stresses are theoretically maximum at this location. From a theoretical perspective,
this implies that, provided the core fluid does not yield at this location, it will not yield
anywhere else in the pipe. Therefore, using the model, we can first calculate the transition
boundaries between the core fluid flows which theoretically yield radially before reaching
the pipe end and those which do not (using (4.1)). Once these transitions are identified,
we can look at the sign of the denominator of (4.1) to theoretically categorize the yielding
flows as breakup or buckling.

Figure 6 plots the theoretical critical boundaries via (4.1) in the plane of MH/B and χ/M
(for fixed E = 0 and Rc = 0.5); the breakup, coiling and buckling regimes are marked.
Each regime corresponds to a different balance among the governing forces that control
the motion of the viscoplastic core. The breakup regime, where the viscoplastic core is
yielded due to the extensional stress overcoming the yield stress, is found at large values
of χ/M, corresponding to large buoyancy, low injection velocities and low viscosities
of the annular fluid. The buckling regime, on the other hand, occurs at χ/M 	 O(102)

and MH/B 
 O(10−2), representing small buoyancy, small yield stresses as well as large
injection velocities and high viscosities of the annular fluid. In this regime, the yielding of
the viscoplastic core towards buckling is due to the compressional stress dominating the
yield stress. The area between the critical boundaries of the breakup and buckling regimes
marks the coiling regime, where forces counterbalance one another in a way such that,
theoretically, the viscoplastic core fluid neither breaks up nor buckles but, instead, shows
a coiling behaviour. It is evident, from the regime map, that large yield stresses (large B)
withstand extensional or compressional stresses, resulting in the coiling regime.

There exist alternative approaches to define the appropriate dimensionless groups,
especially when dealing with viscoplastic fluids. In particular, if instead of (μ̂cV̂0)/R̂ we
use τ̂y + (μ̂cV̂0)/R̂ as the characteristic stress (Caliman, Soares & Thompson 2017), the
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main dimensionless quantities change to

B∗ = B
(μ̂cV̂0)/R̂

τ̂ y + (μ̂cV̂0)/R̂
,

M∗ = M
(μ̂cV̂0)/R̂

τ̂ y + (μ̂cV̂0)/R̂
,

χ∗ = χ
(μ̂cV̂0)/R̂

τ̂ y + (μ̂cV̂0)/R̂
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

Using these new definitions, the main quantities employed to present the main results (e.g.
the regime classification of figure 6) would not change, i.e.

χ∗

M∗ ≡ χ

M
, (4.6)

M∗H
B∗ ≡ MH

B
. (4.7)

Although the above-mentioned way of addressing the dimensionless analysis can be more
aligned with the recent findings in yield stress materials, e.g. Kordalis et al. (2021)
highlighting the advantages of using the plastic number (B∗) over the Bingham number
(B), it does not change the outcomes of our work.

We have so far shown the existence of three main flow regimes, i.e. the breakup, coiling
and buckling regimes, when a viscoplastic fluid is injected into a miscible medium (at the
limit of large Pe), and we have accordingly delineated conservative transition boundaries
between the flow regimes through the mathematical model, via the flow regime map in
the plane of MH/B and χ/M (figure 6). Now, it is worth mentioning that, in terms of
(4.1), there exist at least two obvious limit cases, i.e. χ/M = (ρ̂c − ρ̂a)ĝR̂

2
/μ̂aV̂0 � 1

and χ/M = (ρ̂c − ρ̂a)ĝR̂
2
/μ̂aV̂0 	 1, corresponding to the situations where the ambient

fluid flow dynamics is either completely negligible or completely dominant, respectively.
Regarding the former (χ/M � 1), the viscoplastic fluid flow can only transition between
the breakup and coiling regimes and the critical transition boundary can be simply
obtained as

H
B

≈
√

3
χ

, (4.8)

which relates, for example, the critical transition falling height (H) to the Bingham number
(B) and the buoyancy number (χ ). In this scenario, as B increases or χ decreases,
the flow transitions from the breakup regime (where the viscoplastic core fluid breaks
up) to the coiling regime (where the viscoplastic core fluid does not break up), while
the ambient fluid flow dynamics does not play much of a role. From this perspective,
therefore, the theory and the critical relation obtained can be directly used for much
simpler flow configurations, e.g. the extrusion of a typical viscoplastic fluid into air (for
which χ/M = (ρ̂c − ρ̂a)ĝR̂

2
/μ̂aV̂0 � 1, since ρ̂a and μ̂a are both very small, implying

that air is practically a dynamically inactive fluid), albeit with ignoring the surface tension
effects. This finding is consistent with the spirit of previous works (e.g. Coussot & Gaulard
2005; Balmforth et al. 2010a,b; Geffrault et al. 2021), which have mainly focused on
the breakup of extruded viscoplastic fluids into air, although they have not typically
considered/investigated a coiling regime due to unboundedness of their flow domains.
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Figure 7. Comparison between the regime classifications based on the model (solid lines) and experiments
(symbols, representing > 300 experiments) for Rc = E = 1/3, in the plane of MH/B and χ/M, for Rc = E =
1/3: the breakup regime (�); the coiling regime (◦); the buckling regime (�). The filled circle symbols mark
the cases where the core fluid yields and thins but its front eventually reaches the pipe end before breakup, and
starts coiling.

On the other hand, regarding the other limit in (4.1), i.e. χ/M 	 1, the viscoplastic fluid
flow can only transition between the buckling and coiling regimes and the critical transition
boundary can be simplified as

MH
B

≈ c, (4.9)

in which c is a constant, i.e. only dependent on E and Rc. Therefore, when the ambient
fluid flow dynamics is dominant, the flow almost always belongs to the buckling regime,
unless B is very large or H is very small.

4.2. Comparison with the experimental data
Figure 7 compares the three regimes based on the model and experiments. Despite the
simplifying assumptions made in the model as well as complex experimental behaviours,
the agreement between the model predictions and experiments is reasonable. However,
some discrepancies are observed, e.g. the experimental coiling regime region is larger
than that predicted by the model, a feature which may be justified. First, note that the
critical condition of (4.1) is quite conservative and delivers only a prediction to the onset
of yielding, which in the case of an extensional flow would not necessarily be equivalent
to the breakup; in fact, when the core fluid yields near the inlet due to an extension,
as the injection continues, the core fluid front can still evolve and reach the pipe end
before the full breakup can occur. In this case, the coiling may occur for a core fluid that
is partially yielded but not fully broken. Therefore, the experimental coiling (breakup)
regime region is slightly larger (smaller) than that predicted by the model. On the other
hand, yielding due to a compression almost certainly results in the buckling (bulging)
regime because, in this case, the evolution of the core fluid front is significantly slowed
down as the core fluid radially expands rapidly and cannot coil. This may justify why the
model prediction to the transition between the buckling and coiling regimes may be more
satisfactory.

As mentioned above, there are certain cases categorized within the coiling regime for
which the core fluid is yielded but, due to the finiteness of the domain, its front reaches
the pipe end before breaking up and starts coiling (see figure 4b). We have quantified and
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marked such flows, using the filled symbols, in the regime map of figure 7. Interestingly,
such flows are all within the breakup regime zone predicted by the model, implying that
the model can provide a good prediction to the yielding behaviour and these experiments
would indeed exhibit a breakup for a longer falling height. We should also note that the
coiling data points in figure 7 include different sorts of observed coiling behaviours, i.e.
regular, irregular and free coiling (as discussed in § 2).

Before we proceed, let us summarize some possible sources/reasons behind the
experimental–modelling discrepancy observed in our work (see figure 7). (i) One of the
possible reasons for the deviation of the experimental data from the model predictions
(e.g. near the boundary of the coiling and breakup regimes) could be due to the yield
stress values (obtained based on the HB model) used in our analysis. As shown earlier
in § 2, the yield stresses obtained from the HB model fitting (figure 2(a) and table 1) are
slightly different from those obtained using other measurement methods (e.g. compare
figures 2a, 2b, 2c and 2d). This difference highlights the fact that viscoplastic fluids are
complex materials in terms of their yielding behaviour and that the yield stress measured
using steady-state shear rheometry may not be the best choice across the board in different
flow confirmations. (ii) Relevant to (i), a possible source of mismatch may be due to
differences between extensional and viscometric yielding (which is the most widely used
method to probe viscoplastic fluid rheology). For instance, Sica, de Souza Mendes &
Thompson (2020) and Thompson & de Souza Mendes (2020) have considered extensional
and compressional states of viscoplastic fluids extruded into air and they have quantified
the corresponding yield stresses (namely static and dynamic yield stress values), which
can be different from those delivered by steady-state shear rheometry. (iii) Another source
of discrepancy between the model and experiments may be related to considering only
normal components in the viscoplastic fluid flow and ignoring shear components in our
asymptotic scaling analysis. Although in our work we may expect such an omission to
have only negligible effects, there also are works in the literature (e.g. Moschopoulos
et al. 2020; Geffrault et al. 2021) arguing that neglecting shear components of the strain
rate tensor may lead to inaccuracies of slender filament approximations. (iv) Regarding
the breakup regime, the discrepancy can also originate from the notion of yielding and
rupturing in viscoplastic fluids (as also mentioned further above). Although the model
may provide a reasonable understanding and prediction to the onset of yielding, the
final rupturing of our viscoplastic fluid is hard to model and fully analyse, especially
considering the multiphase nature of the flow. However, there are studies in the literature
for simpler flow configurations (Hu et al. 2015; Tarcha et al. 2015; Thompson & de Souza
Mendes 2020; Bahrani et al. 2021) which have investigated the rupturing of viscoplastic
fluids but in different conditions; for instance, Tarcha et al. (2015) have analysed the
yielding and rupturing of viscoplastic fluids using rheological tests, revealing how such
fluids experience a destruction process and an eventual rupturing after the yield stress is
overcome. (v) Finally, another discrepancy source is related to the nature of the model
and experiment in our work. While the former is highly simplified, the latter is a complex
flow, many features of which are ignored in the model for simplicity. For instance, the
model does not obviously consider the coiling regime details (including regular, free and
irregular coiling behaviours). In free coiling, in particular, the coiling starts before the
core front touches the pipe end, i.e. a feature that is not included in the model and must be
studied in future works.

A closer look at (3.52) reveals that, at the limit of a zero-injection velocity, the
dimensional length of the viscoplastic core fluid at the yielding onset from the model
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Figure 8. (a) Viscoplastic core length at the yielding onset 	̂
experiment
y versus the injection velocity V̂0 for

an injection flow in an eccentric pipe (Ê = 6.35 mm). The symbols mark Sample III (circle) and Sample
IV (diamond). The lines mark the least-squares fitting of the data points. Length 	̂

experiment
y |V̂0→0 is 0.115

and 0.039 m for Samples III and IV, respectively. (b) Dimensionless elapsed time between the yielding and
rupturing tr − ty versus χ/M for the breakup experiments for E = 1/3. The symbol colours represent the
values of the Bingham number.

(	y) can be approximated as

	̂y

R̂

∣∣∣∣∣
V̂0→0

≈
√

3B
χ

=
√

3τ̂ y

(ρ̂c − ρ̂a)ĝR̂
⇒ 	̂y|V̂0→0 ≈

√
3τ̂ y

(ρ̂c − ρ̂a)ĝ
, (4.10)

since the terms regarding the pressure gradient and the shear stress applied by the
annular fluid flow vanish in (3.52) as V̂0 → 0. Equation (4.10) can also provide a way
to approximate the yield stress, provided that the yielding length is known at the limit
of zero-injection rates. This approach has been previously demonstrated and used by
Sica et al. (2020) and Thompson & de Souza Mendes (2020) in conceptually similar
contexts. Figure 8(a) plots the length of the viscoplastic core at the yielding onset from
the experiments (	̂experiment

y ) for small injection velocities. In this figure, the symbols mark
Sample III (circles) and Sample IV (diamonds). As can be seen, 	̂

experiment
y for Sample III

is larger than that for Sample IV. Following Sica et al. (2020) and Thompson & de Souza
Mendes (2020), it is possible to use a linear least-squares fit as a crude way to estimate
the yielding length at the limit of the zero-injection velocity, namely where the fitted line
crosses the vertical axis, i.e. 	̂

experiment
y |V̂0→0. Accordingly, using (4.10), the associated

yield stresses for Samples III and IV can be approximated as 6.47 and 4.31 Pa, respectively,
which in comparison with the rheometry results (table 1) show a difference of less than
7 %.

For the sake of completeness of the result presentation, let us show the dimensionless
elapsed time between the yielding onset (ty = t̂y/(R̂/V̂0)) and the eventual of breakup or
rupturing (tr = t̂r/(R̂/V̂0)) of the core viscoplastic fluid, as shown in figure 8(b) for our
experimental results. The yielding and rupturing times are extracted from the experimental
data using an image processing technique. This figure shows tr − ty versus χ/M, while the
values of the Bingham number are superimposed by the symbol colours. The results show
that, by increasing χ/M and B, the elapsed time decreases, i.e. the core fluid ruptures
faster. The results for the elapsed time between yielding and rupturing, such as those
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Figure 9. Critical regime transition boundaries in the plane of MH/B and χ/M, for E = 0 and Rc = 0.1

(dashed line), 0.3 (dash-dotted line), 0.5 (red solid line), 0.7 (dotted line) and 0.9 (black solid line).

presented in figure 8(b), could be perhaps further analysed in future works to distinguish
between two critical stresses, i.e. associated with yielding and rupturing.

4.3. Effect of Rc

It is insightful to study the effects of the variation of Rc on the regime boundaries, as shown
in figure 9. As seen, varying Rc can significantly change the regime boundary positions,
albeit in a non-monotonic way; by increasing Rc up to 0.3, the critical boundaries are
shifted to the left but, for higher values of Rc, they are moved to the right. In the latter
case, the buckling regime region becomes significantly wider.

The model predicts a non-monotonic effect of Rc on the critical regime boundaries,
especially in terms of the transition between the buckling and breakup regimes. In an
attempt to explain this non-monotonic behaviour, let us consider a long core fluid, for
which Rc increases from small values, while the other parameters are fixed. On the one
hand, note that the buoyancy force is the only force that pulls the core fluid downward,
while the other forces (including the yield stress force and the shear stress force at the
interface) resist against this force and, therefore, against the breakup. On the other hand,
the buoyancy force per unit volume is constant (proportional to χ ), while the interfacial
shear force per unit volume is proportional to (1/Rc)(τa,rZ/M). Therefore, initially at small
Rc, the interfacial shear force per unit volume decreases with increasing Rc. However, as Rc
keeps increasing and the annular flow cross-section area decreases, the shear stress applied
at the interface increases due to the flux constraint. This results in the interfacial shear
force per unit volume eventually increasing at larger Rc, implying that a larger χ would be
needed to overcome this force and lead to the transition from the buckling regime to the
breakup regime.

To better illustrate the discussion above, figure 10 presents the variation of three
parameters versus the core fluid radius. To simplify the analysis, the condition before
yielding (Ri = Rc and uc,Z = 1) for a concentric flow (E = 0) is considered. The
solid black line marks the non-monotonic variation of |(1/Rc)(τa,rZ/M)| versus Rc, i.e.
initially decreasing and then increasing as Rc grows. The variation of (1/M)(∂Pa/∂Z)

versus Rc (the red dashed line) shows that, as may be expected, the pressure gradient
increases monotonically as Rc increases. Also, at large Rc, the value of (1/M)(∂Pa/∂Z)

progressively increases and dominates that of |(1/Rc)(τa,rZ/M)|. Finally, the variation
of (χ/M)critical versus Rc is also shown. For an infinitely long viscoplastic core layer,
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Figure 10. Variation of |(1/Rc)(τa,rZ/M)| (solid black line), (1/M)(∂Pa/∂Z) (red dashed line) and
(χ/M)critical (blue dash-dotted line) versus Rc for E = 0.

(χ/M)critical delineates the critical transition between the buckling and breakup regimes
(i.e. simply found by setting the denominator of (3.62) equal to zero). A final note inferred
from figure 10 is that, as Rc approaches the value of zero or one, |(1/Rc)(τa,rZ/M)|
and (χ/M)critical approach large values, implying that the model may not be valid as Rc
approaches its extreme values.

Figure 11(a) shows the regime classification in the plane of Rc and χ/M for an infinitely
long pipe. The flow configuration is concentric (i.e. E = 0). The black solid line delineates
the transition between the breakup and buckling regimes; there is, of course, no coiling
regime and the line itself represents a core fluid layer that never breaks up or buckles in
an infinitely long pipe. Figure 11(b) shows the regime transition boundaries for different
values of MH/B. For MH/B = ∞, there is no coiling regime but, as MH/B decreases, the
coiling regime region appears and expands in the area sandwiched between the buckling
and breakup regimes (corresponding to the dashed and dash-dotted lines). Moreover, for
the ranges observed, the transition boundary has a minimum value of χ/M for a core
with Rc ≈ 0.3. Figure 11(c) depicts the regime classification for a typical finite value of
MH/B = 0.01. As seen, for a given value of Rc, on increasing χ/M, the flow transitions
from the buckling to coiling and eventually to the breakup regime. Also, interestingly,
for 0.10 	 Rc 	 0.64 and all the values of χ/M ≥ 1, the viscoplastic core fluid does not
buckle.

4.4. Effect of E
Figure 12(a–d) shows the regime classification in the plane of Rc and χ/M, for an infinitely
long pipe and different eccentricities. The black solid line delineates the transition between
the breakup regime (on the right-hand side) and the buckling regime (on the left-hand
side). In an infinitely long pipe, there is no coiling regime and each line for different
E represents a core fluid layer that never breaks up or buckles. It should be noted that,
with increasing eccentricity, the variation of Rc becomes limited. It can be seen that,
with increasing E, the buckling regime region is expanded. Figures 12(e) and 12( f ) show
observations similar to those in figures 11(b) and 11(c), respectively, but for an eccentric
flow (E = 0.4).

Figure 13 illustrates a comparison between the results obtained for the two different
values of E. The lines and data points represent the modelling and experimental results,
respectively. For Rc = 1/3, for the value of which the experimental results are also
superimposed, the coiling regime is seen for smaller values of χ/M when E = 0.
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Figure 11. Regime classification for an infinitely long pipe for E = 0. (a) The regime classification of breakup
and buckling for an infinitely long pipe. The thick solid line marks the critical transition. (b) Contour
values of MH/B for E = 0. The thick solid line marks MH/B = ∞. The dash-dotted lines correspond to
yielding (breakup) due to extension, where MH/B = 0.1, 0.03 and 0.01, from left to right. The dashed lines
correspond to yielding (buckling) due to compression, where MH/B = 0.1, 0.03 and 0.01, from right to left.
(c) Regime classification of the breakup, coiling and buckling regimes, in a pipe with the typical length of
H = (1/100)(B/M).
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Figure 12. Regime classification for an infinitely long pipe for various eccentricities: (a) E = 0, (b) E = 0.2,
(c) E = 0.4 and (d) E = 0.8. (e) Contour values of MH/B for E = 0.4. The thin solid line marks MH/B = ∞.
The dash-dotted lines correspond to yielding (breakup) due to extension, where MH/B = 0.1, 0.03 and 0.01,
from left to right. The dashed lines correspond to yielding (buckling) due to compression, where MH/B = 0.1,
0.03 and 0.01, from right to left. ( f ) Regime classification of the breakup, coiling and buckling regimes in a
pipe with typical length of H = (1/20)(B/M).

In addition, the comparison between the experimental and modelling results shows
reasonable agreement.

4.5. Interface evolution and velocity field
Figure 14 depicts typical examples of the evaluation of a core fluid interface, at a given
time T , in the absence and presence of the annular flow dynamics, for a concentric flow
configuration. As seen, when the core fluids are yielded, the stress contours exceed B
everywhere, except for the core fluid’s lowest part. Figures 14(a) and 14(c) show that,
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Figure 13. Regime classification based on the model (lines) and experiments (symbols) for (a) E = 1/3,
H = (1/20)(B/M) and (b) E = 0, H = (3/100)(B/M). The bounded regions via lines show the breakup,
coiling and buckling regimes from right to left, respectively. Different symbol shapes represent the breakup
regime (�), the coiling regime (◦) and the buckling regime (�) in the experiments.
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Figure 14. Interface evolution for δ = 0.05, n = 0.5, Rc = 0.5 and E = 0 (a,c) without and (b,d) with
considering the annular flow dynamics: (a,b) B = χ = 1 and M = 0.005; (c,d) B = χ = 0.1 and M = 0.02;
(a) T = 0.19, (b) T = 0.5, (c) T = 0.6 and (d) T = 0.24. The superimposed colours and the colour bars
represent the values of τc,ZZ .

without the annular flow, the extensional stress (positive τc,ZZ) dominates the yield stress
in the thinning region, as the core progresses towards the breakup. When the annular flow
dynamics is considered, and depending on the values of χ , B and M (for fixed δ, E, Rc
and n), figures 14(b) and 14(d) reveal that the flow can transition between the breakup
and buckling regimes. For instance, for small M, the extensional stress (positive τc,ZZ) is
dominant, while for large M the compressional stress (negative τc,ZZ) becomes dominant.
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Figure 15. Model results of an eccentric injection, for δ = 0.05, n = 0.5, Rc = E = 1/3 and T = 0.3:
(a,b) B = χ = 1 and M = 0.005; (c,d) B = χ = 0.1 and M = 0.02. (a,c) Interface shape, along with τc,ZZ
superimposed as colours. (b,d) Interface shape, along with axial velocity (uZ) superimposed as coluors. The
core fluid velocity is given throughout the viscoplastic layer length while the annular velocity is given at
Z ≈ L/3.

Figure 15 presents the interface shape, along with the dominant stress contours
(figure 15a,c) and the axial velocity contours (figure 15b,d), for compressional and
extensional flows of an eccentric viscoplastic core flow (E = 1/3), at a given time T .
Figures 15(a,b) and 15(c,d) correspond to the breakup and buckling regimes, respectively.
In figures 15(a,c) and 15(b,d), the values of τc,ZZ and uc,Z are superimposed on the
interface shape, respectively. Additionally, in figure 15(b,d), the annular flow velocity field
near the necking/buckling region is also superimposed. As seen, increasing the viscosity of
the annular fluid causes the extensional stress (positive τc,ZZ) to become a compressional
stress (negative τc,ZZ); this leads to the transition of the flow dynamics from the breakup
to the buckling regime. In both regimes, however, the unyielded region (|τc,ZZ| ≤ B) is
located near the core end, with lower velocity for the buckled core. Figure 15 also shows
that, in the buckling regime, the core fluid layer grows much slower (note that all the
results are at T = 0.3). Also, for the breakup flow, the core velocity has the lowest value
at the inlet, while for the buckling flow the core fluid velocity is highest near the inlet. In
addition, the local velocity of the annular fluid is larger in the wide side of the eccentric
core than that in the narrow side. As the eccentricity promotes the flow along the wide
side, it affects on the dynamics of the injected viscoplastic core fluid, through changing
the interfacial stresses due to the upward motion of the annular fluid. Finally, our results
show that the predictions of the interface evolution using the model are in qualitative
agreement with the early-time experimental interface shapes in the breakup and bucking
regimes; see figure 1(b1–b3).

In order to gain more insight into the flow, here, let us further analyse the core fluid
behaviour without and with considering the annular fluid flow dynamics, as shown in
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Figure 16. Model results for the dynamics of a breakup flow, for a case without considering the annular flow
dynamics. The flow parameters are δ = 0.05, n = 0.5, B = χ = 1, Rc = 0.5 and Tend = 0.19. (a) Interface
radius Ri versus Z and T . The results are shown for T = 0, Tend/10, . . . , 9Tend/10, Tend . The last profile is
marked by the red line, for which the shaded area marks the unyielded region. (b) The viscoplastic fluid
layer length L(T) versus time T . The dashed line is for comparison purposes and marks L(T) = T . (c)
Plot of τc,ZZ versus Z and T . The solid arrow shows the increase in time T . The results are shown for
T = 0, Tend/10, . . . , 9Tend/10, Tend . The horizontal dash-dotted line marks τc,ZZ = B.

figures 16 and 17, respectively. The former (i.e. when the annular fluid flow dynamics
is ignored) would resemble the simpler case of the injection of a viscoplastic fluid into a
dynamically inactive fluid, such as air (Coussot & Gaulard 2005; Balmforth et al. 2010a,b;
Geffrault et al. 2021), albeit with ignoring surface tension effects. Figure 16(a) shows
the variation of the interface radius along the length of the core versus the time. At long
times, the core fluid yields after advancing some distance with respect to the injection inlet
(when, loosely speaking, a sufficient weight of the core fluid is hung below the injection
inlet). Meanwhile, as time progresses, the core fluid becomes thinner at the yielding point.
The core is yielded, except for a small region towards its front. Figure 16(b) shows the
growth of the core fluid length (L) versus time (T), which occurs due to the continuous
injection of the viscoplastic fluid. Initially, before yielding, the layer length varies linearly
with time. After yielding, however, L(T) deviates from the linear line of L(T) = T , and
grows more rapidly as expected. A sequence of profiles illustrating τc,ZZ along the core
length are shown in figure 16(c), for the corresponding times in figures 16(a) and 16(b).
The horizontal dash-dotted line in figure 16(c) represents the value of B. At early times,
the magnitude of τc,ZZ along the core length shows a gradual increase with time. Before
yielding (τc,ZZ ≤ B), the maximum stress is at Z = 0, which represents the injection inlet.
Nevertheless, after yielding (τc,ZZ > B), the point where the stress is maximum moves
downward as time increases. Finally, considering the observations made in figure 16, very
similar behaviours are observed when buoyancy is large while the annular flow dynamics
is considered.

Figure 17(a) shows the variation of the interface radius along the core length for different
times in the presence of the annular flow. It can be observed that the inclusion of the
annular flow creates sufficient viscous stresses for yielding and buckling of the core fluid,
as a yielded region appears adjacent to the point of injection, where the compressive stress
overcomes the yield stress. While the core fluid buckles radially, we can observe that the
core fluid front section remains unyielded. As seen in figure 17(b), at early times, the
growth rate of the viscoplastic layer length is constant, until the time at which the yielding
and buckling of the core occur. After yielding, however, L(T) deviates from the linear line
of L(T) = T , and grows more slowly as expected. The variation of the stresses along the
core in each time step is depicted in figure 17(c), showing a gradual increase in the stress
magnitude with time. Since B is small, τc,ZZ quickly overcomes B and core fluid yields
radially. Comparing figures 17(c) and 16(c) shows that the signs of τc,ZZ are opposite in
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Figure 17. Model results for the dynamics of a buckling flow, while considering the annular flow dynamics.
The flow parameters are δ = 0.05, n = 0.5, B = 0.1, χ = 0, Rc = 0.5, M = 0.02, E = 0 and Tend = 0.22.
(a) Interface radius Ri versus Z and T . The results are shown for T = 0, Tend/10, . . . , 9Tend/10, Tend . The
last profile is marked by the red line, for which the shaded area marks the unyielded region. (b) The
viscoplastic fluid layer length L(T) versus time T . The dashed line is for comparison and shows L(T) = T .
(c) Plot of τc,ZZ versus Z and T . The solid arrow shows the increase in time T . The results are shown for
T = 0, Tend/10, . . . , 9Tend/10, Tend . The horizontal dash-dotted line marks τc,ZZ = −B.

these figures, which is trivial. However, comparing figures 16(c) and 17(c) reveals that the
maximum value of the stress remains always close to Z = 0, even after yielding (at least
for the case considered).

The results presented in this section on the interface dynamics, obtained using the
model, reveal that our theoretical predictions of the interface shape and its evolution are
in agreement, albeit rather very qualitative, with the shape of the thinning region in the
extensional flow or the buckling region in the compressional flow, e.g. as observed in our
experiments; see e.g. figure 3.

5. Summary and concluding remarks

Our experiments reveal the existence of the breakup, coiling and buckling (bulging)
regimes in the vertical injection of a heavy viscoplastic fluid into a closed-end pipe filled
with a Newtonian fluid. Accordingly, we develop and validate a lubrication approximation
model to predict the flow regime boundaries. The model parameters include δ ≡ 1/H,
n, Rc, E, B, χ and M (see table 3 for the definitions). Based on analysing the yielding
behaviour of the viscoplastic fluid, the model delivers a conservative prediction to the
regime classification in the plane of MH/B and χ/M. The breakup regime is observed
at large χ/M, where the viscoplastic fluid undergoes an extension, yields and eventually
breaks up due to large buoyancy. The buckling regime is seen at small χ/M where the
viscoplastic fluid is yielded, and radially expands, due to compressional stresses caused
by the annular flow dynamics. When the viscoplastic fluid neither breaks up nor radially
buckles (bulges), it can lead to the coiling regime where the viscoplastic core fluid shows
coiling behaviours.

It can be insightful to strengthen the positioning of our work/results with respect to
previous works, e.g. those concerning the injection of viscoplastic fluids into air (Coussot
& Gaulard 2005; Balmforth et al. 2010a,b; Rahmani et al. 2011; Balmforth & Hewitt 2013;
Geffrault et al. 2021), discussed in the introduction. In general, the following aspects
can be highlighted. First, note that our flow is a buoyant multiphase flow in nature, i.e.
the dynamics of our two fluid flows are interconnected and strongly affect each other.
This is because, in contrast with previous works considering air as the surrounding fluid,
the ambient fluid considered in our work remains an active in situ fluid, whose flow
dynamics along with its properties can significantly affect the viscoplastic fluid flow.
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Second, our work brings the effects of transverse and longitudinal geometry confinements
(motivated by industrial application, e.g. in P&A processes) into the analysis. This leads
to an exchange flow configuration in a given cross-section of the flow; as the viscoplastic
filament movies downward, the Newtonian ambient fluid flow moves mostly upward.
This, in return, produces a pressure gradient and a stress at the interface, which affect
the interfacial flow dynamics, e.g. via modifying the viscoplastic fluid yielding length
condition. Considering this argument, let us briefly explain how the flow regimes, studied
and understood in the context of viscoplastic fluid injections into air, can be affected when
air (as the ambient fluid) is replaced by a dynamically active liquid in our confined flow
configuration. (i) Regarding the breakup regime, the general yielding mechanism is similar
to that in air, in the sense that buoyancy (in other words gravity) eventually dominates the
yield stress and leads to yielding, extension and eventually breakup (Coussot & Gaulard
2005; Balmforth et al. 2010a,b; Geffrault et al. 2021). However, the viscoplastic filament
flow, the interface motion, the yielding length and the breakup are also expectedly affected
by the ambient fluid flow dynamics (e.g. via the dimensionless numbers such as M and χ ).
The flow can be also particularly affected in terms of the evolution of the yielded region
and the progression towards pinch-off, the detailed analysis of which we leave to future
works. (ii) While our coiling regime generally resembles that observed in some previous
works on viscoplastic injections into air (Rahmani et al. 2011), note that we have not much
analysed this regime and its dynamics, except for proposing a regime zone (in terms of
the dimensionless numbers) when it may occur, based on using the model prediction to
the yielding length. However, our work shows that the ambient fluid flow dynamics can
be used to significantly promote/delay the occurrence of the coiling regime, i.e. a finding
which can be perhaps extended in future studies to control the flow behaviours in this
regime. (iii) Finally, the buckling (bulging) regime found in our work is not much studied
in the literature and it does not have a direct counterpart in the case of viscoplastic fluid
injections into air. As mentioned in the introduction, the ‘buckling’ observed in injections
into air typically occurs in upward injections when the viscoplastic fluid yields and bends
sideways, after a critical length, loosely speaking due to its weight overcoming the yield
stress (Balmforth & Hewitt 2013). Nevertheless, in our case, the yield stress is overcome
and the viscoplastic fluid radially expands and buckles (bulges), obviously not because of
its weight but because of the pressure gradient and stress applied at the interface caused
by the ambient fluid flow dynamics. This flow regime should be, of course, further studied
in future to reveal its intricacies and complex dynamics, especially at longer times.

The combination of the model and experiments developed in this work could be
extended in future, perhaps as a rheometrical approach, to measure extensional (elongation
and compression) rheological properties of viscoplastic fluids. For instance, the breakup
regime, which is dominated by normal stresses associated with extension, can reveal
viscoplastic fluids’ elongation properties, based on analysing the deformation and breakup
of viscoplastic filaments due to buoyancy. This would extend, for example, the recent
interesting work of Geffrault et al. (2021) who have developed, for dynamically inactive
ambient fluids, an extensional gravity–rheometry approach, via calculating the normal
stress from the acceleration and weight of viscoplastic materials. In addition, our
experiments have some conceptual similarities to those recently conducted by Sica et al.
(2020) (for dynamically inactive ambient fluids), who analysed the yielding of several
materials in elongation and compression loading conditions, while proposing new criteria
for yielding. In the former condition, gravity is the main source of the induced stress
that eventually overcomes the yield stress. Similar to and extending these aforementioned
studies, our approach could be potentially used to quantify an extensional yield stress.
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Although the focus of the current work is on relatively large-scale filaments, in miscible
multiphase flows (at the limit of large Pe), where surface tension effects are not relevant,
other future works may perform similar experiments/modelling with immiscible flows
at smaller sizes where these effects could become important. In general, the current
model and experiments can be extended to consider the capillary effects. In this scenario,
one would expect the interface curvature and the accompanying capillary pressure to
affect the flow dynamics. For instance, a capillary number (e.g. defined as the ratio of
the extrusion time scale to viscous–capillary reaction time scale) would appear as an
additional parameter, governing the yielding length, the regime transition boundaries and
the interface evolution dynamics. In particular, one may expect that, by including the
capillary pressure, the filament can resist further against yielding and can advance a larger
extrusion length before yielding, resulting in delaying the transition to the breakup and
buckling regimes.

Note that the experimental flow of our consideration (i.e. a buoyant miscible injection
of a viscoplastic fluid into a pipe filled with a Newtonian fluid) is a highly complex flow
phenomenon (in other words, a complex flow of a complex fluid). Therefore, we certainly
do not (and must not) claim that we have analysed, quantified and understood all the
relevant flow features and complex flow aspects in this single study. Instead, our work
should be principally viewed as a straightforward model to roughly predict some of the
leading-order phenomena, e.g. in terms of the transition boundaries between some of the
main flow regimes, observed in our experiments. For instance, various flow behaviours
classified for simplicity under the umbrella of the coiling regime (including regular,
free and irregular coiling) must be experimentally studied in detail in future. Therefore,
future research directions should be directed towards understanding various complex flow
features, the details of each identified regime, the flow subregimes, the longer-time flow
dynamics, as well as developing a more sophisticated model with a rigorous inclusion of
inertial terms. Studies along these lines are ongoing in our research group.
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Appendix A. Solution of Newtonian annular flow velocity and shear stress

In this appendix, we derive the solutions to the velocity and shear stress fields of the
annular fluid flow, based on appropriate boundary conditions. Following from (3.43), the
no-slip boundary condition at the pipe wall gives

ua,Z(T, ξw, φ, Z) = uah,Z(T, ξw, φ, Z) + uap,Z(T, ξw, φ, Z) = 0

⇒ uah,Z(T, ξw, φ, Z) = −uap,Z(T, ξw, φ, Z) = − fasinh2ξw cosh ξw

2(cosh ξw − cos φ)
. (A1)
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Accordingly, we find

[αa0 cosh(mξw) + βa0 sinh(mξw)]m=0 +
∞∑

m=1

[αam cosh(mξw)

+ βam sinh(mξw)] cos mφ = − fasinh2ξw cosh ξw

2 cosh ξw − cos φ
. (A2)

We multiply both sides of the equation above by cos(mφ), integrate over 0 ≤ φ ≤ 2π and
after some algebra arrive at

αa0 = −βa0 tanh(mξw) − fa sinh ξw cosh ξw

2
, m = 0,

αam = −βam tanh(mξw) − fa sinh ξw cosh ξwe−mξw

cosh(mξw)
, m ≥ 1.

⎫⎪⎪⎬
⎪⎪⎭ (A3)

The velocity at the interface should be continuous, i.e.

ua,Z(T, ξc, φ, Z) = uc,Z(T, Z), (A4)

giving

ua,Z(T, ξc, φ, Z) = uah,Z(T, ξc, φ, Z) + uap,Z(T, ξc, φ, Z) = uc,Z(T, Z) ⇒
uah,Z(T, ξc, φ, Z) = −uap,Z(T, ξc, φ, Z) + uc,Z(T, Z)

= − fasinh2ξw cosh ξc

2(cosh ξc − cos φ)
+ uc,Z(T, Z). (A5)

Accordingly, we find

[αa0 cosh(mξc) + βa0 sinh(mξc)]m=0 +
∞∑

m=1

[αam cosh(mξc)

+ βam sinh(mξc)] cos mφ = − fasinh2ξw cosh ξc

2(cosh ξc − cos φ)
+ uc,Z . (A6)

We multiply both sides of the equation above by cos(mφ), integrate over 0 ≤ φ ≤ 2π and
after some algebra arrive at (note that the integral of uc,Z cos(mφ) is zero except for m = 0)

αa0 = −βa0 tanh(mξc) − fasinh2ξw cosh ξc

2 sinh ξc
+ uc,Z, m = 0,

αam = −βam tanh(mξc) − fasinh2ξw cosh ξce−mξc

sinh ξc cosh(mξc)
, m ≥ 1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A7)

Using the relations obtained above, we can find explicit relations for the coefficients as
follows:

βa0 = 1
[tanh(mξw) − tanh(mξc)]

[
fasinh2ξw cosh ξc

2 sinh ξc
− fa sinh ξw cosh ξw

2
− uc,Z

]
, m = 0,

βam = 1
[tanh(mξw) − tanh(mξc)]

[
fasinh2ξw cosh ξce−mξc

sinh ξc cosh(mξc)
− fa sinh ξw cosh ξwe−mξw

cosh(mξw)

]
, m ≥ 1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A8)
And, therefore, αam can be calculated accordingly.
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Finally, the solution (i.e. the particular + homogeneous solution) for the annular fluid
velocity field can be written as

ua,Z = fasinh2ξw cosh ξ

2(cosh ξ − cos φ)
+ αa00 + βa00 +

∞∑
m=1

[αam cosh(mξ) + βam sinh(mξ)] cos mφ,

(A9)
where

αa00 = lim
m→0

(αa0 cosh(mξ)) = ξw

ξc − ξw

[
fasinh2ξw cosh ξc

2 sinh ξc
− fa sinh ξw cosh ξw

2
− uc,Z

]

− fa sinh ξw cosh ξw

2
, (A10)

βa00 = lim
m→0

(βa0 sinh(mξ))

= − ξ

ξc − ξw

[
fasinh2ξw cosh ξc

2 sinh ξc
− fa sinh ξw cosh ξw

2
− uc,Z

]
. (A11)

In addition, the shear stresses in the annular phase can be found as

τa,ξZ = M
�

∂ua,Z

∂ξ
= M

�

[
− fasinh2ξw sinh ξ cos φ

2(cosh ξ − cos φ)2

]

− M
�

1
ξc − ξw

[
fasinh2ξw cosh ξc

2 sinh ξc
− fa sinh ξw cosh ξw

2
− uc,Z

]

+ M
�

∞∑
m=1

m[αam sinh(mξ) + βam cosh(mξ)] cos(mφ), (A12)

τa,φZ = M
�

∂ua,Z

∂φ

= M
�

[
− fasinh2ξw cosh ξ sin φ

2(cosh ξ − cos φ)2 −
∞∑

m=1

m[αam cosh(mξ) + βam sinh(mξ)] sin(mφ)

]
.

(A13)
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