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Abstract

We prove that if S is a finite subset of an ordered group that generates a nonabelian ordered group, then
|S 2| ≥ 3|S | − 2. This generalizes a classical result from the theory of set addition.
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1. Introduction

The structure theory of set addition, or Freiman-type theory, is an area founded by
the first named author some time ago, and which concerns the structure of subsets
of groups having so-called small ‘doubling’, see [F]. This area is very popular, see
[B, C, GR, GT, HLS, R, S, T], and this paper contributes to the current programme
of trying to understand what happens when we move from an abelian to a nonabelian
setting.

First we mention the following theorem, which is a classical result in the theory of
set addition.

Theorem 1.1. Let S be a finite subset of an ordered group. Then

|S 2| ≥ 2|S | − 1.

Proof. Let S = {x1, x2, . . . , xk}, with x1 < x2 < · · · < xk. Then:

x2
1 < x1x2 < x2

2 < x2x3 < x2
3 < · · · < x2

k−1 < xk−1xk < x2
k

and each of these elements belongs to S 2. Hence |S 2| ≥ 2k − 1 = 2|S | − 1, as
required. �
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This result is the best possible, as can be seen by considering geometric
progressions. However, the critical examples (geometric progressions) are abelian
in character and the main result of this paper is the following theorem, which is a
strengthening of Theorem 1.1 if the group generated by S is nonabelian.

Theorem 1.2. Let S be a finite subset of an ordered group, which generates a
nonabelian subgroup. Then

|S 2| ≥ 3|S | − 2.

Theorem 1.2 can be restated in the following Freiman-type equivalent form.

Theorem 1.3. Let S be a finite subset of an ordered group and suppose that

|S 2| ≤ 3|S | − 3.

Then S generates an abelian subgroup.

This result is the best possible, so that there is an ordered group G and a subset S
generating a nonabelian group with |S 2| = 3|S | − 2.

We prove Theorem 1.3 in Section 3. Under a bit stronger assumption, we obtain the
following extension of Freiman’s theorem 1.9 in [F].

Corollary 1.4. Let S be a finite subset of an ordered group G and suppose that

t = |S 2| ≤ 3|S | − 4.

Then there exist x1, g ∈G, such that g > 1, gx1 = x1g and S is a subset of the geometric
progression

{x1, x1g, x1g2, . . . , x1gt−|S |}.

Finally we mention the following interesting result concerning ordered groups,
which is proved in Section 2.

Corollary 1.5. Let S be a finite subset of an ordered group G. Then

NG(S ) = CG(S ).

Since the class of ordered groups contains the class of torsion-free nilpotent groups,
our results hold in particular for finite subsets of torsion-free nilpotent groups.

We conclude this section with the following basic definition.

Definition 1.6. If S ,T are subsets of a group G, then we denote

S T = {st : s ∈ S , t ∈ T } and S 2 = {s1s2 : s1, s2 ∈ S }.

If S = {s}, then we denote S T by sT and if T = {t}, then we write S t instead of S {t}. If
G is an additive group, then we denote

2S = {s1 + s2 : s1, s2 ∈ S }.
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2. Finite subsets of ordered groups

We begin this section with the definitions of ordered groups and of orderable groups.
We recall some properties of these groups that we shall use in this paper, and we
mention some interesting examples of orderable groups.

In the second part of this section we investigate finite subsets in ordered groups.

Definition 2.1. Let G be a group and suppose that a total order relation < is defined on
the set G. We say that (G, <) is an ordered group if, for all a, b, x, y ∈ G, the inequality
a < b implies that xay < xby.

A group G is orderable if there exists a total order relation < on the set G, such that
(G, <) is an ordered group.

The following properties of ordered groups follow easily from the definition (we
apply the notation of the definition and denote by 1 the unit element of G).

• If a < b and n is a positive integer, then an < bn and a−n > b−n.
• If a < 1, then x−1ax < 1.
• G is torsion-free.
• If a, x ∈ G and a = x−1a−1x, then a = 1.

The next lemma due to B. H. Neumann, see [N], will be very useful in what follows.

Lemma 2.2. Let (G, <) be an ordered group and let a, b ∈ G. If [an, b] = 1 for some
integer n , 0, then [a, b] = 1.

Proof. For each integer m > 0 we have the following identities:

[am, b] ≡ (a−(m−1)[a, b]am−1)(a−(m−2)[a, b]am−2) · · · (a−1[a, b]a1)(a0[a, b]a0)

and

[a−m, b] ≡
−1∏

k=−m

(a−k[a, b]−1ak).

Suppose that [a, b] > 1 ([a, b] < 1). Since [am, b] is a product of conjugates of [a, b],
each of which is > 1 (< 1), it follows that [am, b] > 1 ([am, b] < 1). Similarly, it follows
that [a−m, b] < 1 ([a−m, b] > 1). Hence if [a, b] , 1, then [an, b] , 1 and the result
follows. �

There are many examples of orderable groups. An abelian group is orderable if
and only if it is torsion-free, by a theorem of F. W. Levi, see [L]. K. Iwasawa, see [I],
A. I. Mal’cev, see [M], and B. H. Neumann, see [N], proved independently that the
class of ordered groups contains the class of torsion-free nilpotent groups.

Other examples of solvable orderable groups can be obtained using the following
theorem of Kargapolov, see [K].

Theorem 2.3. A torsion-free group G has the property that every full order for any
subgroup of G can be extended to some full order of G if and only if there exists a
normal abelian subgroup A of G such that G/A is abelian and, for any a ∈ A and
b ∈ G \ A, there exist positive integers m, n, m , n, such that (am)b = an.
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More information concerning ordered groups may be found, for example, in [G]
and in [BMR].

We now prove an important proposition concerning finite subsets in ordered groups.

Proposition 2.4. Let (G, <) be an ordered group and let S be a finite subset of G of
size k. If y ∈ G \CG(S ), then

|yS ∪ S y| ≥ k + 1.

In particular, there exist xi, x j ∈ S such that yxi < S y and x jy < yS .

Proof. Suppose, to the contrary, that yS = S y. Since y < CG(S ), there exists x1 ∈ S
such that

yx1 , x1y.

As yS = S y, there exists x2 ∈ S such that x2 , x1 and yx1 = x2y. Suppose that there
exist x1, x2, . . . , xt ∈ S such that

yx1 = x2y
yx2 = x3y
...

yxt−1 = xty,

(2.1)

where xi = x j if and only if i = j.
Since yS = S y, there exists xt+1 ∈ S such that

yxt = xt+1y.

We claim that xt+1 < {x1, x2, . . . , xt}. Indeed, if xt+1 = xu for some integer u,
1 ≤ u ≤ t, then by (2.1)

xt = y−1xt+1y = y−1xuy = y−2xu+1y2 = · · · = y−(t−u+1)xtyt−u+1

and hence [xt, yt−u+1] = 1. It follows by Lemma 2.2 and (2.1) that yxt = xty = yxt−1. But
then xt = xt−1, in contradiction to (2.1). This proves our claim. Since this procedure
can be carried out indefinitely, we have reached a contradiction to the finiteness of S .
Hence yS , S y and the proposition follows. �

From Proposition 2.4 we derive the above Corollary 1.5 (repeated below for
convenience) as follows.

Corollary 1.5. Let S be a finite subset of an ordered group G. Then

NG(S ) = CG(S ).

Proof. If y ∈ NG(S ), then yS = S y and it follows from Proposition 2.4 that y ∈ CG(S ).
The opposite containment is trivial. �
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3. The main results

In this section we prove our main results and some corollaries. First we prove
Theorem 1.3 (repeated below for convenience).

Theorem 1.3. Let S be a finite subset of an ordered group G and suppose that

|S 2| ≤ 3k − 3. (∗)

Then S generates an abelian subgroup.

Proof. Let S = {x1, x2, . . . , xk}, with x1 < x2 < · · · < xk.
If k = 2, then |S 2| ≤ 3. As x2

1 < x1x2 < x2
2, it follows that S 2 = {x2

1, x1x2, x2
2} and we

must have x2x1 = x1x2, as required.
So assume that k > 2 and that all subsets X of G satisfying 2 ≤ |X| < k and |X2| ≤

3|X| − 3 generate an abelian subgroup. Assume, moreover, that 〈S 〉 is nonabelian. Our
aim is to reach a contradiction.

Let i be the maximal integer such that

A = {x1, x2, . . . , xi}

generates an abelian subgroup. Then

1 ≤ i < k, xi+1 < CG(A), xi+1 < 〈A〉 (3.1)

and there exists x j ∈ A such that

xi+1x j , x jxi+1. (3.2)

Let x j be the maximal such element of A. Then

xa ∈ CG(xi+1) for each xa ∈ A satisfying xa > x j. (3.3)

Moreover, it follows from (3.1) that

A2 ∩ (xi+1A ∪ Axi+1) = ∅. (3.4)

Write

D = {xi+1, xi+2, . . . , xk}.

If |D| = 1, then i = k − 1 and the order in S implies that x2
k < A2 ∪ (xi+1A ∪ Axi+1).

Thus, by (3.4), (3.2), Theorem 1.1 and Proposition 2.4, we get that

|S 2| ≥ |A2| + |xi+1A ∪ Axi+1| + |{x2
k}| ≥ (2i − 1) + (i + 1) + 1

= 3i + 1 = 3(k − 1) + 1 = 3k − 2

in contradiction to (∗).
So assume that |D| ≥ 2. We claim that

|D2| ≤ 3|D| − 3.
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First we notice that the order in S implies that

D2 ∩ (A2 ∪ xi+1A ∪ Axi+1) = ∅. (3.5)

This observation, together with (3.4), (∗), (3.2), Theorem 1.1 and Proposition 2.4,
yields the following inequality:

|D2| ≤ |S 2| − |A2| − |xi+1A ∪ Axi+1| ≤ (3k − 3) − (2i − 1) − (i + 1)

= 3(k − i) − 3 = 3|D| − 3.

This proves our claim.
Since 2 ≤ |D| < k, it follows by the inductive assumption that 〈D〉 is abelian. In

particular,
〈D〉 ≤ CG(xi+1). (3.6)

This implies, in view of (3.2), that

D2 ∩ (x jD ∪ Dx j) = ∅. (3.7)

We claim that
Axi+1 ∩ x jD = {x jxi+1}. (3.8)

Indeed, suppose that

xaxi+1 = x jxd for some xa ∈ A and xd ∈ D. (3.9)

If xa > x j, then it follows by (3.9), (3.3) and (3.6) that x j ∈ 〈xa, xi+1, xd〉 ≤ CG(xi+1),
in contradiction to (3.2). On the other hand, if xa < x j, then it follows by (3.9) that
xi+1 > xd, which is impossible, since xi+1 is the smallest element in D. Thus xa = x j,
xd = xi+1 and our claim follows. Since |Axi+1| = |A| = i and |x jD| = |D| = k − i, (3.8)
implies that

|Axi+1 ∪ x jD| = k − 1. (3.10)

We also claim that
A2 ∩ (x jD ∪ Dx j) = ∅. (3.11)

Indeed, suppose that there exist xa, xb ∈ A and xd ∈ D satisfying

xaxb = x jxd.

Since xb < xd, it follows that xa > x j. But 〈A〉 is abelian, so xaxb = xbxa and similarly
we get xb > x j. Thus, by (3.3) and (3.6), x j ∈ 〈xa, xb, xd〉 ≤ CG(xi+1), in contradiction
to (3.2). Hence A2 ∩ x jD = ∅ and a similar proof yields A2 ∩ Dx j = ∅. Thus our claim
holds.

It follows by (3.4), (3.5), (3.7) and (3.11) that

|A2 ∪ D2 ∪ Axi+1 ∪ x jD| = |A2| + |D2| + |Axi+1 ∪ x jD|

and hence, by Theorem 1.1 and (3.10), we get

|A2 ∪ D2 ∪ Axi+1 ∪ x jD| ≥ (2i − 1) + (2(k − i) − 1) + (k − 1) = 3k − 3.
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Thus, by (∗),
S 2 = A2 ∪ D2 ∪ Axi+1 ∪ x jD. (3.12)

Consider now the element xi+1x j ∈ S 2. By (3.5), xi+1x j < D2 and by (3.4),
xi+1x j < A2.

Suppose, first, that xi+1x j ∈ Axi+1. Then

xi+1x j = xaxi+1 for some xa ∈ A. (3.13)

If xa > x j, then by (3.13) and (3.3) x j ∈ CG(xi+1), in contradiction to (3.2). Again by
(3.2) xa , x j. Hence xa < x j.

By (3.2) and Proposition 2.4, there exists xb ∈ A such that xi+1xb < Axi+1. Since
xi+1x j ∈ Axi+1, we know that xb , x j and if xb > x j, then (3.3) implies that xi+1xb =

xbxi+1 ∈ Axi+1, a contradiction. Hence xb < x j.
Since xi+1xb < Axi+1 and since, by (3.4) and (3.5), also xi+1xb < A2 ∪ D2, it follows

by (3.12) that xi+1xb ∈ x jD and there exists xd ∈ D such that x jxd = xi+1xb. Since 〈A〉 is
abelian, it follows that x jxd x j = xi+1xbx j = xi+1x jxb. As by (3.13) xi+1x j = xaxi+1, we
get x jxd x j = xaxi+1xb and x j > xb implies that x jxd < xaxi+1. But x j > xa and xd ≥ xi+1,
so x jxd > xaxi+1, a contradiction.

Suppose, finally, that xi+1x j ∈ x jD. It follows that

xi+1x j = x jxd for some xd ∈ D.

By (3.2) and Proposition 2.4 there exists x f ∈ D such that x f x j < x jD. Since
xi+1x j ∈ x jD, we must have xi+1 < x f .

Now, x f x j < x jD and it follows from (3.7) and (3.11) that x f x j < D2 ∪ A2. Hence
by (3.12) we must have x f x j ∈ Axi+1. Thus

xaxi+1 = x f x j for some xa ∈ A. (3.14)

Since x f x j < x jD, we must have xa , x j. If xa > x j, then it follows by (3.3) and (3.6)
that x j ∈ 〈x f , xa, xi+1〉 ≤ CG(xi+1), in contradiction to (3.2). Hence xa < x j.

Since 〈D〉 is abelian, it follows from (3.14) that

xi+1xaxi+1 = xi+1x f x j = x f xi+1x j.

Now xi+1x j = x jxd, so xi+1xaxi+1 = x f x jxd. But xi+1 < x f , so xaxi+1 > x jxd. However,
xa < x j and xi+1 ≤ xd, so xaxi+1 < x jxd, a contradiction.

We have shown that xi+1x j ∈ S 2 does not belong to A2 ∪ D2 ∪ Axi+1 ∪ x jD, in
contradiction to (3.12). It follows from this contradiction that 〈S 〉 is abelian. �

The result of the previous theorem is the best possible. In fact, we exhibit in the
following example an ordered group G and a finite subset S of G such that 〈S 〉 is
nonabelian, |S | = k ≥ 2 and |S 2| = 3k − 2.

Example. Let G = A o 〈b〉 be a semidirect product of an abelian subgroup A,
isomorphic to the additive rational group (Q, +), with an infinite cyclic group 〈b〉,
such that

b−1ab = a2 for each a ∈ A.

Then G is torsion-free and it is orderable by Theorem 2.3.
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Let a ∈ A \ {1} and let S = {b, ba, ba2, . . . , bak−1}. Since ab = ba2, it is easy to see
that S 2 = {b2, b2a, b2a2, b2a3, . . . , b2a3k−3}. Thus 〈S 〉 is nonabelian and |S 2| = 3k − 2.

Theorem 1.3 is clearly equivalent to Theorem 1.2 (repeated below for convenience).

Theorem 1.2. Let S be a finite subset of an ordered group, which generates a
nonabelian subgroup. Then

|S 2| ≥ 3|S | − 2.

In order to prove Corollary 1.4 we need the following proposition, which extends
Freiman’s theorem 1.9 in [F] from finite subsets of integers to finite subsets in ordered
groups, generating abelian subgroups. Although this result is mentioned in [HLS], for
the sake of completeness we have decided to report it with its proof.

Proposition 3.1. Let S be a finite subset of an ordered group G and suppose that

t = |S 2| ≤ 3|S | − 4

and S generates an abelian group. Then there exist x1,g ∈G such that g > 1, gx1 = x1g
and S is a subset of the geometric progression

{x1, x1g, x1g2, . . . , x1gt−|S |}.

Proof. Let S = {x1, x2, . . . , xk}, with x1 < x2 < · · · < xk. Clearly we may assume that
G = 〈S 〉, an abelian group.

Write yi = x−1
1 xi for i ∈ {1, . . . , k} and let K = {1, y2, . . . , yk}. Then 1 < y2 <

y3 < · · · < yk, S = x1K, S 2 = x2
1K2 and |S 2| = |K2|, so it suffices to prove the theorem

when x1 = 1. So assume that x1 = 1. We argue by induction on k.
Assume first that k = 3 and S = {1, x2, x3}. Then the elements 1, x2, x2

2, x2x3, x2
3 are

all different, since 1 < x2 < x3. But |S 2| ≤ 3 × 3 − 4 = 5, so S 2 = {1, x2, x2
2, x2x3, x2

3},
and the only possibility for x3 ∈ S 2 is x3 = x2

2. Hence S = {1, g, g2} with g = x2 > 1 and
2 = t − k, as required.

Suppose now that k > 3 and that the theorem holds for subsets X of G satisfying
3 ≤ |X| < k and |X2| ≤ 3|X| − 4. Let g = xk x−1

k−1. Then g > 1, since xk > xk−1.
Assume first that for each i, 1 ≤ i ≤ k − 1, we have xi+1 = xigsi+1 , where si+1 are

positive integers. Then, as x1 = 1, it follows that xi+1 = gqi+1 , where qi+1 are integers
and 0 < q2 < q3 < · · · < qk. Let D = {0,q2, . . . ,qk}. Since S = {1,gq2 , . . . ,gqk }, it follows
that |2D| = |S 2| ≤ 3k − 4. As qi+1 are integers, Freiman’s theorem 1.9 in [F] implies
that D is a subset of the arithmetic progression {0, q, 2q, . . . , (t − k)q} for some integer
q > 0. Thus S is a subset of the set {1, gq, g2q, . . . , g(t−k)q}, where gq > 1, as required.

Now assume that there exists an integer i, 1 ≤ i ≤ k − 1, such that for all positive
integers l

xi+1 , xigl,
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and let i be the maximal such integer. It follows by the definition of g that i < k − 1.
Moreover, the definition of i implies that for each integer s, i < s ≤ k − 1, there exists
a positive integer ts such that xk = xsgts , but for s = i such an integer does not exist.

Let S ′ = S \ {xk}. Obviously x2
k , xk xk−1 ∈ S 2 \ (S ′)2 because of the order in S.

We also claim that xk xi ∈ S 2 \ (S ′)2. In fact, if xk xi ∈ (S ′)2, then xk xi = xuxv = xvxu
for some integers u, v, 1 ≤ u, v ≤ k − 1. Since xk > xu, we must have i < v and
similarly i < u. Therefore there exist positive integers tu, tv such that xk = xugtu and
xk = xvgtv . Thus xk xi = xuxv = x2

kg−(tu+tv), yielding xk = xigtu+tv with tu + tv > 0, in
contradiction to the definition of i. This contradiction proves that xk xi ∈ S 2 \ (S ′)2.
Since xk xi < {x2

k , xk xk−1}, it follows that

|(S ′)2| ≤ |S 2| − 3 ≤ 3k − 4 − 3 = 3(k − 1) − 4 = 3|S ′| − 4.

By induction there exists g′ > 1 such that each x j, 1 < j ≤ k − 1, satisfies x j = (g′)q j for
some positive integer q j. In particular, if xw, x j ∈ S ′ and xwx j > 1, then xwx j = (g′)qw, j ,
where qw, j is a positive integer.

Recall that xk > 1 and x2
k < (S ′)2. We claim that if xk , (g′)h for all positive integers

h, then each xb ∈ S ′ satisfies xk xb < (S ′)2. Indeed, assume that this is not the case
and xk xb = (g′)z for some positive integer z. Then xk = (g′)l for some integer l and
since xk, g′ > 1, l is positive. We have reached a contradiction to our assumption. This
proves our claim, and it follows that |S 2| − |(S ′)2| ≥ k. Thus

|(S ′)2| ≤ |S 2| − k ≤ 3k − 4 − k = 2(k − 1) − 2 = 2|S ′| − 2,

in contradiction to Theorem 1.2. Hence also xk = (g′)qk for some positive integer qk.
It follows from the order in S and from g′ > 1 that 0 < q2 < q3 < · · · < qk. Again
applying Freiman’s theorem 1.9 in [F] to D = {0, q2, . . . , qk}, it follows as above that S
is as required. �

Corollary 1.4 (repeated below for convenience) follows immediately from
Theorem 1.3 and Proposition 3.1.

Corollary 1.4. Let S be a finite subset of an ordered group G and suppose that

t = |S 2| ≤ 3|S | − 4.

Then there exist x1, g ∈G, such that g > 1, gx1 = x1g and S is a subset of the geometric
progression

{x1, x1g, x1g2, . . . , x1gt−|S |}.

Proof. By Theorem 1.3, 〈S 〉 is abelian, and hence, by Proposition 3.1, it is a subset of
a geometric progression, as stated. �
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