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LIMIT CYCLES CLOSE TO INFINITY OF CERTAIN 
NON-LINEAR DIFFERENTIAL EQUATIONS 

BY 

VICTOR GUÏNEZ, EDUARDO SÂEZ AND IVAN SZÂNTÔ 

ABSTRACT. Through successive radial perturbations of a certain planar 
Hamiltonian polynomial vector field of degree 2K + 1, we obtain a least 
K limit cycles containing (2K + l)2 singularities. 

1. Introduction and statement of result. One of the problems posed by Tian 
Jinghuang in [4] is: Find for polynomial vector fields of degree 3 the maximum 
number/(3) of foci; he believes that/(3) is at least three. Furthermore, this question 
can be asked for polynomial vector fields of degree n, with n any positive integer. 

Another interesting problem is to find, for polynomial vector fields of degree n, the 
maximum number S{n) of isolated singular points contained in the bounded region 
determined by a limit cycle. The answer to this problem for n = 2 is S (2) = 1 [2], 

In this paper, when n is odd, we prove that/(«) ^ {n2 + l)/2 (therefore /(3) ^ 5) 
and S{n) = n2. Moreover, we give a polynomial vector field of degree 2k + 1, with at 
least k limit cycles containing {{2k + l)2 + l)/2 hyperbolic foci and {{2k + l)2 — l)/2 
hyperbolic saddle points. More precisely, we have 

THEOREM. For any positive odd integer n = 2&+1, let Xn be the Hamiltonian vector 
field of degree n,Xn{x,y) — (P,Q), where 

k k 

P{x, y) = -y ]J{i2 - y2) and Q{x,y)=x ]J{i2 - x2\ 
i=\ i=\ 

then for every R > 0 large enough and e > 0, there exist constants en, e i , . . . , e* with 
| e/1 < e such that the polynomial vector field of degree n 

k 

Xn^eu^ek{x,y) =Xn{xJy) + Y^ei{x2 +y2)l{x,y) 
i=0 

has at least k concentric limit cycles. These limit cycles are outside the ball centered 
at the origin with radius R and they contain {n2 + l)/2 hyperbolic foci and {n2 — l)/2 
hyperbolic saddle points. 
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2. Preliminaries. Before providing the proof, we informally introduce the Poin-
caré compactification and a test for existence of limit cycles in an annular region 
(Poincaré Bendixson Theorem). 

For a polynomial vector field X = (F ,g) of degree n in the plane, the Poincaré 
compactification ir(X) is an analytical vector field defined on the unit sphere S2 = 
{(x,y, z)/x2 + y2 + z2 = 1}. On the upper (z > 0) and lower (z < 0) hemisphere, n(X) 
is the central projection of X multiplied by the factor zn~l, whereas, its action on the 
equator Sl = {(JC, j , z ) G S2/z = 0} (which is left invariant) reflects the behaviour of 
X at infinity. 

The expression of TT(X) in polar coordinates (0, p) defined by the covering map from 
Rx(-l , l )onto1S2 \{(O,O7±l)}givenby(6>,p)^(x, j ,z) = (l+p2)1/2(cos6>,sin0,p) 
is: 

d t p 1 ) " - " " 2 

where 

(S^-^)^-p(E^-(»)) / = 0 , . . . , n 

Ak(0) =—Pk(cosO, sin9)sm0+ Qic(cos6, sin 0) cos 6 

Rk(6) = Pk(cos 0, sin 0) cos 6 + (Mcos 0, sin 0) sin 9 

Here P = ^ P * , Ô — Z^ &> ^ = 0? • • • ->n w i t n ^ ? Gifc homogeneous polynomials 
of degree k. 

When An(6) does not vanish, the equator Sl is a periodic orbit of TT(X) which is 
hyperbolic if 

/ = [ Rn(6)A-\6)de^O 
Jo 

and when / • An(6) is positive (resp. negative), the equator Sl is an attracting (resp. 
repelling) limit cycle of TT(X). That is, the trajectories of ir(X) spiral into the limit 
cycle from both sides as t —-• +oo (resp. t —• -co) . 

We will use the following proposition (which follows from the Poincaré Bendixson 
Theorem) for detecting attracting or repelling limit cycles. 

PROPOSITION. Let X be an analytical vector field defined in a neighbourhood of an 
annular region G bounded by two cycles without contact c\ and ci. If G contains 
no singular points and all paths crossing c\ and c^ enter G (resp. leave G) with 
increasing t, then there must be an attracting (resp. repelling) limit cycle in G. 

3. Proof of Theorem. The points (±/, ±/), /, 7 = 0, . . . ,&, are the singular 
points of Xn, and all of them are simple (i.e. det DXW(±/, =b/) ^ 0). Moreover, these 
points are centers when / +j is even and hyperbolic saddle points when / +j is odd. 

The phase portrait of Xn when n — 3 is shown in Fig. 1. 
Let e > 0, and R > Vlk2 such that 

(-D" *2n(/-*vj2no'2-/) 
. 7 = 1 y = l 

> 0 
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FIGURE 1. 

for every (x, y) with x2 + y2 > R2. 
Let eo > 0, eo < e be small enough, such that the field X^£0v..?o has n2 singular 

points, (n2 + l)/2 hyperbolic foci (since divergence of this vector field is constant, 
equal to 2eo) and (n2 — l)/2 hyperbolic saddle points; all of them contained in the 
ball B centered at the origin with radius R. Let 8\ = 8\(eo) > 0, 8\ < e be such that 
for every u\, . . . , uk with \m\ ^ 8\, / = 1, . . . ,k the field XWj£0}Mlv..jMjt has «2 singular 
points, (n2 + l)/2 hyperbolic foci and (n2 — l)/2 hyperbolic saddle points; all of them 
contained in the ball B. 

Let 7o, 7i, . . . ,7*-i be concentric periodic orbits of Xn contained in R2\B such 
that if 

rr = mf{(x2+y2)l'2/(x,y)eil} 
r/

+ = sup{(x2+j2)1/2/(x,v)G7/} 

then R 

7 = 0 , . 
For i 

< n 
, * -
i, 

^ r + 

- 1. 
. . . , * 

< rM, 

— 1, we 

0, 1, , k — 2 and eo o < 8\ for every 

1, we choose si such that rf_x < st < r+. Let 

Sk = 
eo 

s\s2... ,sk-.\8 
and g(r) = 8 JJ(Si - r). 

Then g(r) — eo + ejr + • • • + ckr
k; |e/| < #i, / = 1, . . . , £ — l,e* = (—1)*£; and we 

choose 8 > 0, 8 <8i, small enough so as to have s* > r^_x. 
Let Aw?COv..jCit(S) and Rnie0,...,ek(Q) the corresponding maps be introduced in 2 for the 

field 7r(X„)£0v..jCit); then 

(0) = ( - I f [cos^(0) + sinz*+2(0)] and 2*+2/ 

o2it/ Rn,eOy..,ek(0) = ( - i f sin(0)cos(0)[sinz*(0) - cosz*(0)] + e 
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FIGURE 2. 

Therefore the equator S{ is a periodic orbit for 7r(Xn5eMv..jCA.) and since 

cos*+2(0) + sin*+2(0) 

this orbit is an attracting (resp. repelling) limit cycle when k is even (resp. odd). 
On the other hand, when (x, y) G 7/, / = 0, . . . , k — 1, the inner product 

{xn^_tk{X,y\ x^{X,y))=sa*2+/)i/2) ( ̂ 2 n ( / - ^ ) + / n ( / - / ) ) 
is always positive (resp. negative) if / + k is even (resp. odd), where X^ = (<2, —P). 
Then, for / = 0, . . . , k — 2, the field Xn^_M has at least one limit cycle in the 
annular region bounded by 7/ and 7/+i-

Finally, when k is even (resp. odd) the paths of the field Xn^0^ek cross 7*-i and 
enter 7*-2 (resp. leave Tit—2) a nd o u r field Xn,e0v..,Cjt has at least one limit cycle outside 
the compact region bounded by Tit—1 - So the proof is complete. • 

In figure 2 we show the phase portrait of X^tQ^x. 
With the notations introduced in 1, we have the following. 

COROLLARY. When n is odd,f(n) ^ (n2 + l)/2 (therefore f (3) ^ 5) and S(n) = n2. 
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