THE GENERATION BY TWO OPERATORS OF THE SYMPLECTIC GROUP OVER GF(2)*

T. G. ROOM

(rec. 8 Aug. 1958)

The main result obtained in this paper is
theorem 1. The symplectic group on the skew matrix Γ of $2 m$ rows and columns over $G F(2)^{* *}$ can be generated by the two matrices Q, R, where

$$
\begin{aligned}
& Q^{2 m+1}=R^{2}=1 \\
& (R Q)^{2 m-1}=T_{1,3} \\
& \left(R Q^{2}\right)^{2 m-1}=T_{1,2} \\
& Q^{r} T_{i, j} Q^{-r}=T_{i+r, j+r} \quad i+r, \quad j+r \leqq 2 m
\end{aligned}
$$

$T_{i, j}$ being the substitution matrix which interchanges the elements numbered i and $j,(m \geqq 2)$.
This symplectic group is Dickson's group $A(2 m, 2)(1, p .97)$.
In the case $m=2$ the matrices are

$$
\Gamma=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad Q=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right], \quad R=R^{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

To define the matrices for general values of m write

$$
\begin{aligned}
& \boldsymbol{\nu}_{r}: \text { a succession of } r \text { digits } 1 \\
& \boldsymbol{v}=\boldsymbol{v}_{2 m} \\
& \mathbf{0}_{r}: \text { a succession of } r \text { digits } 0,
\end{aligned}
$$

these being treated as parts of column vectors, the corresponding row vectors being $\boldsymbol{\nu}_{r}^{T}, \mathbf{0}_{r}^{T}$
Γ and Q are of the same patterns as for $m=2$, and $R=R^{0} \oplus \mathbf{1}_{2 m-4}$ direct sum, namely

[^0]\[

$$
\begin{aligned}
& \Gamma=\boldsymbol{\nu} \boldsymbol{\nu}^{T}+\mathbf{1}_{2 m} \\
& Q=\left[\begin{array}{ll}
\mathbf{0}_{2 m-1}^{T} & 1 \\
\mathbf{1}_{2 m-1} & \boldsymbol{\nu}_{2 m-1}
\end{array}\right] \quad R=\left[\begin{array}{ll}
R^{0} & \\
& \mathbf{1}_{2 m-4}
\end{array}\right]
\end{aligned}
$$
\]

Write also

$T *$: any substitution matrix as described in the text.
The group generated by Q, R will be denoted by $\langle Q, R\rangle$; it is to be proved isomorphic to $A(2 m, 2)$.
From the conditions satisfied by R and Q it is clear that one of the subgroups of $\langle Q, R\rangle$ is the symmetric group $S_{2 m}$; it is to be proved that in fact $S_{2 m+2}$ is a subgroup of $A(2 m, 2)$.
The present solution of the problem of the generation of $A(2 m, 2)$ has its origin in an investigation of the group $C G$ of the Clifford units, and the relations among the matrices stated in Theorem 1 are best obtained in terms of substitutions on the elements of $C G$.
We assume a basic set of $2 m$ Clifford units γ_{i} with the properties:
every pair anti-commutes: $\gamma_{i} \gamma_{j}=-\gamma_{i} \gamma_{i}, \quad i \neq j$
each unit is involutory: $\quad \gamma_{i}^{2}=1$.
These units generate the free Abelian group $C G$ of order $2^{2 m}$ the elements of which are the products $\gamma_{i} \gamma_{j} \gamma_{k} \cdots$ without regard to sign. Every element of the group is involutory. Any set of $2 m$ elements of $C G$ such that every pair of the set anti-commutes will be called a Clifford set; the connection between $C G$ and $A(2 m, 2)$ which is to be established in this:

THEOREM 2. $A(2 m, 2)$ is isomorphic to the group of automorphisms of $C G$ which transform Clifford sets into Clifford sets.
In $C G$ there is exactly one element which anti-commutes with each of the $2 m$ units γ_{i}, namely,

$$
\gamma_{2 m+1}=\prod_{1}^{2 m} \gamma_{i}
$$

$\gamma_{2 m+1}$ is in all senses symmetric with the original $2 m$ units, and any $2 m$ members of the whole set of $2 m+1$ may be taken as generators of $C G$. We shall denote by χ_{0} the set of $2 m+1$ matrices $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 m+1}$ in any order, and shall describe any corresponding set in $C G$ as a complete Clifford set.
To establish the connection between the group of automorphisms of $C G$ and $A(2 m, 2)$ we need to introduce the index vector of an element of $C G$. Every element of $C G$ may be written as $\gamma_{1}^{\alpha_{1}} \gamma^{\alpha_{2}} \cdots \gamma_{2 m}^{\alpha_{2 m}}, \alpha_{i}=0$ or 1 , and thus determines an index vector

$$
\boldsymbol{\alpha}=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{2 m}\right] \text { over } G F(2) .
$$

There is of course a one-to-one correspondence between the index vectors and the elements of $C G$.
γ_{i} corresponds to the index vector ε_{i} of the basis, $i=1, \cdots, 2 m$, and $\gamma_{2 m+1}$ corresponds to ν.

We have

$$
Q \varepsilon_{i}=\varepsilon_{i+1}, Q \varepsilon_{2 m}=\boldsymbol{v}, Q \nu=\varepsilon_{1}, i=1, \cdots, 2 m-1
$$

i.e., Q corresponds to the cyclic permutation of the units $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 m+1}$; also

$$
T_{i, j} \varepsilon_{i}=\varepsilon_{j},
$$

so that Q and $T_{1,2}$ generate a group isomorphic to $S_{2 m+1}$. Moreover, it is easily verified that

$$
Q^{r} T_{1,2} Q^{-r}=T_{r+1, r+2},
$$

so that the operators $Q^{r} T_{1,2} Q^{-r}, r=0, \cdots, 2 m-1$ generate the matrix substitution group $S_{2 m}$ (i.e., the group of all substitution matrices of order $2 m$).
The elements of $C G$ corresponding to the index vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ either commute or anti-commute according as the number of transpositions in rearranging

$$
\gamma_{1}^{\alpha_{1}} \cdots \gamma_{2 m}^{\alpha_{2 m}} \gamma_{1}^{\beta_{1}} \cdots \gamma_{2 m}^{\beta_{2 m}} \text { as } \gamma_{1}^{\beta_{1}} \cdots \gamma_{2 m}^{\beta_{2 m}} \gamma_{1}^{\alpha_{1}} \cdots \gamma_{2 m}^{\alpha_{\alpha_{2}}}
$$

is even or odd. There is a change of sign as $\gamma_{i}^{\beta_{i}}$ moves over $\gamma_{j}^{\alpha_{j}}$ if and only if $i \neq j$ and $\alpha_{i} \beta_{j}=1$.

Thus the number of sign changes arising from moving $\gamma_{1}^{\beta_{1}}$ from right to left of $\Pi \gamma_{i}^{\alpha_{t}}$ is

$$
\beta_{1}\left(\alpha_{2}+\alpha_{3}+\cdots+\alpha_{2 m}\right)=\beta_{1}\left(\boldsymbol{v}^{T}+\varepsilon_{1}^{T}\right) \alpha .
$$

The total number of sign changes is therefore

$$
\begin{aligned}
\sum_{i} \beta_{i}\left(\nu^{T}+\varepsilon_{i}^{T}\right) \alpha & =\beta^{T}\left(\nu \nu^{T}+1\right) \alpha \\
& =\beta^{T} \Gamma \alpha .
\end{aligned}
$$

Thus the elements corresponding to $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ commute or anti-commute according $\boldsymbol{\alpha}^{\boldsymbol{T}} \Gamma \boldsymbol{\beta}=0$ or 1 over $G F(2)$.

Now take a set of $2 m$ elements of $C G$ with index vectors $\alpha_{1}, \cdots, \alpha_{2 m}$ and write A for the index matrix of the set;

$$
A=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{2 m}\right] .
$$

The set is a Clifford set, if, for each i, j,

$$
\alpha_{i}^{T} \Gamma \alpha_{j}=1 \quad i \neq j .
$$

Always

$$
\boldsymbol{\alpha}_{i}^{T} \Gamma \boldsymbol{\alpha}_{i}=0,
$$

so that for a Clifford set $A^{T} \Gamma A=\Gamma$ over $G F(2)$.
Every Clifford set determines a matrix A with this property, and the condition that a given set should be a Clifford set is that its index matrix should satisfy this condition.

Suppose now A and B are matrices satisfying this condition, and that B is the index matrix of a Clifford set. Let A generate an automorphism of $C G$ in which the element with index vector \varkappa becomes the element with index vector $A x$. The vectors which are the columns of B are transformed into the columns of $A B$, which satisfy the condition $(A B)^{T} \Gamma(A B)=\Gamma$, so that $A B$ is also the matrix of a Clifford set. A itself is the index matrix of the set into which the basic set (with index matrix $\mathbf{1}$) is transformed. Theorem 2 now follows.
By reading their columns as index vectors we see that the matrices Q, R correspond to the substitutions

$$
\begin{aligned}
& Q\left(\chi_{0}\right)=\gamma_{2}, \gamma_{3}, \cdots, \gamma_{2 m}, \gamma_{2 m+1}, \gamma_{1} \\
& R\left(\chi_{0}\right)=\gamma_{1} \gamma_{2} \gamma_{3}, \gamma_{1} \gamma_{2} \gamma_{4}, \gamma_{1} \gamma_{3} \gamma_{4}, \gamma_{2} \gamma_{3} \gamma_{4}, \gamma_{5}, \cdots, \gamma_{2 m}, \gamma_{2 m+1} .
\end{aligned}
$$

Using the substitution we now derive some relations between Q and R and introduce certain products of Q and R which are needed in the proof of Theorem 1. First
theorem 3. From Q and R we derive the $2 m-2$ matrices

$$
R_{1}=R, R_{2}=Q R Q^{-1}, \cdots, R_{r+1}=Q^{r} R Q^{-r}, r=0, \cdots, 2 m-3,
$$

where

$$
R_{r+1}=\left[\begin{array}{lll}
\mathbf{1}_{r} & & \\
& R^{0} & \\
& & \mathbf{1}_{2 m-r-4}
\end{array}\right]^{r=0, \cdots, 2 m-4}
$$

and

$$
R_{2 m-2}=\left[\begin{array}{c:ccc}
\mathbf{1}_{2 m-3} & \mathbf{0}_{2 m-3} & \boldsymbol{\nu}_{2 m-3} & \boldsymbol{\nu}_{2 m-3} \\
\hdashline & \frac{1}{0} & 0 \\
& 1 & 0 & 1 \\
& 1 & 1 & 0
\end{array}\right]
$$

Writing $i j k \cdots$ for $\gamma_{1} \gamma_{j} \gamma_{k} \cdots, s^{\prime}$ for $2 m+2-s$, and r_{i} for $r+i$, we find that $R_{r+1}=Q^{r} R Q^{-r}$ generates the substitution:

$$
\begin{array}{rcccccccccc}
\chi_{0} \vdots & 1 & 2 & \cdots & r & r_{1} & r_{2} & r_{3} & r_{4} & \cdots & 2^{\prime} \\
l^{\prime} \\
Q^{r} R Q^{-r}\left(\chi_{0}\right): & 1 & 2 & \cdots & r & r_{1} r_{2} r_{3} & r_{1} r_{2} r_{4} & r_{1} r_{3} r_{4} & r_{2} r_{3} r_{4} & \cdots & 2^{\prime} \\
l^{\prime}
\end{array}
$$

Thus in a symbol $i j k \cdots$ the only components changed by R_{r+1} are r_{1}, r_{2}, r_{3}, r_{4}. The complete set of involutory pairs is:

$$
\left\{\begin{array}{cccccccc}
r_{1} & r_{2} & r_{3} & r_{4} & r_{1} r_{2} & r_{1} r_{3} & r_{1} r_{4} & r_{2} r_{3} \\
r_{1} r_{2} r_{3} & r_{1} r_{2} r_{4} & r_{1} r_{3} r_{4} & r_{2} r_{3} r_{4} & r_{3} r_{4} & r_{2} r_{4} & r_{1} r_{4} & r_{2} r_{3}
\end{array}\right\}
$$

For $R_{2 m-2}=Q^{-4} R Q^{4}$ we have

$$
\begin{array}{rcccccccc}
\chi_{0}: & 1 & 2 & \cdots & 5^{\prime} & 4^{\prime} & 3^{\prime} & 2^{\prime} & 1^{\prime} \\
R_{2 m-2} \chi_{0}: & 1 & 2 & \cdots & 5^{\prime} & 4^{\prime} 3^{\prime} 2^{\prime} & 4^{\prime} 3^{\prime} 1^{\prime} & 4^{\prime} 2^{\prime} 1^{\prime} & 3^{\prime} 2^{\prime} 1^{\prime} .
\end{array}
$$

The last three columns of the matrix correspond to $4^{\prime} 3^{\prime} 2^{\prime}, 4^{\prime} 3^{\prime} 1^{\prime}, 4^{\prime} 2^{\prime} 1^{\prime}$ and are therefore $\varepsilon_{2 m-2}+\varepsilon_{2 m-1}+\varepsilon_{2 m}, \quad \varepsilon_{2 m-2}+\varepsilon_{2 m-1}+\nu, \varepsilon_{2 m-2}+\varepsilon_{2 m}+\nu$, which are the forms given in Theorem 3.

For the relation $(R Q)^{2 m-1}=T_{1,3}$ we use

$$
\begin{aligned}
(R Q)^{2 m-1} & =R\left(Q R Q^{-1}\right)\left(Q^{2} R Q^{-2}\right) \cdots\left(Q^{2 m-2} R Q^{-m+2}\right) Q^{-2} \\
& =R_{1} R_{2} \cdots R_{2 m-1} Q^{-2} .
\end{aligned}
$$

Writing out the successive stages in the substitution and using $c^{\prime \prime}=2 r^{\prime}-c$, we have

	1	2	3	$4 \cdots 2 r^{\prime}=0^{\prime \prime}$	\cdots	2^{\prime}	1^{\prime}
Q^{-2}	2^{\prime}	1^{\prime}	1	$2 \cdots$	$2^{\prime \prime}$	\cdots	4^{\prime}
$R_{3^{\prime}}$	$3^{\prime} 2^{\prime} 1^{\prime}$	$3^{\prime} 1^{\prime} 1^{\prime}$	$2^{\prime} 1^{\prime} 1^{\prime}$	$2 \cdots$	3^{\prime}		
$R_{4^{\prime}}$	$3^{\prime} 2^{\prime} 1^{\prime}$	$4^{\prime} 2^{\prime} 1^{\prime}$	$4^{\prime} 3^{\prime} 1^{\prime}$	$2 \cdots$	\cdots	4^{\prime}	$3^{\prime} 2^{\prime} 1^{\prime}$
		$2^{\prime \prime}$	\cdots	$4^{\prime} 3^{\prime} 2^{\prime}$	1^{\prime}		

$R_{2 r^{\prime}} 1^{\prime \prime} 2^{\prime \prime} 1 \quad 0^{\prime \prime} 2^{\prime \prime} 1 \quad 0^{\prime \prime} 1^{\prime \prime} 1 \quad 2 \cdots \quad 0^{\prime \prime} 1^{\prime \prime} 2^{\prime \prime} \quad \cdots \quad 2^{\prime} \quad 1^{\prime}$

R_{2}	341	241	231	$234 \cdots$	$0^{\prime \prime}$	\cdots	2^{\prime}	1^{\prime}
R_{1}	3	2	1	4	\cdots	$0^{\prime \prime}$	\cdots	2^{\prime}
1^{\prime}.								

Thus $R_{1} R_{2} \cdots R_{2 m-1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \cdots, \gamma_{2 m+1}\right)=\left(\gamma_{3}, \gamma_{2}, \gamma_{1}, \cdots, \gamma_{2 m+1}\right)$ which is the required result.

We have further

$$
T_{1,3}=(R Q)^{2 m-1}=\left((R Q)^{2 m-1}\right)^{-1}=\left(Q^{-1} R\right)^{2 m-1}
$$

and

$$
(Q R)^{2 m-1}=Q(R Q)^{2 m-1} Q^{-1}=T_{2,4} .
$$

The other relation

$$
\left(R Q^{2}\right)^{2 m-1}=T_{1,2}
$$

may be proved similarly, using $\left(R Q^{2}\right)^{2 m-1}=R_{1} R_{3} \cdots R_{2 m+1} R_{2} \cdots R_{2 m-4}, Q^{-4}$, but the table is considerably more elaborate.

We are now in a position to prove Theorem 1, namely, that $\langle Q, R\rangle=$ $A(2 m, 2)$. We use as operators the matrices $Q ; R_{1}, \cdots, R_{2 m-2} ; T_{i j}, T_{*}$ all of which have been proved to belong to $\langle Q, R\rangle$, and show how a given matrix A for which

$$
A^{T} \Gamma A=\Gamma
$$

can be reduced column by column to $\mathbf{1}_{2 m}$, by multiplying on the left by these matrices. Since we have proved that the matrix substitution group $S_{2 m}$ is a subgroup of $\langle Q, R\rangle$, we may at any stage rearrange the rows of A by multiplying on the left by the appropriate substitution matrix T_{*}

Column 1

Let $\boldsymbol{\alpha}$ be the first column of A; we find a product X of matrices from $\langle Q, R\rangle$ such that $X \boldsymbol{\alpha}=\varepsilon_{1}$.
(1) Assume that the number of l's in $\boldsymbol{\alpha}$ is odd, i.e.,

$$
\nu^{T} \alpha=1
$$

(i) If $\boldsymbol{\alpha}=\boldsymbol{\varepsilon}_{i}$, take $X=T_{1, i}$, then $X \boldsymbol{\alpha}=\varepsilon_{1}$.
(ii) If there are $2 r-1$ zeros in $\alpha(r<m)$ rearrange the rows of A so that $\boldsymbol{\alpha}$ becomes:

$$
T_{*} \boldsymbol{\alpha}=\overline{\boldsymbol{\alpha}}=\left[\mathbf{0}_{2 r-1}, \boldsymbol{\nu}_{2 m-2 r+1}\right]
$$

we have

$$
R_{2 r-1} \bar{\alpha}=\left[\begin{array}{llllll}
\mathbf{1}_{2 r-2} & & & & & \\
& 1 & 1 & 1 & 0 & \\
& 1 & 1 & 0 & 1 & \\
& 1 & 0 & 1 & 1 & \\
& 0 & 1 & 1 & 1 & \\
& & & & & \mathbf{1}_{2 m-2 r-2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{0}_{2 r-2} \\
0 \\
1 \\
1 \\
1 \\
v_{2 m-2 r-2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0}_{2 r-2} \\
0 \\
0 \\
0 \\
1 \\
v_{2 m-2 r-2}
\end{array}\right]
$$

i.e. $R_{2 r-1} \bar{\alpha}=\left[0_{2 r+1}, \boldsymbol{\nu}_{2 m-2 r+1}\right]$. Similarly

$$
R_{r}^{*} \bar{\alpha}=R_{2 m-3} R_{2 m-5} \cdots R_{2 r-1} \bar{\alpha}=\varepsilon_{2 m},
$$

so that, if

$$
X=T_{1,2 m} R_{r}^{*} T_{*}
$$

then

$$
X \overline{\boldsymbol{\alpha}}=\varepsilon_{\mathbf{1}} .
$$

(2) Assume that $\boldsymbol{\nu}^{\boldsymbol{T}} \boldsymbol{\alpha}=0$.
(i) If $\boldsymbol{\alpha}=\boldsymbol{\nu}$, then $Q \boldsymbol{\alpha}=\varepsilon_{1}$, i.e., $X=Q$.
(ii) If $\boldsymbol{\alpha}$ contains $2 s 0$'s find a T_{*} such that

$$
T_{*} \boldsymbol{\alpha}=\overline{\boldsymbol{\alpha}}=\left[\boldsymbol{\nu}_{2 m-2 s-1}, \mathbf{0}_{2 s}, \mathbf{l}\right] .
$$

Then

$$
R_{2 m-2} \bar{\alpha}=\left[0_{2 m-s-1}, \nu_{2 s-2}, 0,1,0\right]
$$

and therefore, for another suitable T_{*},

$$
T_{*} R_{2 m-2} T_{*} \boldsymbol{\alpha}=\left[\mathbf{0}_{2 m-2+1}, \boldsymbol{\nu}_{2 s-1}\right] .
$$

We may now proceed as in (1) (ii) to find the required X.

Column r

Suppose the first $r-1$ columns have been transformed, so that

$$
Y A=A_{r-1}=\left[\varepsilon_{1}, \cdots, \varepsilon_{r-1}, x, \lambda_{r+1}, \cdots, \lambda_{2 m}\right] .
$$

We are to construct $Z, \in\langle Q, R\rangle$, such that

$$
Z A_{r-1}=A_{r}=\left[\varepsilon_{1}, \cdots \varepsilon_{r}, \mu_{r+1}, \cdots, \mu_{2 m}\right]
$$

Since $A_{r-1}^{T} \Gamma A_{r-1}=\Gamma$, from the first $r-1$ rows of A_{r-1}^{T} in conjunction with the r th column of A_{r-1}, we find:

$$
\begin{gathered}
1=\left(\nu^{T}+\varepsilon_{i}^{T}\right) \boldsymbol{x}=\nu^{T} \varkappa+\varkappa_{i}, i=1, \cdots, r-1 . \\
\kappa_{1}=\kappa_{2}=\cdots=\kappa_{r-1}=1, \text { if } \nu^{T} \varkappa=0 \\
=0, \text { if } \nu^{T} \varkappa=1 .
\end{gathered}
$$

1. Suppose $\kappa_{i}=0, \boldsymbol{\nu}^{\boldsymbol{T}} \boldsymbol{x}=1$, so that

$$
\varkappa=\left[0_{r-1}, \kappa_{r}, \kappa_{r+1}, \cdots, \kappa_{2 m}\right] .
$$

Rearrange the elements of $\boldsymbol{\varkappa}$, so that

$$
T_{*} \varkappa=\left[\mathbf{0}_{r-1}, \mathbf{0}_{2 s-r}, \boldsymbol{\nu}_{2 m-2 s+1}\right]
$$

(i) If $2 s-r>0$, then, as in the first column,
so that

$$
R_{2 m-3} R_{2 m-5} \cdots R_{2 s+1} T_{*} \varkappa=\varepsilon_{2 m},
$$

$$
Y \varkappa=T_{r, 2 m} R_{2 m-3} \cdots R_{2 s+1} T_{*} \varkappa=\varepsilon_{r}
$$

The first $r-1$ columns of each of the factors of Y are $\varepsilon_{1}, \cdots, \varepsilon_{r-1}$, so that Y does not disturb the columns of A_{r-1} which have already been reduced.
(ii) If $2 s-r=0$, so that $x=\left[0_{2 s-1}, \nu_{2 m-2 s+1}\right]$ multiply first by $R_{2 m-2}$, thus

$$
R_{2 m-2} x=\left[0_{2 s-1}, \nu_{2 m-2 s-1}, 0,0\right]
$$

and

$$
T_{*} R_{2 m-2} x=\left[0_{2 s+1}, \boldsymbol{\nu}_{2 m-s-1}\right] .
$$

We may now proceed as in $1(j)$.
2 Suppose $\boldsymbol{x}=\left[\nu_{r-1}, \kappa_{r}, \kappa_{r+1}, \cdots, \kappa_{2 m}\right]$.
(i) If there are no zero components, so that $\chi=\boldsymbol{\nu}_{2 m}$, then

$$
Q\left[\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{r-1}, \nu_{2 m}\right]=\left[\varepsilon_{2}, \varepsilon_{3}, \cdots, \varepsilon_{r}, \varepsilon_{1}\right]
$$

Use T_{*} to permute these cyclically into the proper order.
(ii) The number of zero components is even, suppose it is $2 m-2 s>0$. Find T_{*} operating on rows r to $2 m$, such that

$$
T_{*} \varkappa=\left[\boldsymbol{\nu}_{r-1}, \boldsymbol{\nu}_{2 s-r}, \mathbf{0}_{2 m-2 s}, \mathbf{l}\right]
$$

Then

$$
R_{2 m-2} T_{*} \mathcal{\varkappa}=\left[0_{2 s-1}, \nu_{2 m-2 s-2}, 0,1,0\right] .
$$

Find T_{*} such that

$$
T_{*} R_{2 m-2} T_{*} \varkappa=\left[\mathbf{0}_{2 s+1}, \boldsymbol{\nu}_{2 m-2 s-1}\right]
$$

and proceed as in $1(\mathrm{i})$.
Thus in all cases, $r=2,3, \cdots, 2 m-3$ if the first $r-1$ columns are $\varepsilon_{1}, \cdots, \varepsilon_{r-1}$, we can reduce the r th column to ε_{r} by matrices belonging to
$\langle Q, R\rangle$, this provision, $r \leqq 2 m-3$, being necessary on account of the form of $R_{2 m-2}$.

For the last three columns we have, as at the r th column,
either

$$
\begin{aligned}
& \kappa_{1}=\kappa_{2}=\cdots=\kappa_{2 m-3}=1, \kappa_{2 m-2}+\kappa_{2 m-1}+\kappa_{2 m}=1 \\
& \kappa_{1}=\kappa_{2}=\cdots=\kappa_{2 m-3}=0, \kappa_{2 m-2}+\kappa_{2 m-1}+\kappa_{2 m}=1
\end{aligned}
$$

or
We consider the possible cases separately, and suppose that where necessary a transposition of the last three rows has been effected to give the form named:

Column 2m-2
$\chi=\left[\nu_{2 m-3}, 0,0,1\right]: T_{2 m-2,2 m-1} R_{2 m-2} \varkappa=\varepsilon_{2 m-2}$
$\mathcal{x}=\left[\nu_{2 m-3}, 1,1,1\right]=\nu: Q\left[\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{2 m-3}, \nu\right]=\left[\varepsilon_{2}, \varepsilon_{3}, \cdots, \varepsilon_{2 m-2}, \varepsilon_{1}\right]$
Cyclically permute as in $2(\mathrm{i})$ above.
$x=\left[0_{2 m-3}, 1,0,0\right]=\varepsilon_{2 m-2}$.
$x=\left[0_{2 m-3}, 1,1,1\right]: T_{*} R_{2 m-2} \varkappa=\varepsilon_{2 m-2}$.
Column 2m-1
$\boldsymbol{x}=\left[\boldsymbol{\nu}_{2 m-2}, \mathbf{1}, \mathrm{l}\right]=\boldsymbol{\nu}$: reduce as above.
$\varkappa=\left[0_{2 m-2}, 1,0\right]=\varepsilon_{2 m-1}$
Column $2 m$
$\boldsymbol{\varkappa}=\left[\nu_{2 m}, 1\right]=\boldsymbol{\nu}:$ reduce as above.
$x=\left[0_{2 m-1}, \mathrm{l}\right]=\varepsilon_{2 m}$.
The reduction is therefore complete.
Γ itself belongs to $A(2 m, 2)$, since $\Gamma^{2}=1, \Gamma=\Gamma^{T}$, so that $\Gamma^{T} \Gamma \Gamma=\Gamma$. To express Γ as a member of $\langle Q, R\rangle$ we may apply the simple process 1 (i) to column 1 , and inductively to succeeding columns, thus:

$$
R_{2 m-3} R_{2 m-5} \cdots R_{3} R_{1} \Gamma=\left[\begin{array}{lll}
0_{2 m-2} & 0_{2 m-2} & \Gamma_{2 m-2} \\
0 & 1 & 0_{2 m-2}^{T} \\
1 & 0 & 0_{2 m-2}^{T}
\end{array}\right]
$$

By repetition, with one fewer factor each time, we may reduce Γ by means of

$$
R_{1}\left(R_{3} R_{1}\right)\left(R_{5} R_{3} R_{1}\right) \cdots\left(R_{2 m-3} R_{2 m-5} \cdots R_{3} R_{1}\right)
$$

to $\left[\varepsilon_{2 m}, \varepsilon_{2 m-1}, \cdots, \varepsilon_{2}, \varepsilon_{1}\right]$.
But

$$
\begin{aligned}
R_{2 r-1} R_{2 r-3} \cdots R_{3} R_{1} & =Q^{2 r-2} R Q^{-2} R Q^{-2} \cdots Q^{-2} R Q^{-2} R \\
& =Q^{2 r}\left(\dot{Q}^{-2} R\right)^{r}
\end{aligned}
$$

Thus, after inverting the product,
$\Gamma=\left(R Q^{2}\right)^{m-1} Q^{3}\left(R Q^{2}\right)^{m-2} Q^{5} \cdots\left(R Q^{2}\right)^{2} Q^{2 m-3} R T_{1,2 m} T_{2,2 m-1} \cdots T_{m m+1}$.
Finally it is to be proved that $S_{2 m+2}$ is a subgroup of $A(2 m, 2)$; explicitly:

THEOREM 4. $\langle Q, \Gamma\rangle$ is isomorphic to $S_{2 m+2}$.
Denote by χ_{0} the basic complete Clifford set $\gamma_{1}, \cdots, \gamma_{2 m+1}$ and define a sequence $\chi_{1}, \chi_{2}, \cdots, \chi_{2 m+1}$ of complete Clifford sets thus:

$$
\begin{aligned}
& \chi_{2 m+1}=\Gamma\left(\chi_{0}\right)=\left(\gamma_{1} \gamma_{2 m+1}, \gamma_{2} \gamma_{2 m+1}, \cdots, \gamma_{2 m} \gamma_{2 m+1}, \gamma_{2 m+1}\right) \\
& \chi_{r}=Q^{r}\left(\chi_{2 m+1}\right)=\left(\gamma_{r} \gamma_{r+1}, \gamma_{r} \gamma_{r+1}, \cdots, \gamma_{r} \gamma_{2 m+1}, \gamma_{r} \gamma_{1}, \cdots \gamma_{r} \gamma_{r-1}, \gamma_{r}\right)
\end{aligned}
$$

It is to be shown that the operators $\langle Q, \Gamma\rangle$ generate the permutations of the sets $\chi_{0}, \cdots, \chi_{2 m+1}$ (the order of the members of a set being disregarded). Thus, writing only the subscripts of the χ_{i}, we find the following permutations

$\quad 0$	1	2	\cdots	$2 m$	$2 m+1$
$Q: 0$	2	3	\cdots	$2 m+1$	1
$\Gamma: 2 m+1$	1	2	\cdots	$2 m$	0

So that either $\langle Q, \Gamma\rangle$ is isomorphic to $S_{2 m+2}$, or contains it as a subgroup, in which case some matrices of $\langle Q, \Gamma\rangle$ would permute the members of various sets χ_{i}, while leaving each set as a whole unchanged. But a permutation of χ_{0} which interchanges γ_{i} and γ_{j} necessarily interchanges the sets χ_{i} and χ_{j}. It follows that $S_{2 m+2}$ is isomorphic to the whole group.

It may be noted that Q and $Q \Gamma Q^{-1}$ are formally the same as matrices Q and D of Room and Smith [2], which are used to generate $A(2 m, p)$ in the cases $p>2$.

References

[1] Dickson, L. E., Linear Groups, Teubner, (1901).
[2] Room and Smith, A generation of the Symplectic Group, Quart. Journ. Math. (2) 9, (1958), 177-182.

University of Sydney

[^0]: * The results described in this paper were obtained while the author was a member of the Institute for Advanced Study, Princeton.
 ** A skew matrix over $G F(2)$ differs from a symmetric matrix in that all its diagona elements are 0.

