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The main result obtained in this paper is

THEOREM 1. The symplectic group on the skew matrix F of 2m rows and
columns over GF(2) ** can be generated by the two matrices Q, R, where

Q2m+1 __ ^ 2 __ J

i = T l >

r,

Titj being the substitution matrix which interchanges the elements numbered
i and j , [m^.2).

This symplectic group is Dickson's group A(2m, 2) (1, p. 97).
In the case m — 2 the matrices are

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

To define the matrices for general values of m write

vr : a succession of r digits 1
V = fo.

2m

0r : a succession of r digits 0,
these being treated as parts of column vectors, the corresponding roi
vectors being vf, Of

F and Q are oi the same patterns as for m = 2, and R = R° © l̂ m-*.
direct sum, namely

5
i

c
5

a
I
t

* The results described in this paper were obtained while the author was a member of thi
Institute for Advanced Study, Princeton.

** A skew matrix over GF(2) differs from a symmetric matrix in that all its diagona J
elements are 0. a
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The generation of the symplectic group 39

r =

Dfthe

gonal

Write also
T*: any substitution matrix as described in the text.

The group generated by Q, R will be denoted by (Q, i?>; it is to be
proved isomorphic to A (2m, 2).

From the conditions satisfied by R and Q it is clear that one of the
subgroups of (Q, Ry is the symmetric group S2m; it is to be proved that in
fact S2TO+2 is a subgroup of A (2m, 2).

The present solution of the problem of the generation of A (2m, 2) has
its origin in an investigation of the group CG of the Clifford units, and the
relations among the matrices stated in Theorem 1 are best obtained in
terms of substitutions on the elements of CG.

We assume a basic set of 2m Clifford units yi with the properties:

every pair anti-commutes: y,-^ = —y^i, i ^ j
each unit is involutory: y\ = 1.

These units generate the free Abelian group CG of order 2%m the elements
of which are the products y^y*. • • • without regard to sign. Every element
of the group is involutory. Any set of 2w elements of CG such that every
pair of the set anti-commutes will be called a Clifford set; the connection
between CG and A(2m, 2) which is to be established in this:

THEOREM 2. A (2m, 2) is isomorphic to the group of automorphisms of CG
which transform Clifford sets into Clifford sets.

In CG there is exactly one element which anti-commutes with each of
the 2m units yif namely,

2m

Y2m+1 = I T Yi

JWi is m aU senses symmetric with the original 2m units, and any 2m
members of the whole set of 2m + 1 may be taken as generators of CG.
We shall denote by xo the set of 2m -f- 1 matrices yv y2, • • •, y2w+1

 m a n v

order, and shall describe any corresponding set in CG as a complete Clifford
set.

To establish the connection between the group of automorphisms of CG
and A (2m, 2) we need to introduce the index vector of an element of CG.
Every element of CG may be written as y^1 yXi • • • y%%?, <xt- = 0 or 1, and
thus determines an index vector

a = [ap a2, • • •, a2m] over GF(2).

There is of course a one-to-one correspondence between the index vectors
and the elements of CG.
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yi corresponds to the index vector £,• of the basis, i — 1, • • •, 2m, and
Yim+x corresponds to v.

We have
Qe{ = ei+1, Qe2m = v, Qv = elt i'• = 1, • • •, 2w — 1.

i.e., Q corresponds to the cyclic permutation of the units ylt y2, • • •, y2m+1]
also

so that Q and T12 generate a group isomorphic to S2m+V Moreover, it is
easily verified that

so that the operators QrT12Q~r, r = 0, • • •, 2w — 1 generate the matrix
substitution group S2m (i.e., the group of all substitution matrices of order 2m).

The elements of CG corresponding to the index vectors a and ft either
commute or anti-commute according as the number of transpositions in
rearranging

vt1 • • • yl% ri1 - • • rbr a s

is even or odd. There is a change of sign as y\* moves over yf' if and only
if i ^ j and a t ^ = 1.

Thus the number of sign changes arising from moving y(x from right
to left of 77y*< is

PM + a3 + • • • + a2m) = fix(v
T + e*)a.

The total number of sign changes is therefore

Thus the elements corresponding to a and /? commute or anti-commute
according aTrp = 0 or 1 over GF(2).

Now take a set of 2m elements of CG with index vectors alt • • -,€t2m\
and write A for the index matrix of the set;

A = [ctp a2, • • - , « 2 J .

The set is a Clifford set, if, for each i, j ,

a?ra} = 1 i ^ j .
Always

af jTa, = 0,

so that for a Clifford set ATTA = T over GF(2).
Every Clifford set determines a matrix yl with this property, and the

condition that a given set should be a Clifford set is that its index matrix
should satisfy this condition.
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The generation of the symplectic group 41

Suppose now A and B are matrices satisfying this condition, and that
B is the index matrix of a Clifford set. Let A generate an automorphism
of CG in which the element with index vector x becomes the element with
index vector Ax. The vectors which are the columns of B are transformed
into the columns of AB, which satisfy the condition (AB)Tr(AB) = F,
so that AB is also the matrix of a Clifford set. A itself is the index matrix
of the set into which the basic set (with index matrix 1) is transformed.
Theorem 2 now follows.

By reading their columns as index vectors we see that the matrices Q,
R correspond to the substitutions

= ?2> 7s> ' ' '> Y2m. 72m+V Vl

= 717273' 7l7274.' 7\737* 72737* 75' ' ' ', 72m> 72m+X'

Using the substitution we now derive some relations between Q and R
and introduce certain products of Q and R which are needed in the proof
of Theorem 1. First

THEOREM 3. From Q and R we derive the 2m — 2 matrices

R1 = R,

where

= QRQ~\ • • •, Rr+1 = QrRQ~r, r = 0, • • •, 2m - 3,

R?

and

L2m-3

2m—r—4-

r

JW-3_ _
1
1
1

= 0,"

V2m-3

!)

0
1

*, 2

" 2 .

0
1
0

- 3

Writing ijk • • • for 7x7)7*' '',$' for 2w -f 2 — s, and r{ for r + *, we
find that Rr+1 = QrRQ~r generates the substitution:

Xo* 1 2 • • • r rx r2 r3 r4 • • > 2' V

QrRQ-r(Xo)' 1 2 ••• r rxr2rz rxr2r4 rxr3r4 r 2 r z r x ' " 2 ' V

Thus in a symbol ijk • • • the only components changed by Rr+1 are rx,
h> rz> ri- The complete set of involutory pairs is:

e
x

Rim—1 —

Xo-

<24 we have

1 2 • • • 5' 4'
1 2 ••• 5' 4'3'2'

3' 2' V
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The last three columns of the matrix correspond to 4'3'2', 4'3'T, 4/2'I1!
and are therefore £2TO_2+£2TO_i+£2m, e2m_2+€2m_x+v, e 2 m _ 2 ^
which are the forms given in Theorem 3.

For the relation (RQ)2™-1 = T1Z we use

(RQ)2m-l = R(QRQ-1)(Q*RQ-*) . . . {Q2m-2RQ-m+2)Q-2

Writing out the successive stages in the substitution and using c" = 2 / — c,
we have

1 2 3 4
Q-2 2' V 1 2

R3> 3'2'1' 3 ' l T 2'1'1' 2

RA, 3'2'1' 4'2'1' 4'3'1' 2

y' = 0 "

2"

2"

2"

2' 1'

4' 3'

4' 3'2'1

4'3'2' 1'

#
2r,

0"2"l 2'

341

3

241
2

231 234

1 4

Thus RXR2 • • • R2m-X{yx, y%, y3,
is the required result.

We have further

and

The other relation

0"

0"
• • •
• • *

2'

2'

2m-l

V
r.

(RQ2)2"1-1 = T1>2

may be proved similarly, using (RQ*Ym~i = ^ /?, • • • i?2TO+12?2 • • • R2m_i} Q~\
but the table is considerably more elaborate.

We are now in a position to prove Theorem 1, namely, that (Q, R} =
A (2m, 2). We use as operators the matrices Q; Rv • • •, R2m_2; TiP T%,
all of which have been proved to belong to (Q, R}, and show how a given
matrix A for which

ATTA = r

can be reduced column by column to l2m, by multiplying on the left by
these matrices. Since we have proved that the matrix substitution group
S2m is a subgroup of (Q, Ry, we may at any stage rearrange the rows of
A by multiplying on the left by the appropriate substitution matrix Tp
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[6] The generation of the symplectic group 43

Column 1

Let a be the first column of A; we find a product X of matrices from
(Q, R} such that Xa = ev

(1) Assume that the number of l's in a is odd, i.e.,

vTa = 1

(i) If a = eit take X = Tlt t-, then Xa = ex.
(ii) If there are 2r — 1 zeros in a (r < m) rearrange the rows of A

so that a becomes:
T*a = a = [02r_lf v2m_2r+1]

we have

a = 12r-2
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

0
0
1
1
1

2r-2

0
0
0
1

i.e. R2r_xa = [02r+1, V2m_2r+1]. Similarly

so that, if

then
Xa = ev

(2) Assume that vT a = 0.

(i) If a = v, then Qa = clf i.e., X = (?.
(ii) If a contains 2s 0's find a T* such that

T a — H — [v 0 11

Then
2^ _ ^ _- TQ j ; 0, 1, 01

and therefore, for another suitable T*,

T R T a = TO v 1

We may now proceed as in (1) (ii) to find the required X.

Column r

Suppose the first r — 1 columns have been transformed, so that

YA = Ar_x = [ f j , • • •, €r-X, x,

We are to construct Z, e <jQ, R}, such that
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44 T. G. Room [7] [

7 A A f> • • • f> II • • • Ii 1

Since A^_xFAr_x = F, from the first r — 1 rows of Af_x in conjunction
with the rth column of Ar_x, we find:

i / T i T \ T i * i l

KX = K2 = • • • = Kr_x — 1, if vT x = 0

= 0, if vTx = 1.

1. Suppose /ct. = 0," vTx — 1, so that

^ — L u r - 1 > Kr> Kr+1 > > K2ml-

Rearrange the elements of x, so that

•L #K — {."r—l > "2s-r » V2m-2s+l\

(i) If 2s — r > 0, then, as in the first column,

-̂  * ^ = =

= = -* r, 2m -"-2W-3 ' ' ' "^2s+l -* * ^ = =

so that

The first r — 1 columns of each of the factors of Y are ex, • • •, er_x, so that r
y does not disturb the columns of Ar_x which have already been reduced. [

(ii) If 2s — r = 0, so that x = [Og,^, ^2m-2s+i] multiply first by
R2m_2, thus \

R ~ x = [02 - l , v _ _i , o, oi '
and

We may now proceed as in l(i).

2 Suppose x = [vr_x, Kr, Kr+1, - • •, K2m].
(i) If there are no zero components, so that x = v2m, then

Use T^ to permute these cyclically into the proper order.
(ii) The number of zero components is even, suppose it is 2m — 2s > 0.

Find T* operating on rows r to 2m, such that

T*X= [*>r_i, P2s-r> 0 2 w _ 2 s , 1]
Then

Find r + such that
-* *

and proceed as in l(i).
Thus in all cases, r = 2, 3, • • •, 2m — 3 if the first r — 1 columns are

ev ' ' '> er-i> w e c a n reduce the rth column to er by matrices belonging to
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(Q, Ry, this provision, r ^ 2w — 3, being necessary on account of the form
of #2m-2-

For the last three columns we have, as at the rth column,

e i t h e r K1 = l<2 = ' * * =? * 2 m - 3 = = •"•' K2m—2 ~T~ K2m-1 ~t~ K2m ~ 1

o r Kl = K2 = ' ' ' == K2m-3 ~ "> K2m-2 I K2m-1 ~T ^ m = = !•

We consider the possible cases separately, and suppose that where necessary
a transposition of the last three rows has been effected to give the form
named:

Column 2m — 2

% = lP2m-3> ®> 0> 1] ' •* 2»w-2,2m-l ^2m-2 ** : = € 2 m - 2

Cyclically permute as in 2(i) above.

« = [°2m-3» 1» 0, 0] =S2m_2.

% ~ L^2m-3» »̂ 1> 1] • - ^ * - ^ 2 m - 2 ^ = = £2m-2 •

Column 2m — 1

x = [*>2m-2> 1» 1] = v : reduce as above.

Column 2m

x = [v%m, 1] = i; : reduce as above.

» = [02«-i. 1] =C2«-
The reduction is therefore complete.

r itself belongs to A (2m, 2), since r*=l, F = rT, so that rTrr=T.
To express J1 as a member of (Q, R)> we may apply the simple process l(i)
to column 1, and inductively to succeeding columns, thus:

"2«i-2

0
1

^2m-2
1
0

•* 2 m - 2
u2m-2

^2m-2 -

By repetition, with one fewer factor each time, we may reduce Fhy means of

RX{R3RX){RBRZRX) - •

to [e2m, €2m_lt -',€2, e j .
But

= Q2r(Q-2R)r.

Thus, after inverting the product,
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F= (RQ*)"-iQ*(RQ*)»>-*Qs • • • [RQ^Q^RT^T,^ • • • Tmm+1.
Finally it is to be proved that S2TO+2 is a subgroup of A (2m, 2); ex-

plicitly:

THEOREM 4. (Q, F) is isomorphic to S2m+2.
Denote by Xo the basic complete Clifford set yv • • •, y2m+1 and define

a sequence %v #2, ' ' ', X2m+i °f complete Clifford sets thus:

X2m+1 ~ ' Wo) = \Yl 7zm+l > YzY2m+l > ' ' '> Y2mY2m+l> Yzm+l)

IT = Qr(X2m+l) = (YrYr+l, YrYr+1, ' ' '> YrY2m+l> YrYl>'" YrYr-1 > Yr)

It is to be shown that the operators (Q, F} generate the permutations of
the sets Xo> ' ' *» X2m+i (the order of the members of a set being disregarded).
Thus, writing only the subscripts of the Xo we find the following permutations

0 1 2 • • • 2m 2m + 1
Q : 0 2 3 ••• 2 m + 1 1
F: 2m + 1 1 2 • • • 2m 0

So that either (Q, F} is isomorphic to 52TO+2, or contains it as a subgroup,
in which case some matrices of (Q, F} would permute the members of various
sets Xo while leaving each set as a whole unchanged. But a permutation of
Xo which interchanges yf and ys necessarily interchanges the sets Xi a n ( i Xi-
It follows that 52m+2 is isomorphic to the whole group.

It may be noted that Q and QFQ~X are formally the same as matrices
Q and D of Room and Smith [2], which are used to generate A(2m, p) in
the cases f > 2.
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