THE GENERATION BY TWO OPERATORS OF
THE SYMPLECTIC GROUP OVER GF(2)*

T. G. ROOM

(rec. 8 Aug. 1958)

The main result obtained in this paper is

THEOREM 1. The symplectic group on the skew matriz I' of 2m rows and
columns over GF (2) ** can be generated by the two matrices Q, R, where

amtl — R2 — 1
(RQ)*™ 1 =Ty,
(RQ?)*™ 1 =T, , ‘
O T, ;0" =T jur t+r, j+r=2m ‘
T, ; being the substitution matrix which interchanges the elements numbered!
1 and 1, (m = 2).
This symplectic group is Dickson’s group A4 (2m, 2) (1, p. 97).
In the case m = 2 the matrices are

01 1 1 0 0 01 1 1 1 0
1 01 1 1 0 0 1 1 1 01

== === = o _—
r 1 1 0 1}’ ¢ 01 0 1} R=FR 1 01 1
1 1 1 0 0 0 1 1 01 1 1

To define the matrices for general values of m write

v, : a succession of 7 digits 1
0, : a succession of 7 digits O,

these being treated as parts of column vectors, the corresponding row
vectors being »T, 0T

I' and Q are of the same patterns as form =2, and R=R*® 1, _,
direct sum, namely

* The results described in this paper were obtained while the author was a member of th
Institute for Advanced Study, Princeton.

** A skew matrix over GF(2) differs from a symmetric matrix in that all its diagom
elements are 0.
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2 The generation of the symplectic group 39

I = vaT—l— 1,,
el -
= m R -
¢ [lzm—l Vom—1 Lom—s
Write also

T+: any substitution matrix as described in the text.

The group generated by Q, R will be denoted by {Q, R); it is to be
proved isomorphic to A4 (2m, 2).

From the conditions satisfied by R and Q it is clear that one of the
subgroups of {Q, R) is the symmetric group S,,,; it is to be proved that in
fact S,,,40 is a subgroup of A4 (2m, 2).

The present solution of the problem of the generation of A4 (2m, 2) has
its origin in an investigation of the group CG of the Clifford units, and the
relations among the matrices stated in Theorem 1 are best obtained in
terms of substitutions on the elements of CG.

We assume a basic set of 2m Clifford units y, with the properties:

every pair anti-commutes: vy, = —y;v; ¢ #]
each unit is involutory: y2 = 1.

These units generate the free Abelian group CG of order 22" the elements
of which are the products vy, - - - without regard to sign. Every element
of the group is involutory. Any set of 2m elements of CG such that every
pair of the set anti-commutes will be called a Clifford set; the connection
between CG and A (2m, 2) which is to be established in this:

THEOREM 2. A (2m, 2) is isomorphic to the group of automorphisms of CG
which transform Clifford sets into Clifford sets.

In CG there is exactly one element which anti-commutes with each of
the 2m units p,, namely,

2m

Yom+1 = 1:[ Vi

Yamsp 1S In all senses symmetric with the original 2 units, and any 2m
members of the whole set of 2m + 1 may be taken as generators of CG.

We shall denote by x, the set of 2m + 1 matrices y,, ¥, * * *, Yoy I ANy
order, and shall describe any corresponding set in CG as a complete Clifford
set.

To establish the connection between the group of automorphisms of CG
and A4 (2m, 2) we need to introduce the ¢ndex vector of an element of CG.
Every element of CG may be written as y§1p% .. y5m o =0 or 1, and
thus determines an index vector

a = [a;, %, ***, %,] OVer GF(2).

There is of course a one-to-one correspondence between the index vectors
and the elements of CG.
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40 T. G. Room (3]

y, corresponds to the index vector &; of the basis, ¢ =1, -, 2m, and
Yoms1 COTTESPONdS to .
We have

Qe; =&yy1, Q&g =, Qv =8¢, i =1,--+,2m — L

i.e., Q corresponds to the cyclic permutation of the units y;, v,, - -
also

s Yomt1
T, & =¢,

so that Q and T, , generate a group isomorphic to S,,,,,. Moreover, it is
easily verified that

Qr Tl, 2Q—-r = Tr+1,r+2’

so that the operators Q"T, ,Q~', » =0, - - -, 2m — 1 generate the matrix
substitution group S,,, (i.e., the group of all substitution matrices of order 2m).

The elements of CG corresponding to the index vectors @ and B either
commute or anti-commute according as the number of transpositions in
rearranging

R N i\ Bamn® e v nim
VIV VetV Vet AS pytc ot yeimyrtc c Yol

is even or odd. There is a change of sign as y#¢* moves over % if and only
if 25447 and o8, = 1.

Thus the number of sign changes arising from moving y%1 from right
to left of IIyf+ is

Bilog + 5 + « + * 4 %) = By (¥T + &)
The total number of sign changes is therefore
2 B:(vT + &f)a = BT (v¥T + 1)a
! — pTra.
Thus the elements corresponding to @ and B commute or anti-commute
according aTI'8 = 0 or 1 over GF(2).
Now take a set of 2m elements of CG with index vectors «, - - -, a,,
and write A for the index matrix of the set;
A= [y, @, -, 0]
The set is a Clifford set, if, for each ¢, g,
afla, =1 i 7.
Always
alla, = 0,

so that for a Clifford set ATI'A = I" over GF(2).

Every Clifford set determines a matrix 4 with this property, and the
condition that a given set should be a Clifford set is that its index matrix
should satisfy this condition.
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(4] The generation of the symplectic group 41

Suppose now 4 and B are matrices satisfying this condition, and that
B is the index matrix of a Clifford set. Let A generate an automorphism
of CG in which the element with index vector # becomes the element with
index vector A». The vectors which are the columns of B are transformed
into the columns of A B, which satisfy the condition (AB)TI'(AB) =T,
so that A B is also the matrix of a Clifford set. A4 itself is the index matrix
of the set into which the basic set (with index matrix 1) is transformed.

Theorem 2 now follows.
By reading their columns as index vectors we see that the matrices Q,
R correspond to the substitutions

Qo) = V2 V3 * * s Yams Vemitr V1

R(x%0) = V17273 Y172Ve Y1V3Ve V2V3Va V5 s Yoms Yem+1:

Using the substitution we now derive some relations between Q and R
and introduce certain products of ) and R which are needed in the proof
of Theorem 1. First

THEOREM 3. From Q and R we derive the 2m — 2 malrices
Ri,=R, R,=0QRQ™,--- R, =QRQ", r=0,---,2m — 3,

where
R,.,=1T1, r=20,---,2m — 4
RO
12m—r—4
and
Rom—z = [lama | Ooms ¥2m—s ¥oms
1 0 0
|1 0 1
|1 1 0

Writing ¢k - - - for y,p,9, -, s’ for 2m + 2 — s, and 7; for r 4+ 7, we
find that R,,; = Q"RQ—" generates the substitution:

Xor 1 2 -+ 7 1 75 75 7y 2"V
QRO"(xo): 1 2 -« 7 wirary 71737, 71737y Vo¥g?q---2 1
Thus in a symbol #j& - - - the only components changed by R,,, are 7y,

7y 73, 74. The complete set of involutory pairs is:
7 7y 73 Yy ViTa Vy¥y Vi ¥y Ta¥s
N17a¥3 N1¥3¥s V173¥s Ta¥3¥q T3y oty ¥iTy Yo7
For R,,._, = Q™*R (Q* we have
Yoo 1 2 +-- 5 4 3’ 2/ 1’
Rymoako: 1.2 --- 5 432 431 421 321,
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492 T. G. Room ()

The last three columns of the matrix correspond to 4'3'2', 4'3'1’, Ail'

and are therefore &, o+&pn_1+€om Eom—otErmat?, Eam—gtEamt?,
which are the forms given in Theorem 3.
For the relation (RQ)*"1 =T, ; we use

(RQ)2™1 = R(QRQ™)(Q2RQ2) - - - (Q¥™~2R(Q-m+2)Q-2
= R{Ry Ry, 1072

Writing out the successive stages in the substitution and using ¢”’ = 27" —¢,
we have

1 2 3
02 2 1’ 1
R, 321 31l 211
R, 321 421 431

c2 =0 .. 21
A U 1
2 ... 4 32T
2 ... 432 1

[\CREN \OR U

Rzrl 1/[2’/1 0112111 Ollllll 2 . e 0/!1//2/’ . o o 2[ 1I
R, 341 241 231 234--- P I
R, 3 2 1 4 .- I e U

Thus RyRy -+ Ryp1(¥1, V2 V3 * % Voms1)= Va» Y2 Y1 " *» Yamy1) Which
is the required result.

We have further

Ty,s = (RQ)™1 = ((RQ)™1)=1 = (QIR)?™
and

(QR)*1 = Q(RQ)*"1Q71 =T, ,.
The other relation
(RQ?%)2m1 = T,

may be proved similarly, using (RQ?)?™ 1= R; Ry Ry 1 Ry " Ry, 4, Q74
but the table is considerably more elaborate.

We are now in a position to prove Theorem 1, namely, that {Q, R)> =
A(2m, 2). We use as operators the matrices Q; Ry, -, Ry, o; T Ty,
all of which have been proved to belong to {Q, R, and show how a given
matrix A for which

ATIr'dA =T
can be reduced column by column to 1,,, by multiplying on the left by
these matrices. Since we have proved that the matrix substitution group

S, 1 a subgroup of (Q, R)», we may at any stage rearrange the rows of
A by multiplying on the left by the appropriate substitution matrix 7,
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[6] The generation of the symplectic group 43

Column 1
Let & be the first column of 4; we find a product X of matrices from
{Q, R> such that Xa = é&,.
(1) Assume that the number of 1’s in @ is odd, 1i.e.,
vTa =1
i) If ¢ =g, take X =T, ;, then Xa = ¢,.

(i) If there are 2r — 1 zeros in @ (r < m) rearrange the rows of 4
so that o becomes:

Tya =10 = [05_5, Vop2r11]

we have
Rzr—la =[ l2r—2 ] B 02r—2 1= 021'—2 ]
1 1 1 0 0 0
1 1 0 1 1 0
1 0 1 1 1 0
01 1 1 1 1
| Yom—ora | | Vomora | | Vom—aras |

ie. Ry 1@ = [04,,1, VYom_gr+1]- Similarly
R:‘(—Z— = R2m——3 Ropms """ R2r—la = Eam >
so that, if
X = T1,2me Ty,
then
Xa = g,.
(2) Assume that »Ta = 0.

(i) If ¢ = v, then Qa =g, ie.,, X = Q.
(ii) If e contains 2s 0’s find a 7, such that

T*a =a = [vzm—2s—1’ 023’ 1]'
Then
Rom—@ = [0y, Vye, 0, 1, 0]
and therefore, for another suitable 7,
Ty R, 9T = [05, 11, V253]

We may now proceed as in (1) (ii) to find the required X.

Column r
Suppose the first » — 1 columns have been transformed, so that
YA = Ar—l = [81: &g, A, lr+1’ Y 12"!]'
We are to construct Z, € {(Q, R), such that
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44 T. G. Room (7]

ZA, y,=A,=1[&, " &, Uei1," " Bom]-
Since AT ', , =T, from the first » — 1 rows of AT, in conjunction
with the rth column of A4,_,, we find:

1= T+ &N =vTu 42, 1=1,--,7r—1.
oy =Ky ="+>=k,,-=1,1f vT =0
=0, 1f Ty =1

1. Suppose k;, = 0,"vT» = 1, so that

®= [Or—l’ Ke) Kpg15° " % sz]'
Rearrange the elements of %, so that

Tyt =1[0,1, 050, Vom_2511]
(i) If 2s — 7 > 0, then, as in the first column,

R2m—3 R2,m--5 e st+1 T*% = €2m ’

so that
Y =T, omRomz " Ry Ty % = &,.
The first » — 1 columns of each of the factors of Y are g, - - -, €,_,, so that

Y does not disturb the columns of A,_; which have already been reduced.
(i) If 2s —r =0, so that » = [0y,_;, Vo,_s,4;1] multiply first by
R,,._,, thus

Rzm——z" = [023—1: Vom—2s—1» 0, O]
and

T Ry 2% = [03011, Vom—s]
We may now proceed as in 1(i).
2 Suppose ¥ = [V, 1, Ky, Kpppr " ° s Kom ]
(i) If there are no zero components, so that ¥ = »,,,, then
Qler, € &1y Vom] = [E3, &, ", &, &].
Use T, to permute these cyclically into the proper order.

(i) The number of zero components is even, suppose it is 2m — 2s > 0.
Find T, operating on rows 7 to 2m, such that

Ten = [¥,1, Vapr, Ogps,y, 1]
Then
RoymsTy% = [03_ 1, Yam 952, 0, 1, 0].
Find T, such that
Ty RomoTs® = [0g511, Vom_251]

and proceed as in 1(i).
Thus in all cases, r = 2, 3, -+, 2m — 3 if the first » — 1 columns are
&, " ", &1, we can reduce the rth column to &, by matrices belonging to
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(8) The generation of the symplectic group 45

{0, R, this provision, r = 2m — 3, being necessary on account of the form
of Ry, _o.

For the last three columns we have, as at the »th column,
or Ky = Kg=""" = Kop_3 =0, Kopy_o + Koy + Kopy = L.

We consider the possible cases separately, and suppose that where necessary
a transposition of the last three rows has been effected to give the form
named:

Column 2m — 2

= [Vym3, 0, 0, 1] : T, o om 1 Rop g% = &gy

#=[Vyns, L, 1, 1] =v:0[&;, &, ", &3, V]=[E, &, " **, Egpps, &)
Cyclically permute as in 2(i) above.

%= [0p3, 1, 0, 0] = &3p_5.

%= (05,3, 1, 1, 1] : Ty Ry, 2% =28y, ,.

Column 2m — 1

% = [Vy,_s, 1, 1] = » : reduce as above.
#=[0n s, 1, 0] = &5,

Column 2m

% = [¥,y,, 1] = v :reduce as above.
%= [0pp_y, 1] = &y,
The reduction is therefore complete.

I itself belongs to A(2m, 2), since I"?2 =1, I' =TT, so that '"FI'="T.
To express I' as a member of (Q, R> we may apply the simple process 1 (i)
to column 1, and inductively to succeeding columns, thus:

RomsRom 5"  RgRy L' = [Ogpny Oppps Lom s
0 1 07, 2 |
1 0 0. .
By repetition, with one fewer factor each time, we may reduce I" by means of
Ry(R3R,)(R; Ry Ry) -+ * (Rypm—3 Roms * * * R3R,)

to [€5ms Eamys " ) €2, €]
But

Ry Ropg*** RyRy = Q¥ 2RQ™2RQ~2--- Q?RQ2R
= Qv (Q-RY"

Thus, after inverting the product,
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46 T. G. Room (9]

I' = (RQ*)" 1 Q*(RQ?)™2Q% - - - (RQ®)2Q*™ 2 RT 9 T g 9m1 " * * Toumea -
Finally it is to be proved that S,,., is a subgroup of 4 (2m, 2); ex-
plicitly:

THEOREM 4. {Q, I') is isomorphic to S, ., .
Denote by yx, the basic complete Clifford set v, - - -, ¥5,,41 and define
a sequence y;, Xa * * *» Xamy1 Of complete Clifford sets thus:

Xom+1 = L(%0) = (P17am+1s Y2Vamt1s * * s YamVams1> Yomt1)
Xr = Q'(sz+1)= (yryr+1: VeVr+1s " " 5 VeVom+1s Ye¥1s ° ° " VeVr-1> yr)

It is to be shown that the operators {Q, I')> generate the permutations of
the sets yg, * * *, Xam+1 (the order of the members of a set being disregarded).
Thus, writing only the subscripts of the y;, we find the following permutations

0 1 2 .- 2m om + 1
Q:0 2 3 --v  2m41 1
I':2m+ 1 1 2 ... 2m 0

So that either <Q, I') is isomorphic to S,,,.,, Or contains it as a subgroup,
in which case some matrices of {Q, Iy would permute the members of various
sets y;, while leaving each set as a whole unchanged. But a permutation of
%o Which interchanges y, and y; necessarily interchanges the sets y, and ;.
It follows that S,,, ., is isomorphic to the whole group.

It may be noted that Q and QI'Q-! are formally the same as matrices
@ and D of Room and Smith [2], which are used to generate A4 (2m, $) in
the cases $ > 2.
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