THE GENERATION BY TWO OPERATORS OF
THE SYMPLETIC GROUP OVER $GF(2)^*$

T. G. ROOM

(rec. 8 Aug. 1958)

The main result obtained in this paper is

THEOREM 1. The symplectic group on the skew matrix Γ of $2m$ rows and
columns over $GF(2)$ ** can be generated by the two matrices Q, R, where

$Q^{2m+1} = R^2 = 1$

$(RQ)^{2m-1} = T_{1,3}$

$(RQ^2)^{2m-1} = T_{1,2}$

$Q^r T_{i,s} Q^{-r} = T_{i+r, s+r}$ $i + r, j + r \leq 2m$

$T_{i,j}$ being the substitution matrix which interchanges the elements numbered
i and j, $(m \geq 2)$.

This symplectic group is Dickson's group $A(2m, 2)$ (1, p. 97).

In the case $m = 2$ the matrices are

$$
\Gamma = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix},
Q = \begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix},
R = R^0 = \begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
$$

To define the matrices for general values of m write

$\nu_r : a$ succession of r digits 1

$\nu = \nu_{2m}$

$0_r : a$ succession of r digits 0,

these being treated as parts of column vectors, the corresponding row
vectors being ν^T_r, 0^T_r.

Γ and Q are of the same patterns as for $m = 2$, and $R = R^0 \oplus 1_{2m-4}$
direct sum, namely

* The results described in this paper were obtained while the author was a member of the
Institute for Advanced Study, Princeton.

** A skew matrix over $GF(2)$ differs from a symmetric matrix in that all its diagonal
elements are 0.
The generation of the symplectic group

\[\Gamma = \nu \nu^T + 1_{2m} \]
\[Q = \begin{bmatrix} Q^T_{2m-1} & 1 \\ 1_{2m-1} & \nu_{2m-1} \end{bmatrix} \quad R = \begin{bmatrix} R^0 & \nu_{2m-1} \\ 1_{2m-1} & 1_{2m-1} \end{bmatrix} \]

Write also

\[T^* \]: any substitution matrix as described in the text.

The group generated by \(Q, R \) will be denoted by \(\langle Q, R \rangle \); it is to be proved isomorphic to \(A(2m, 2) \).

From the conditions satisfied by \(R \) and \(Q \) it is clear that one of the subgroups of \(\langle Q, R \rangle \) is the symmetric group \(S_{2m} \); it is to be proved that in fact \(S_{2m+2} \) is a subgroup of \(A(2m, 2) \).

The present solution of the problem of the generation of \(A(2m, 2) \) has its origin in an investigation of the group \(CG \) of the Clifford units, and the relations among the matrices stated in Theorem 1 are best obtained in terms of substitutions on the elements of \(CG \).

We assume a basic set of \(2m \) Clifford units \(\gamma_i \) with the properties:

- every pair anti-commutes: \(\gamma_i \gamma_j = -\gamma_j \gamma_i \), \(i \neq j \)
- each unit is involutory: \(\gamma_i^2 = 1 \).

These units generate the free Abelian group \(CG \) of order \(2^{2m} \) the elements of which are the products \(\gamma_{i_1} \gamma_{i_2} \cdots \gamma_{i_k} \) without regard to sign. Every element of the group is involutory. Any set of \(2m \) elements of \(CG \) such that every pair of the set anti-commutes will be called a Clifford set; the connection between \(CG \) and \(A(2m, 2) \) which is to be established in this:

THEOREM 2. \(A(2m, 2) \) is isomorphic to the group of automorphisms of \(CG \) which transform Clifford sets into Clifford sets.

In \(CG \) there is exactly one element which anti-commutes with each of the \(2m \) units \(\gamma_i \), namely,

\[\gamma_{2m+1} = \prod_{1}^{2m} \gamma_i \]

\(\gamma_{2m+1} \) is in all senses symmetric with the original \(2m \) units, and any \(2m \) members of the whole set of \(2m + 1 \) may be taken as generators of \(CG \). We shall denote by \(\chi_0 \) the set of \(2m + 1 \) matrices \(\gamma_1, \gamma_2, \cdots, \gamma_{2m+1} \) in any order, and shall describe any corresponding set in \(CG \) as a complete Clifford set.

To establish the connection between the group of automorphisms of \(CG \) and \(A(2m, 2) \) we need to introduce the index vector of an element of \(CG \). Every element of \(CG \) may be written as \(\gamma_1^{x_1} \gamma_2^{x_2} \cdots \gamma_{2m}^{x_{2m}} \), \(x_i = 0 \) or \(1 \), and thus determines an index vector

\[\alpha = [x_1, x_2, \cdots, x_{2m}] \] over \(GF(2) \).

There is of course a one-to-one correspondence between the index vectors and the elements of \(CG \).
\(\gamma_i \) corresponds to the index vector \(\varepsilon_i \) of the basis, \(i = 1, \ldots, 2m \), and \(\gamma_{2m+1} \) corresponds to \(\nu \).

We have

\[
Q\varepsilon_i = \varepsilon_{i+1}, \quad Q\varepsilon_{2m} = \nu, \quad Q\nu = \varepsilon_1, \quad i = 1, \ldots, 2m - 1.
\]

i.e., \(Q \) corresponds to the cyclic permutation of the units \(\gamma_1, \gamma_2, \ldots, \gamma_{2m+1} \); also

\[
T_{i,j}\varepsilon_i = \varepsilon_j,
\]

so that \(Q \) and \(T_{1,2} \) generate a group isomorphic to \(S_{2m+1} \). Moreover, it is easily verified that

\[
Q^r T_{1,2} Q^{-r} = T_{r+1, r+2},
\]

so that the operators \(Q^r T_{1,2} Q^{-r}, r = 0, \ldots, 2m - 1 \) generate the matrix substitution group \(S_{2m} \) (i.e., the group of all substitution matrices of order \(2m \)).

The elements of \(CG \) corresponding to the index vectors \(\alpha \) and \(\beta \) either commute or anti-commute according as the number of transpositions in rearranging

\[
\gamma_1^{\alpha_1} \cdots \gamma_{2m}^{\alpha_{2m}} \gamma_1^{\beta_1} \cdots \gamma_{2m}^{\beta_{2m}} \text{ as } \gamma_1^{\beta_1} \cdots \gamma_{2m}^{\beta_{2m}} \gamma_1^{\alpha_1} \cdots \gamma_{2m}^{\alpha_{2m}}
\]

is even or odd. There is a change of sign as \(\gamma_i^{\alpha_i} \) moves over \(\gamma_i^{\beta_i} \) if and only if \(i \neq j \) and \(\alpha_i \beta_j = 1 \).

Thus the number of sign changes arising from moving \(\gamma_i^{\beta_i} \) from right to left of \(\Pi \gamma_i^{\alpha_i} \) is

\[
\beta_1(\alpha_2 + \alpha_3 + \cdots + \alpha_{2m}) = \beta_1(\nu^T + \varepsilon_1^T)\alpha.
\]

The total number of sign changes is therefore

\[
\sum_i \beta_i(\nu^T + \varepsilon_i^T)\alpha = \beta^T(\nu \nu^T + 1)\alpha = \beta^T\Gamma\alpha.
\]

Thus the elements corresponding to \(\alpha \) and \(\beta \) commute or anti-commute according \(\alpha^T \Gamma \beta = 0 \) or \(1 \) over \(GF(2) \).

Now take a set of \(2m \) elements of \(CG \) with index vectors \(\alpha_1, \ldots, \alpha_{2m} \), and write \(A \) for the index matrix of the set;

\[
A = [\alpha_1, \alpha_2, \ldots, \alpha_{2m}].
\]

The set is a Clifford set, if, for each \(i, j \),

\[
\alpha_i^T \Gamma \alpha_j = 1 \quad i \neq j.
\]

Always

\[
\alpha_i^T \Gamma \alpha_i = 0,
\]

so that for a Clifford set \(A^T \Gamma A = \Gamma \) over \(GF(2) \).

Every Clifford set determines a matrix \(A \) with this property, and the condition that a given set should be a Clifford set is that its index matrix should satisfy this condition.
Suppose now \(A \) and \(B \) are matrices satisfying this condition, and that \(B \) is the index matrix of a Clifford set. Let \(A \) generate an automorphism of \(CG \) in which the element with index vector \(\kappa \) becomes the element with index vector \(A\kappa \). The vectors which are the columns of \(B \) are transformed into the columns of \(AB \), which satisfy the condition \((AB)^T\Gamma(AB) = \Gamma\), so that \(AB \) is also the matrix of a Clifford set. \(A \) itself is the index matrix of the set into which the basic set (with index matrix 1) is transformed. Theorem 2 now follows.

By reading their columns as index vectors we see that the matrices \(Q \), \(R \) correspond to the substitutions

\[
Q(\chi_0) = \gamma_2', \gamma_3', \ldots, \gamma_{2m}', \gamma_{2m+1}', \epsilon_1 \\
R(\chi_0) = \gamma_1'\gamma_2', \gamma_1'\gamma_3', \gamma_1'\gamma_4', \gamma_2'\gamma_4', \gamma_5', \ldots, \gamma_{2m}', \gamma_{2m+1}'.
\]

Using the substitution we now derive some relations between \(Q \) and \(R \) and introduce certain products of \(Q \) and \(R \) which are needed in the proof of Theorem 1. First

Theorem 3. From \(Q \) and \(R \) we derive the \(2m - 2 \) matrices

\[
R_1 = R, \ R_2 = QRQ^{-1}, \ldots, \ R_{r+1} = Q^rRQ^{-r}, \ r = 0, \ldots, 2m - 3,
\]

where

\[
R_{r+1} = \begin{bmatrix}
1_r \\ R^0 \\ 1_{2m-r-4}
\end{bmatrix}
\]

and

\[
R_{2m-2} = \begin{bmatrix}
1_{2m-3} \\ | \\ | \\ 1 & 0 & 0 \\ | \\ | & 1 & 0 \\ & 1 & 1 & 0
\end{bmatrix}
\]

Writing \(ijk \cdots \) for \(\gamma_1\gamma_i\gamma_k \cdots, s' \) for \(2m + 2 - s \), and \(r_i \) for \(r + i \), we find that \(R_{r+1} = Q^rRQ^{-r} \) generates the substitution:

\[
\chi_0: \ 1 \ 2 \ \cdots \ r \ r_1 \ r_2 \ r_3 \ r_4 \ \cdots \ 2' \ 1' \\
Q^rRQ^{-r}(\chi_0): \ 1 \ 2 \ \cdots \ r \ r_1r_3 \ r_1r_3 \ r_1r_3 \ r_1r_3 \ r_2r_3 \ \cdots \ 2' \ 1'
\]

Thus in a symbol \(ijk \cdots \) the only components changed by \(R_{r+1} \) are \(r_1, r_2, r_3, r_4 \). The complete set of involutory pairs is:

\[
\begin{bmatrix}
r_1 & r_2 & r_3 & r_4 & r_1r_2 & r_1r_3 & r_1r_4 & r_2r_3 \\
r_1r_2r_3 & r_1r_2r_4 & r_1r_3r_4 & r_2r_3 & r_3r_4 & r_2r_4 & r_1r_4 & r_2r_3
\end{bmatrix}
\]

For \(R_{2m-2} = Q^{-1}R \ Q^4 \) we have

\[
\chi_0: \ 1 \ 2 \ \cdots \ 5' \ 4' \ 3' \ 2' \ 1' \\
R_{2m-2}\chi_0: \ 1 \ 2 \ \cdots \ 5' \ 4' \ 3' \ 2' \ 1' \ 3'2'1'.
\]
The last three columns of the matrix correspond to $4'3'2'$, $4'3'1'$, $4'2'1'$ and are therefore $\varepsilon_{2m-2} + \varepsilon_{2m-1} + \varepsilon_{2m}$, $\varepsilon_{2m-2} + \varepsilon_{2m-1} + \nu$, $\varepsilon_{2m-2} + \varepsilon_{2m} + \nu$, which are the forms given in Theorem 3.

For the relation $(RQ)^{2m-1} = T_{1,3}$ we use

$$(RQ)^{2m-1} = R(QRQ^{-1})(Q^2RQ^{-2}) \cdots (Q^{2m-2}RQ^{-m+2})Q^{-2} = R_1R_2 \cdots R_{2m-1}Q^{-2}.$$

Writing out the successive stages in the substitution and using $c'' = 2r' - c$, we have

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & 2r' = 0'' \cdots 2' & 1' \\
Q^{-2} & 2' & 1' & 1 & 2 & \cdots & 2'' \cdots 4' & 3'
\end{array}
\]

\[
\begin{array}{cccccc}
R_3 & 3'2'1' & 3'1'1' & 2'1'1' & 2 & \cdots & 2'' \cdots 4' \ 3'2'1'
R_4 & 3'2'1' & 4'2'1' & 4'3'1' & 2 & \cdots & 2'' \cdots 4'3'2' \ 1'
\end{array}
\]

\[
\begin{array}{cccccc}
R_{2r'} & 1''2'1' \ 0''2'1' \ 0'1'1' & 2 & \cdots & 0''1''2'' \ \cdots \ \cdots \ \cdots \ \cdots \\
R_2 & 341 & 241 & 231 & 234 & \cdots & 0'' \ \cdots 2' \ 1'
R_1 & 3 & 2 & 1 & 4 & \cdots & 0'' \ \cdots 2' \ 1'.
\end{array}
\]

Thus $R_1R_2 \cdots R_{2m-1}(\gamma_1, \gamma_2, \gamma_3, \cdots, \gamma_{2m+1}) = (\gamma_3, \gamma_2, \gamma_1, \cdots, \gamma_{2m+1})$ which is the required result.

We have further

$$T_{1,3} = (RQ)^{2m-1} = ((RQ)^{2m-1})^{-1} = (Q^{-1}R)^{2m-1}$$

and

$$(Q^2)^{2m-1} = Q(RQ)^{2m-1}Q^{-1} = T_{2,4}. $$

The other relation

$$(RQ^2)^{2m-1} = T_{1,2}$$

may be proved similarly, using $(RQ^2)^{2m-1} = R_1R_3 \cdots R_{2m+1}R_2 \cdots R_{2m-4}, Q^{-1}$, but the table is considerably more elaborate.

We are now in a position to prove Theorem 1, namely, that $\langle Q, R \rangle = A(2m, 2)$. We use as operators the matrices $Q, R_1, \cdots, R_{2m-2}, T_i, T_\star$, all of which have been proved to belong to $\langle Q, R \rangle$, and show how a given matrix A for which

$$A^TQA = \Gamma$$

can be reduced column by column to 1_{2m}, by multiplying on the left by these matrices. Since we have proved that the matrix substitution group S_{2m} is a subgroup of $\langle Q, R \rangle$, we may at any stage rearrange the rows of A by multiplying on the left by the appropriate substitution matrix T_\star.

Column 1

Let \(a \) be the first column of \(A \); we find a product \(X \) of matrices from \(\langle Q, R \rangle \) such that \(Xa = \epsilon_1 \).

(i) Assume that the number of 1’s in \(a \) is odd, i.e.,

\[v^T a = 1 \]

- If \(a = \epsilon_{i} \), take \(X = T_{1,i} \), then \(Xa = \epsilon_{1} \).
- If there are \(2r - 1 \) zeros in \(a \) (\(r < m \)) rearrange the rows of \(A \) so that \(a \) becomes:

\[T_{*}a = \bar{a} = [0_{2r-1}, v_{2m-2r+1}] \]

we have

\[R_{2r-1} \bar{a} = \left[\begin{array}{c} 1_{2r-2} \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array} \right] \left[\begin{array}{c} 0_{2r-2} \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right] = \left[\begin{array}{c} 0_{2r-2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right] \]

i.e. \(R_{2r-1} \bar{a} = [0_{2r+1}, v_{2m-2r+1}] \). Similarly

\[R_{*} \bar{a} = R_{2m-3} R_{2m-5} \cdots R_{2r-1} \bar{a} = \epsilon_{2m}, \]

so that, if

\[X = T_{1,2m} R_{*} T_{*}, \]

then

\[X \bar{a} = \epsilon_{1}. \]

(ii) Assume that \(v^T a = 0 \).

- If \(a = v \), then \(Qa = \epsilon_{1} \), i.e., \(X = Q \).
- If \(a \) contains \(2s \) 0’s find a \(T_{*} \) such that

\[T_{*}a = \bar{a} = [v_{2m-2s-1}, v_{2m-2s}, 0_{2s}, 1]. \]

Then

\[R_{2m-2} \bar{a} = [0_{2m-2s-1}, v_{2m-2}, 0, 1, 0] \]

and therefore, for another suitable \(T_{*} \),

\[T_{*} R_{2m-2} T_{*} a = [0_{2m-2+1}, v_{2s-1}]. \]

We may now proceed as in (1) (ii) to find the required \(X \).

Column r

Suppose the first \(r - 1 \) columns have been transformed, so that

\[YA = A_{r-1} = [\epsilon_1, \cdots, \epsilon_{r-1}, x, \lambda_{r+1}, \cdots, \lambda_{2m}]. \]

We are to construct \(Z \), \(\epsilon \langle Q, R \rangle \), such that
\[Z A_{r-1} = A_r = [\varepsilon_1, \ldots, \varepsilon_r, \mu_{r+1}, \ldots, \mu_{2m}] . \]

Since \(A_{r-1}^T \Gamma A_{r-1} = I \), from the first \(r - 1 \) rows of \(A_{r-1}^T \) in conjunction with the \(r \)th column of \(A_{r-1} \), we find:

\[
1 = (v^T + \varepsilon_i^T) \kappa = v^T \kappa + \varepsilon_i, \quad i = 1, \ldots, r - 1.
\]
\[
\kappa_1 = \kappa_2 = \cdots = \kappa_{r-1} = 1, \quad \text{if} \quad v^T \kappa = 0
\]
\[
= 0, \quad \text{if} \quad v^T \kappa = 1.
\]

1. Suppose \(\kappa_i = 0 \), \(v^T \kappa = 1 \), so that
\[
\kappa = [0_{r-1}, \kappa_r, \kappa_{r+1}, \ldots, \kappa_{2m}] .
\]

Rearrange the elements of \(\kappa \), so that
\[
T_\ast \kappa = [0_{r-1}, 0_{2s-r}, v_{2m-2s+1}]
\]

(i) If \(2s - r > 0 \), then, as in the first column,
\[
R_{2m-3} R_{2m-5} \cdots R_{2s+1} T_\ast \kappa = \varepsilon_{2m},
\]
so that
\[
Y \kappa = T_{r,2m} R_{2m-3} \cdots R_{2s+1} T_\ast \kappa = \varepsilon_r.
\]
The first \(r - 1 \) columns of each of the factors of \(Y \) are \(\varepsilon_1, \ldots, \varepsilon_{r-1} \), so that \(Y \) does not disturb the columns of \(A_{r-1} \) which have already been reduced.

(ii) If \(2s - r = 0 \), so that \(\kappa = [0_{2s-1}, v_{2m-2s+1}] \) multiply first by
\[
R_{2m-2},
\]
thus
\[
T_\ast R_{2m-2} \kappa = [0_{2s-1}, v_{2m-2s-1}, 0, 0]
\]
and
\[
T_\ast R_{2m-2} \kappa = [0_{2s-1}, v_{2m-2s-1}].
\]

We may now proceed as in 1(i).

2 Suppose \(\kappa = [v_{r-1}, \kappa_r, \kappa_{r+1}, \ldots, \kappa_{2m}] \).

(i) If there are no zero components, so that \(\kappa = v_{2m} \), then
\[
Q[\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_{r-1}, v_{2m}] = [\varepsilon_2, \varepsilon_3, \cdots, \varepsilon_r, \varepsilon_1].
\]

Use \(T_\ast \) to permute these cyclically into the proper order.

(ii) The number of zero components is even, suppose it is \(2m - 2s > 0 \). Find \(T_\ast \) operating on rows \(r \) to \(2m \), such that
\[
T_\ast \kappa = [v_{r-1}, v_{2s-r}, 0_{2m-2s}, 1]
\]
Then
\[
R_{2m-3} T_\ast \kappa = [0_{2s-1}, v_{2m-2s-2}, 0, 1, 0].
\]
Find \(T_\ast \) such that
\[
T_\ast R_{2m-2} T_\ast \kappa = [0_{2s+1}, v_{2m-2s-1}]
\]
and proceed as in 1(i).

Thus in all cases, \(r = 2, 3, \ldots, 2m - 3 \) if the first \(r - 1 \) columns are \(\varepsilon_1, \ldots, \varepsilon_{r-1} \), we can reduce the \(r \)th column to \(\varepsilon_r \) by matrices belonging to
The generation of the symplectic group

\(\langle Q, R \rangle \), this provision, \(r \leq 2m - 3 \), being necessary on account of the form of \(R_{2m-2} \).

For the last three columns we have, as at the \(r \)th column,
either \(\kappa_1 = \kappa_2 = \cdots = \kappa_{2m-3} = 1, \kappa_{2m-2} + \kappa_{2m-1} + \kappa_{2m} = 1 \)
or \(\kappa_1 = \kappa_2 = \cdots = \kappa_{2m-3} = 0, \kappa_{2m-2} + \kappa_{2m-1} + \kappa_{2m} = 1 \).

We consider the possible cases separately, and suppose that where necessary a transposition of the last three rows has been effected to give the form named:

Column 2m - 2

\(\kappa = [v_{2m-3}, 0, 0, 1] : T_{2m-2, 2m-1} R_{2m-2} \kappa = e_{2m-2} \)
\(\kappa = [v_{2m-3}, 1, 1, 1] = v : Q[e_1, e_2, \ldots, e_{2m-3}, v] = [e_2, e_3, \ldots, e_{2m-2}, e_1] \)

Cyclically permute as in 2(i) above.

\(\kappa = [0_{2m-3}, 1, 0, 0] = e_{2m-2} \).
\(\kappa = [0_{2m-3}, 1, 1, 1] : T_* R_{2m-2} \kappa = e_{2m-2} \).

Column 2m - 1

\(\kappa = [v_{2m-2}, 1, 1] = v : \text{reduce as above.} \)
\(\kappa = [0_{2m-2}, 1, 0] = e_{2m-1} \)

Column 2m

\(\kappa = [v_{2m}, 1] = v : \text{reduce as above.} \)
\(\kappa = [0_{2m-1}, 1] = e_{2m}. \)

The reduction is therefore complete.

\(\Gamma \) itself belongs to \(A(2m, 2) \), since \(\Gamma^2 = 1, \Gamma = \Gamma T \), so that \(\Gamma T \Gamma = \Gamma \).

To express \(\Gamma \) as a member of \(\langle Q, R \rangle \) we may apply the simple process 1(i) to column 1, and inductively to succeeding columns, thus:

\[
R_{2m-3} R_{2m-5} \cdots R_3 R_1 \Gamma = \begin{bmatrix}
0_{2m-2} & 0_{2m-2} & I_{2m-2} \\
0 & 1 & 0_{2m-2}^T \\
1 & 0 & 0_{2m-2}^T
\end{bmatrix}
\]

By repetition, with one fewer factor each time, we may reduce \(\Gamma \) by means of

\[
R_1(R_3 R_1)(R_5 R_3 R_1) \cdots (R_{2m-3} R_{2m-5} \cdots R_3 R_1)
\]
to \([e_{2m}, e_{2m-1}, \ldots, e_2, e_1]\).

But

\[
R_{2r-1} R_{2r-3} \cdots R_3 R_1 = Q^{2r-2} R Q^{-2} R Q^{-2} \cdots Q^{-2} R Q^{-2} R
\]

\(= Q^{2r} (Q^{-2} R)^r \).

Thus, after inverting the product,
Finally it is to be proved that S_{2m+2} is a subgroup of $A(2m, 2)$; explicitly:

THEOREM 4. $\langle Q, \Gamma \rangle$ is isomorphic to S_{2m+2}.

Denote by χ_0 the basic complete Clifford set $\gamma_1, \ldots, \gamma_{2m+1}$ and define a sequence $\chi_1, \chi_2, \ldots, \chi_{2m+1}$ of complete Clifford sets thus:

$$\chi_{2m+1} = \Gamma(\chi_0) = (\gamma_1 \gamma_{2m+1}, \gamma_2 \gamma_{2m+1}, \ldots, \gamma_{2m} \gamma_{2m+1}, \gamma_{2m+1})$$

$$\chi_r = Q^r(\chi_{2m+1}) = (\gamma_r \gamma_{r+1}, \gamma_r \gamma_{r+1}, \ldots, \gamma_r \gamma_{2m+1}, \gamma_r, \gamma_1, \ldots, \gamma_r \gamma_{r-1}, \gamma_r)$$

It is to be shown that the operators $\langle Q, \Gamma \rangle$ generate the permutations of the sets $\chi_0, \ldots, \chi_{2m+1}$ (the order of the members of a set being disregarded). Thus, writing only the subscripts of the χ_i, we find the following permutations

<table>
<thead>
<tr>
<th>Q</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>$2m$</th>
<th>$2m + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>$2m + 1$</td>
<td>1</td>
<td>2</td>
<td>\ldots</td>
<td>$2m$</td>
<td>0</td>
</tr>
</tbody>
</table>

So that either $\langle Q, \Gamma \rangle$ is isomorphic to S_{2m+2}, or contains it as a subgroup, in which case some matrices of $\langle Q, \Gamma \rangle$ would permute the members of various sets χ_i, while leaving each set as a whole unchanged. But a permutation of χ_0 which interchanges γ_i and γ_j necessarily interchanges the sets χ_i and χ_j. It follows that S_{2m+2} is isomorphic to the whole group.

It may be noted that Q and $Q\Gamma Q^{-1}$ are formally the same as matrices Q and D of Room and Smith [2], which are used to generate $A(2m, p)$ in the cases $p > 2$.

References

University of Sydney