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COMPLEX BLOW-UP IN BURGERS' EQUATION:
AN ITERATIVE APPROACH

NALINI JOSHI AND JOHANNES A. PETERSEN

We show that for a given holomorphic noncharacteristic surface <S £ C2 , and
a given holomorphic function on S, there exists a unique meromorphic solution
of Burgers' equation which blows up on S. This proves the convergence of the
formal Laurent series expansion found by the Painleve test. The method used is
an adaptation of Nirenberg's iterative proof of the abstract Cauchy-Kowalevski
theorem.

1. INTRODUCTION

A partial differential equation (PDE) is said to have the Painleve property if all so-
lutions are single-valued around all noncharacteristic holomorphic movable singularity
manifolds, where movable means that the manifold's location depends on initial con-
ditions. In practice, a necessary condition of the property is usually checked through
formal power series expansion (see [11]). Here we show, through an iterative method
in C2 , that such series converge for Burgers' equation

(1) ut+uux=uxx.

The Painleve property has become a widely used indicator for integrability (see
[2, 3]), meaning exact solvability through the inverse scattering method [4, 1] or lin-
earisability through a transformation of variables. Burgers' equation is regarded as
integrable because it can be linearised (to the Heat equation) by the Cole-Hopf trans-
formation [6, 5]. Hence, according to Ablowitz, Ramani and Segur [2, 3] it should
possess the Painleve property. To check that it does, Weiss, Tabor and Carnevale [11]
proposed that one should formally expand all solutions around an arbitrary nonchar-
acteristic singularity manifold given by $(z,<) = 0 in a power series with a leading
term

(2) u = £«„(*, *)*»+«,
n=0
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where a is to be found.

The expansion may be simplified by using the noncharacteristic nature of the sin-
gularity manifold $ = 0 which implies $x ^ 0. By the implicit function theorem
(reseating $ if necessary) we have

(3) * = * - « * ) ,

near 3> = 0, where £(t) is an arbitrary function of t. Replacing x by £(<)+$ throughout
the series (2) we get a series in powers of x — £(t) with coefficients un that are functions
of t alone. Formal expansion then shows that a = —1 and that the coefficient 112(2)
is arbitrary. Hence the series (2) formally represents a meromorphic general solution
described by two arbitrary functions of one variable, namely £(t) and U2(t), near the
singularity manifold.

Although widely used, there are two obvious deficiencies in this procedure. First,
convergence is ignored. Second, the procedure yields only necessary consequences of
the Painleve property and makes no statement about whether these are sufficient.

In this paper, we overcome the first deficiency. Our aim is to develop a method that
will generalise to all integrable PDEs. Here, we present a method that does generalise.
An announcement of its generalisation to the Korteweg-deVries equation was made in
[8]. Although Burgers' equation may be solved through the Heat equation, we present
the details of our method for Burgers' equation here because of its value as a more
transparent nonlinear example than the Korteweg-deVries equation.

The method we use is a generalisation of one given for the Painleve equations (six
classical nonlinear second-order ODEs) by Joshi and Kruskal [7]. They showed that
each Painleve equation could be recast as an integral equation suitable for iteration
near movable singularities. Furthermore, the iteration of this equation has a fixed point
which gives a meromorphic solution in a neighbourhood of each movable singularity.

In Section 2, we recast Burgers' equation as an integral equation that is suitable
for iteration near a movable singularity to prove the following theorem.

THEOREM 1 . Let S be a holomorphic surface in C2 given by {t = £{x)}. Then

locally there exists a solution of Burgers' equation

(4) ux +uut = utt,

which has the form

(5) u{t,x) = --j-^-j + h(t,x),

near S where h(t, x) is holomorphic. Moreover,

(6) lim {ut(t,x)-l(u{t,x)-t'(x))2\
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is a holomorphic function of x, which can be given arbitrarily in advance.

Note that in keeping with the PDE literature, we have taken Burgers' equation to
be given by (4). That is, the roles of t and x have been interchanged. Also, note that
throughout the paper, (t,x) refers to a point in C2 .

Our proof was influenced by the iteration proof of the abstract Cauchy-Kowalevski
theorem given by Nirenberg [10]. After the completion of our work, we learnt of a
different approach developed by Kichenassamy and Littman [9] for nonlinear Klein-
Gordon equations.

2. PROOF OF THE THEOREM

In this section, we convert Burgers' equation to an integral equation suitable for
iteration near S, and prove the theorem stated above.

Let f(x) be any analytic function. We begin by fixing our notation. Assume
(without loss of generality) that the origin hes on 5 . Let D be an open neighbourhood
of the origin in C2 where

f(t,x):=t£"(x) + f(x)

is holomorphic. We can straighten the surface 5 locally into the i-plane {t = 0} by
using a biholomorphism (t,x) t-» (t — £(x),x) =: (t,x) , u(x,i) \-> u(t,x) . Notice that
this changes Burgers' equation into

(7) u~=(u-('(x))uT+u7.

It is sufficient to find a solution u having the form

« = - = + £,

where h is holomorphic such that

<-»0

In the following, we shall assume that <S is already locally given by the plane {t = 0}.

So Burgers' equation will be assumed to be (7).

To obtain a suitable integral equation, integrate (7) as though only the dominant

terms that is, u~, uw-j-, were present. Then, dropping the tildes, we get

(8) fdtux+f{x).
Jo
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Change variables to the reciprocal

Then if U does not vanish in some neighbourhood off the i-plane, (8) gives

(10) -Ut = FU

where

(11) FU(t):=\+ U(tf (jT dx ( ^ ) dr + f(t, x)) ,

is well defined. Integrate (10) once more to get

(12) U = JU,

where

(13) T:=-\ FU{r)dr.
Jo

Conversely, if we find a fixed point U of the operator T then the corresponding u :=

£'(t) wiU solve (7).

We shall study the iteration of the operator T for functions U of the form

Note that substitution of such a function into (12) reproduces a function of the same

form.

Let Co be an open neighbourhood of the origin in C and d > 0 be a real number.

Then for 0 < s < 1, define

O. := {x | dist (x,O0) <sd}.

We assume Go and d small enough that D contains the disk {0} x O\. Define, for
any number a > 0

(14) Da := {(t,x) e C 2 | 3 0 < s < l such that \t\ < o(l - s) and x G O,},

and assume a small enough that Da is a subset of D. For any real number K and

integer n, let

OS-(-Do) := {U : Da -> C | U is holomorphic and V(t,x) G Da \U(t,x)\ ^ K \t\n}.
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These spaces denote remainder terms in Taylor expansions. Their union will be written

K

The function spaces in which we shall work are given by

B* := {U : Da -> C | U is holomorphic and U = -t/2 + 02
K(Da)},

equipped with the .sup-norm on Da. Our aim is to find a number o > 0 and a holomor-
phic function U £ B\ that solves the fixed point equation (12). We accomplish this by
showing that the sequence {Un} of iterates defined recursively by

converges to the desired fixed point of T.

In general, our (Newton) iteration method consists of two stages, one linear, and the
other nonlinear, where the hnear part is given by the iteration of the Frechet derivative
of T. However, for Burgers' equation it is sufficient to take this derivative to be zero.
(This is not the case for the Korteweg-deVries equation.)

Our proof relies on the following lemmas. Proofs of these are given in subsections
at the end of this section.

LEMMA 1. Suppose a and K are given positive numbers such that

a < min{l/6,l/(6A')}. If U G B* then there is a holomorphic function g : Da —» C
such that

U{t,x)(-*+g(t,x))=l

wherever U ̂  0. Moreover, \g\ is bounded by &K.

LEMMA 2 . Let n > 0, a > 0 and K > 0 be given numbers, 0 < e < 1, and
0 < a* ^ a( l — e). Assume that the holomorphic function g : Da —» C satisfies for all

\g(t,x)\^K\t\n.

Then for all (t,x) e Da> we get

LEMMA 3 . Let n ^ 1, and suppose a, a*, K, L are given positive numbers

which satisfy

K>tmp{\f\,\f\}, a
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Assume that U\ , U2 are elements of BJf and their difference satisfies

v.= U3-Uie0l+1{DJ.

Then we have

The last lemma is the key to the proof of our theorem. We shall apply it to the
sequence {Un} in the sense that if the iterates Un-i and Un already agree up to order
n + 1, then the next pair of iterates Un and Un+i will agree up to order n + 2.

P R O O F OF THE T H E O R E M : Let

K>sup{\f(t,x)\,\f(t,x)\}.

Note that this implies

Now assume
0 < a 0

(As always, ao is assumed to be sufficiently small such that Dao C D.) Moreover,
define a sequence {an} recursively by

xn:=an_1( l -2-("+ 2>) .

We start the iteration in Dao with

:=-t, vo:=FUo-Uo.

Note that for all (t,x) 6 Dao , vo is bounded by

Ka0

^ 4<
"" 24

Let L = Kao/A(^ 1/44). We have Uo G B°Q, vQ G 02
L(Dao).

Now for the inductive step, suppose we have
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where £ n _ i = lO7 1"1^. Define

n-l

(15) Un := Un-i + vn-i = Uo + J2 vi-

We now show tha t Un € B\n . First note that £>„„ C DOj., j = 0 , . . . , n - 1. The

induction hypothesis gives Vj £ O£ + 2 (£)„„)• That is, for all O ^ j ' ^ n — 1

(16) K - K

Hence we get
\Un-U0\^UL\t\2,

which implies that Un € B\n because 11X < 1.

Now we apply Lemma 3 (with a, a*, L, v replaced by a n _ i , an, Ln-\, vn_i
respectively) to get an estimate on vn. Note that the hypothesis

follows from on_i ^ oo ^ m i n ( l / ( l l ) , l / ( l l i i f ) ) and the definition of L. Hence we get

The sequence {Un}, n = 0 , 1 ,2 , . . . , produced by the iteration process above, is

contained in B^ where
oo

(17) a := lim an = a0 T\ (1 - 2 - ( n + 2 ) ) > 0.
n=0

Consider now the limit of the sequence {Un}. From (15), (at n + 1) and (16), we have

(18) Un+1 -Un=vne O l ( 1 0 / 1 1 ) n (A, ) .

Hence it follows that {Un} is a convergent sequence and that the limit

U := Urn Un
n—»oo

hes in B\. Writing || || for the jup-norm on Da, we get for any positive integer n ,

(19) \\TU - U\\ = \\FU - TUn + Un+1 - U\\

(20) ^ ||^17 - FUn\\ + \\Un+1 - U\\.

So by continuity of T we can conclude that a fixed point for T

FU = U

exists in B\ . D
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2.1 PROOF OF LEMMA 1.

PROOF: The number a, in the definition of Da, was assumed to be sufficiently
small that U does not vanish off the z-plane. Let (t, x) £ Da, with t ̂  0. Then we
can define g to be

The bounds on a, K, and \t\ give \U(t,x)\ > |* | /3 . Therefore,

tU(t,x)

and so
\9(t,x)\ =

2U{t,x)
tU(t,x)

Since g is then bounded and holomorphic off the z-plane, by Kistler's theorem (see
Osgood [11]), it can be extended to all of Da.

2.2 PROOF OF LEMMA 2.

PROOF: Let (i,x) e D*a, and |i-| < |f|. We put

D

s : = 1 —(21)

(22) s(r) = 1 - M.

Note that S(T) > s' and Da* C Da by the assumed properties of a*, r and /. Similarly,
x € O,i, {r} x O,(r) C Da. So we can apply the Cauchy estimate

together with the hypothesis on g to get

because x G O,i. Using the substitution r = rt we get

1 <

and so

s(r) - , '

(23) | ^ ^ ( T , , ) * | ^ J r W - ^ _ ^ _

(24) D
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2.3 P R O O F OF LEMMA 3.

PROOF: In the following, we shall drop references to Da, that is, 0%(Da) will be
written as OJ-. Also wherever convenient, we shall denote an element of 0J- by the
set symbol O£- itself. Since U\ £ B% we have, for all (t, x) 6 Da,

By the given hypotheses on a, K, and t, we then get

which implies v/Vi 6 0™L. Now using an ̂  1/(12L), we have

I-\ i or n i n7-2^2n i o*7r3 3n t \ , - / in

—- (1 + oLa + 9L a + 11L a + • • • ) £ C 4 i ,

implying that

By similar calculations, we get

So by using Lemma 1, we get

1<U2- till = C>4/9 / OXU12L + U3L I / OXU6K + / I •
Vo \7o /

So far all estimates have been obtained in £)„. Now we apply Lemma 2, and thereby
restrict our domain to Da*, to estimate the terms differentiated with respect to x in
the above equations. To apply Lemma 2, note that e = 2~(n+2^ and that a < d. Then
for any given integer N ̂  0 and given k > 0, we get

/ • * w N

Jo " k k

Recalling that m < K and using the definition of TV, we get

(25) TV2 - TV! - ^ \FV2(T) - FV^jdr

(26) = / ((n + 2)0"+1., +(n + 2)
f f . \

(27) = I s in -\- ijU^Jj /«, + Or ?dr

where the last line is obtained by using aK < 1/6 and the integrands after the first
line are evaluated on Do». Integration gives the desired result
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