COMPLEX BLOW-UP IN BURGERS' EQUATION: AN ITERATIVE APPROACH

Nalini Joshi and Johannes A. Petersen

Abstract

We show that for a given holomorphic noncharacteristic surface $\mathcal{S} \in \mathbb{C}^{2}$, and a given holomorphic function on \mathcal{S}, there exists a unique meromorphic solution of Burgers' equation which blows up on \mathcal{S}. This proves the convergence of the formal Laurent series expansion found by the Painleve test. The method used is an adaptation of Nirenberg's iterative proof of the abstract Cauchy-Kowalevski theorem.

1. Introduction

A partial differential equation (PDE) is said to have the Painlevé property if all solutions are single-valued around all noncharacteristic holomorphic movable singularity manifolds, where movable means that the manifold's location depends on initial conditions. In practice, a necessary condition of the property is usually checked through formal power series expansion (see [11]). Here we show, through an iterative method in \mathbb{C}^{2}, that such series converge for Burgers' equation

$$
\begin{equation*}
u_{t}+u u_{x}=u_{x x} . \tag{1}
\end{equation*}
$$

The Painlevé property has become a widely used indicator for integrability (see $[2,3]$), meaning exact solvability through the inverse scattering method $[4,1]$ or linearisability through a transformation of variables. Burgers' equation is regarded as integrable because it can be linearised (to the Heat equation) by the Cole-Hopf transformation [6, 5]. Hence, according to Ablowitz, Ramani and Segur [2, 3] it should possess the Painlevé property. To check that it does, Weiss, Tabor and Carnevale [11] proposed that one should formally expand all solutions around an arbitrary noncharacteristic singularity manifold given by $\Phi(x, t)=0$ in a power series with a leading term

$$
\begin{equation*}
u=\sum_{n=0}^{\infty} u_{n}(x, t) \Phi^{n+\alpha} \tag{2}
\end{equation*}
$$

Received 20th November, 1995.

The research reported here was supported by the Australian Research Council. NJ would also like to thank Martin D. Kruskal for early conversations on the iterative proof of the Cauchy-Kowalevsky theorem and François Treves for informing us about [10].
where α is to be found.
The expansion may be simplified by using the noncharacteristic nature of the singularity manifold $\Phi=0$ which implies $\Phi_{x} \neq 0$. By the implicit function theorem (rescaling Φ if necessary) we have

$$
\begin{equation*}
\Phi=x-\xi(t) \tag{3}
\end{equation*}
$$

near $\Phi=0$, where $\xi(t)$ is an arbitrary function of t. Replacing x by $\xi(t)+\Phi$ throughout the series (2) we get a series in powers of $x-\xi(t)$ with coefficients u_{n} that are functions of t alone. Formal expansion then shows that $\alpha=-1$ and that the coefficient $u_{2}(t)$ is arbitrary. Hence the series (2) formally represents a meromorphic general solution described by two arbitrary functions of one variable, namely $\xi(t)$ and $u_{2}(t)$, near the singularity manifold.

Although widely used, there are two obvious deficiencies in this procedure. First, convergence is ignored. Second, the procedure yields only necessary consequences of the Painleve property and makes no statement about whether these are sufficient.

In this paper, we overcome the first deficiency. Our aim is to develop a method that will generalise to all integrable PDEs. Here, we present a method that does generalise. An announcement of its generalisation to the Korteweg-deVries equation was made in [8]. Although Burgers' equation may be solved through the Heat equation, we present the details of our method for Burgers' equation here because of its value as a more transparent nonlinear example than the Korteweg-deVries equation.

The method we use is a generalisation of one given for the Painlevé equations (six classical nonlinear second-order ODEs) by Joshi and Kruskal [7]. They showed that each Painlevé equation could be recast as an integral equation suitable for iteration near movable singularities. Furthermore, the iteration of this equation has a fixed point which gives a meromorphic solution in a neighbourhood of each movable singularity.

In Section 2, we recast Burgers' equation as an integral equation that is suitable for iteration near a movable singularity to prove the following theorem.

Theorem 1. Let \mathcal{S} be a holomorphic surface in \mathbb{C}^{2} given by $\{t=\xi(x)\}$. Then locally there exists a solution of Burgers' equation

$$
\begin{equation*}
u_{x}+u u_{t}=u_{t t} \tag{4}
\end{equation*}
$$

which has the form

$$
\begin{equation*}
u(t, x)=-\frac{2}{t-\xi(x)}+h(t, x) \tag{5}
\end{equation*}
$$

near \mathcal{S} where $h(t, x)$ is holomorphic. Moreover,

$$
\begin{equation*}
\lim _{t \rightarrow \xi(x)}\left\{u_{t}(t, x)-\frac{1}{2}\left(u(t, x)-\xi^{\prime}(x)\right)^{2}\right\} \tag{6}
\end{equation*}
$$

is a holomorphic function of x, which can be given arbitrarily in advance.
Note that in keeping with the PDE literature, we have taken Burgers' equation to be given by (4). That is, the roles of t and x have been interchanged. Also, note that throughout the paper, (t, x) refers to a point in \mathbb{C}^{2}.

Our proof was influenced by the iteration proof of the abstract Cauchy-Kowalevski theorem given by Nirenberg [10]. After the completion of our work, we learnt of a different approach developed by Kichenassamy and Littman [9] for nonlinear KleinGordon equations.

2. Proof of the Theorem

In this section, we convert Burgers' equation to an integral equation suitable for iteration near \mathcal{S}, and prove the theorem stated above.

Let $f(x)$ be any analytic function. We begin by fixing our notation. Assume (without loss of generality) that the origin lies on \mathcal{S}. Let D be an open neighbourhood of the origin in \mathbb{C}^{2} where

$$
\widetilde{f}(t, x):=t \xi^{\prime \prime}(x)+f(x)
$$

is holomorphic. We can straighten the surface \mathcal{S} locally into the x-plane $\{t=0\}$ by using a biholomorphism $(t, x) \mapsto(t-\xi(x), x)=:(\tilde{t}, \tilde{x}), u(x, t) \mapsto \tilde{u}(\widetilde{t}, \tilde{x})$. Notice that this changes Burgers' equation into

$$
\begin{equation*}
\tilde{u}_{\tilde{t} \tilde{t}}=\left(\tilde{u}-\xi^{\prime}(x)\right) \tilde{u}_{\tilde{t}}+\tilde{u}_{\tilde{x}} . \tag{7}
\end{equation*}
$$

It is sufficient to find a solution \widetilde{u} having the form

$$
\tilde{u}=-\frac{2}{\widetilde{t}}+\tilde{h}
$$

where \widetilde{h} is holomorphic such that

$$
\lim _{\tilde{t} \rightarrow 0}\left\{\widetilde{u}_{\tilde{t}}-\frac{1}{2}\left(\widetilde{u}-\xi^{\prime}(x)\right)^{2}\right\}=f(x)
$$

In the following, we shall assume that \mathcal{S} is already locally given by the plane $\{t=0\}$. So Burgers' equation will be assumed to be (7).

To obtain a suitable integral equation, integrate (7) as though only the dominant terms that is, $\tilde{u}_{\tilde{t} t}, \tilde{u} \widetilde{u}_{\tilde{t}}$, were present. Then, dropping the tildes, we get

$$
\begin{equation*}
u_{t}=\frac{1}{2}\left(u-\xi^{\prime}(x)\right)^{2}+\int_{0}^{t} d t u_{x}+f(x) \tag{8}
\end{equation*}
$$

Change variables to the reciprocal

$$
\begin{equation*}
U=\frac{1}{u-\xi^{\prime}(x)} \tag{9}
\end{equation*}
$$

Then if U does not vanish in some neighbourhood off the x-plane, (8) gives

$$
\begin{equation*}
-U_{t}=F U \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
F U(t):=\frac{1}{2}+U(t)^{2}\left(\int_{0}^{t} \partial_{x}\left(\frac{1}{U(\tau)}\right) d \tau+\tilde{f}(t, x)\right) \tag{11}
\end{equation*}
$$

is well defined. Integrate (10) once more to get

$$
\begin{equation*}
U=\mathcal{F} U \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}:=-\int_{0}^{t} F U(\tau) d \tau \tag{13}
\end{equation*}
$$

Conversely, if we find a fixed point U of the operator \mathcal{F} then the corresponding $\tilde{u}:=$ $1 / U+\xi^{\prime}(t)$ will solve (7).

We shall study the iteration of the operator \mathcal{F} for functions U of the form

$$
U=-\frac{t}{2}+O\left(|t|^{2}\right)
$$

Note that substitution of such a function into (12) reproduces a function of the same form.

Let \mathcal{O}_{0} be an open neighbourhood of the origin in \mathbb{C} and $d>0$ be a real number. Then for $0<s \leqslant 1$, define

$$
\mathcal{O}_{s}:=\left\{x \mid \text { dist }\left(x, \mathcal{O}_{0}\right)<s d\right\}
$$

We assume \mathcal{O}_{0} and d small enough that D contains the disk $\{0\} \times \mathcal{O}_{1}$. Define, for any number $a>0$

$$
\begin{equation*}
D_{a}:=\left\{(t, x) \in \mathbb{C}^{2} \mid \exists 0 \leqslant s \leqslant 1 \text { such that }|t|<a(1-s) \text { and } x \in \mathcal{O}_{s}\right\} \tag{14}
\end{equation*}
$$

and assume a small enough that D_{a} is a subset of D. For any real number K and integer n, let

$$
O_{K}^{n}\left(D_{a}\right):=\left\{U: D_{a} \rightarrow \mathbb{C} \mid U \text { is holomorphic and } \quad \forall(t, x) \in D_{a} \quad|U(t, x)| \leqslant K|t|^{n}\right\}
$$

These spaces denote remainder terms in Taylor expansions. Their union will be written as

$$
O^{n}\left(D_{a}\right):=\bigcup_{K} O_{K}^{n}\left(D_{a}\right)
$$

The function spaces in which we shall work are given by

$$
B_{a}^{K}:=\left\{U: D_{a} \rightarrow \mathbb{C} \mid U \text { is holomorphic and } U=-t / 2+O_{K}^{2}\left(D_{a}\right)\right\}
$$

equipped with the sup-norm on D_{a}. Our aim is to find a number $a>0$ and a holomorphic function $U \in B_{a}^{1}$ that solves the fixed point equation (12). We accomplish this by showing that the sequence $\left\{U_{n}\right\}$ of iterates defined recursively by

$$
U_{0}=-\frac{t}{2}, \quad U_{n+1}=\mathcal{F} U_{n}
$$

converges to the desired fixed point of \mathcal{F}.
In general, our (Newton) iteration method consists of two stages, one linear, and the other nonlinear, where the linear part is given by the iteration of the Fréchet derivative of \mathcal{F}. However, for Burgers' equation it is sufficient to take this derivative to be zero. (This is not the case for the Korteweg-deVries equation.)

Our proof relies on the following lemmas. Proofs of these are given in subsections at the end of this section.

Lemma 1. Suppose a and K are given positive numbers such that $a<\min \{1 / 6,1 /(6 K)\}$. If $U \in B_{a}^{K}$ then there is a holomorphic function $g: D_{a} \rightarrow \mathbb{C}$ such that

$$
U(t, x)\left(-\frac{2}{t}+g(t, x)\right)=1
$$

wherever $U \neq 0$. Moreover, $|g|$ is bounded by $6 K$.
Lemma 2. Let $n \geqslant 0, a>0$ and $K>0$ be given numbers, $0<\varepsilon<1$, and $0<a^{*} \leqslant a(1-\varepsilon)$. Assume that the holomorphic function $g: D_{a} \rightarrow \mathbb{C}$ satisfies for all $(t, x) \in D_{a}$

$$
|g(t, x)| \leqslant K|t|^{n}
$$

Then for all $(t, x) \in D_{a^{*}}$ we get

$$
\left|\int_{0}^{t} \partial_{x} g(\tau, x) d \tau\right| \leqslant \frac{a}{d} \ln \left(\frac{1}{\varepsilon}\right) K|t|^{n}
$$

Lemma 3. Let $n \geqslant 1$, and suppose a, a^{*}, K, L are given positive numbers which satisfy

$$
\begin{gathered}
K \geqslant \sup _{D}\{|\widetilde{f}|,|f|\}, \quad a<\min \{1 / 6,1 /(6 K), d\} \\
\\
a^{n}<1 /(12 L), \quad a^{*} \leqslant a\left(1-2^{-(n+2)}\right)
\end{gathered}
$$

Assume that U_{1}, U_{2} are elements of B_{a}^{K} and their difference satisfies

$$
v:=U_{2}-U_{1} \in O_{L}^{n+1}\left(D_{a}\right)
$$

Then we have

$$
\mathcal{F} U_{2}-\mathcal{F} U_{1} \in O_{10 L}^{n+2}\left(D_{a^{*}}\right)
$$

The last lemma is the key to the proof of our theorem. We shall apply it to the sequence $\left\{U_{n}\right\}$ in the sense that if the iterates U_{n-1} and U_{n} already agree up to order $n+1$, then the next pair of iterates U_{n} and U_{n+1} will agree up to order $n+2$.

Proof of the Theorem: Let

$$
K \geqslant \sup _{D}\{|\tilde{f}(t, x)|,|f(t, x)|\}
$$

Note that this implies

$$
\sup _{D}\left|t \xi^{\prime \prime}(x)\right| \leqslant 2 K .
$$

Now assume

$$
0<a_{0}<\min \{1 / 11,1 /(11 K), d\}
$$

(As always, a_{0} is assumed to be sufficiently small such that $D_{a_{0}} \subset D$.) Moreover, define a sequence $\left\{a_{n}\right\}$ recursively by

$$
a_{n}:=a_{n-1}\left(1-2^{-(n+2)}\right)
$$

We start the iteration in $D_{a_{0}}$ with

$$
U_{0}:=-\frac{t}{2}, \quad v_{0}:=\mathcal{F} U_{0}-U_{0}
$$

Note that for all $(t, x) \in D_{a_{0}}, v_{0}$ is bounded by

$$
\begin{aligned}
\left|v_{0}\right| & =\left|\int_{0}^{t}\left(t \xi^{\prime \prime}(x)+f(x)\right) \frac{t^{2}}{4}\right| \\
& \leqslant \frac{5 K|t|^{3}}{24} \leqslant \frac{K a_{0}|t|^{2}}{4}
\end{aligned}
$$

Let $L=K a_{0} / 4(\leqslant 1 / 44)$. We have $U_{0} \in B_{a_{0}}^{0}, v_{0} \in O_{L}^{2}\left(D_{a_{0}}\right)$.
Now for the inductive step, suppose we have

$$
U_{n-1} \in B_{a_{n-1}}^{1}, \quad v_{n-1} \in O_{L_{n-1}}^{n+1}\left(D_{a_{n-1}}\right)
$$

where $L_{n-1}=10^{n-1} L$. Define

$$
\begin{equation*}
U_{n}:=U_{n-1}+v_{n-1}=U_{0}+\sum_{j=0}^{n-1} v_{j} \tag{15}
\end{equation*}
$$

We now show that $U_{n} \in B_{a_{n}}^{1}$. First note that $D_{a_{n}} \subset D_{a_{j}}, j=0, \ldots, n-1$. The induction hypothesis gives $v_{j} \in O_{L_{j}}^{j+2}\left(D_{a_{n}}\right)$. That is, for all $0 \leqslant j \leqslant n-1$

$$
\begin{equation*}
\left|v_{j}\right| \leqslant\left(\frac{10}{11}\right)^{j} L|t|^{2} \tag{16}
\end{equation*}
$$

Hence we get

$$
\left|U_{n}-U_{0}\right| \leqslant 11 L|t|^{2}
$$

which implies that $U_{n} \in B_{a_{n}}^{1}$ because $11 L<1$.
Now we apply Lemma 3 (with a, a^{*}, L, v replaced by $a_{n-1}, a_{n}, L_{n-1}, v_{n-1}$ respectively) to get an estimate on v_{n}. Note that the hypothesis

$$
a_{n-1}^{n} \leqslant \frac{1}{12 L_{n-1}}
$$

follows from $a_{n-1} \leqslant a_{0} \leqslant \min (1 /(11), 1 /(11 K))$ and the definition of L. Hence we get

$$
v_{n} \in O_{L_{n}}^{n+2}\left(D_{a_{n}}\right)
$$

The sequence $\left\{U_{n}\right\}, n=0,1,2, \ldots$, produced by the iteration process above, is contained in B_{a}^{1} where

$$
\begin{equation*}
a:=\lim _{n \rightarrow \infty} a_{n}=a_{0} \prod_{n=0}^{\infty}\left(1-2^{-(n+2)}\right)>0 \tag{17}
\end{equation*}
$$

Consider now the limit of the sequence $\left\{U_{n}\right\}$. From (15), (at $n+1$) and (16), we have

$$
\begin{equation*}
U_{n+1}-U_{n}=v_{n} \in O_{L(10 / 11)^{n}}^{2}\left(D_{a}\right) \tag{18}
\end{equation*}
$$

Hence it follows that $\left\{U_{n}\right\}$ is a convergent sequence and that the limit

$$
U:=\lim _{n \rightarrow \infty} U_{n}
$$

lies in B_{a}^{1}. Writing || \| for the sup-norm on D_{a}, we get for any positive integer n,

$$
\begin{align*}
\|\mathcal{F} U-U\| & =\left\|\mathcal{F} U-\mathcal{F} U_{n}+U_{n+1}-U\right\| \tag{19}\\
& \leqslant\left\|\mathcal{F} U-\mathcal{F} U_{n}\right\|+\left\|U_{n+1}-U\right\| \tag{20}
\end{align*}
$$

So by continuity of \mathcal{F} we can conclude that a fixed point for \mathcal{F}

$$
\mathcal{F} U=U
$$

exists in B_{a}^{1}.

2.1 Proof of Lemma 1.

Proof: The number a, in the definition of D_{a}, was assumed to be sufficiently small that U does not vanish off the x-plane. Let $(t, x) \in D_{a}$, with $t \neq 0$. Then we can define g to be

$$
g(t, x):=\frac{1}{U(t, x)}+\frac{2}{t}
$$

The bounds on a, K, and $|t|$ give $|U(t, x)|>|t| / 3$. Therefore,

$$
\left|\frac{1}{t U(t, x)}\right|<\frac{3}{|t|^{2}}
$$

and so

$$
|g(t, x)|=\left|\frac{t+2 U(t, x)}{t U(t, x)}\right| \leqslant 6 K .
$$

Since g is then bounded and holomorphic off the x-plane, by Kistler's theorem (see Osgood [11]), it can be extended to all of D_{a}.

2.2 Proof of Lemma 2.

Proof: Let $(t, x) \in D_{a}^{*}$, and $|\tau|<|t|$. We put

$$
\begin{align*}
s^{\prime} & :=1-\frac{|t|}{a^{*}} \tag{21}\\
s(\tau) & =1-\frac{|\tau|}{a} \tag{22}
\end{align*}
$$

Note that $s(\tau)>s^{\prime}$ and $D_{a^{*}} \subset D_{a}$ by the assumed properties of a^{*}, τ and t. Similarly, $x \in \mathcal{O}_{s^{\prime}},\{\tau\} \times O_{s(\tau)} \subset D_{a}$. So we can apply the Cauchy estimate

$$
\left\|\partial_{x} g(\tau, .)\right\|_{s^{\prime}} \leqslant \frac{\|g(\tau, .)\|_{s(r)}}{d\left(s(\tau)-s^{\prime}\right)}
$$

together with the hypothesis on g to get

$$
\left|\int_{0}^{t} \partial_{x} g(\tau, x) d \tau\right| \leqslant K\left|\int_{0}^{t} \frac{|\tau|^{n} d \tau}{d\left(s(\tau)-s^{\prime}\right)}\right|
$$

because $x \in O_{s^{\prime}}$. Using the substitution $\tau=r t$ we get

$$
\frac{1}{s(\tau)-s^{\prime}} \leqslant \frac{a^{*}}{|t|(1-(1-\varepsilon) r)}
$$

and so

$$
\begin{align*}
\left|\int_{0}^{t} \partial_{x} g(\tau, x) d \tau\right| & \leqslant \frac{a^{*}}{d} K|t|^{n} \int_{0}^{1} \frac{r^{n} d r}{(1-(1-\varepsilon) r)} \tag{23}\\
& \leqslant \frac{a^{*}}{d} K|t|^{n} \frac{\ln (1 / \varepsilon)}{1-\varepsilon} \tag{24}
\end{align*}
$$

2.3 Proof of Lemma 3.

Proof: In the following, we shall drop references to D_{a}, that is, $O_{K}^{n}\left(D_{a}\right)$ will be written as O_{K}^{n}. Also wherever convenient, we shall denote an element of O_{K}^{n} by the set symbol O_{K}^{n} itself. Since $U_{1} \in B_{a}^{K}$ we have, for all $(t, x) \in D_{a}$,

$$
\frac{|t|}{2}-K|t|^{2} \leqslant\left|U_{1}\right| \leqslant \frac{|t|}{2}+K|t|^{2} .
$$

By the given hypotheses on a, K, and t, we then get

$$
\frac{|t|}{3} \leqslant\left|U_{1}\right| \leqslant \frac{2|t|}{3}
$$

which implies $v / U_{1} \in O_{3 L}^{n}$. Now using $a^{n} \leqslant 1 /(12 L)$, we have

$$
\frac{v}{U_{1}}\left(1+3 L a^{n}+9 L^{2} a^{2 n}+27 L^{3} a^{3 n}+\ldots\right) \in O_{4 L}^{n}
$$

implying that

$$
\frac{1}{U_{2}}=\frac{1}{U_{1}} \frac{1}{1+v / U_{1}}=\frac{1}{U_{1}}\left(1+O_{4 L}^{n}\right) .
$$

By similar calculations, we get

$$
v^{2} \in O_{L}^{n+2}, \quad U_{2}^{2}=U_{1}^{2}+O_{3 L}^{n+2}
$$

So by using Lemma 1, we get

$$
F U_{2}-F U_{1}=O_{4 / 9}^{2} \int_{0}^{t} \partial_{x} O_{12 L}^{n-1}+O_{3 L}^{n+2}\left(\int_{0}^{t} \partial_{x} O_{6 K}^{0}+\widetilde{f}\right)
$$

So far all estimates have been obtained in D_{a}. Now we apply Lemma 2, and thereby restrict our domain to $D_{a^{*}}$, to estimate the terms differentiated with respect to x in the above equations. To apply Lemma 2, note that $\varepsilon=2^{-(n+2)}$ and that $a<d$. Then for any given integer $N \geqslant 0$ and given $k>0$, we get

$$
\int_{0}^{t} \partial_{x} O_{k}^{N}\left(D_{a}\right) \leqslant(n+2) O_{k}^{N}\left(D_{a^{*}}\right)
$$

Recalling that $|\tilde{f}|<K$ and using the definition of $\mathcal{F} U$, we get

$$
\begin{align*}
\mathcal{F} U_{2}-\mathcal{F} U_{1} & =\int_{t}^{0}\left\{F U_{2}(\tau)-F U_{1}(\tau)\right\} d \tau \tag{25}\\
& =\int_{t}^{0}\left\{(n+2) O_{18 L / 3}^{n+1}+(n+2) O_{18 K L}^{n+2}+O_{3 K L}^{n+2}\right\} d \tau \tag{26}\\
& =\int_{t}^{0}\left\{(n+2) O_{25 L / 3}^{n+1}+O_{L}^{n+1}\right\} d \tau \tag{27}
\end{align*}
$$

where the last line is obtained by using $a K<1 / 6$ and the integrands after the first line are evaluated on $D_{a^{*}}$. Integration gives the desired result

$$
\mathcal{F} U_{2}-\mathcal{F} U_{1} \in O_{10 L}^{n+2}\left(D_{a^{*}}\right)
$$

References

[1] M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Notes in Mathematics 49 (Cambridge University Press, Cambridge, 1991).
[2] M.J. Ablowitz, A. Ramani and H. Segur, 'Nonlinear evolution equations and ordinary differential equations of Painlevé type', Lett. Nuovo Cim. 23 (1978), 333-338.
[3] M.J. Ablowitz, A. Ramani and H. Segur, 'A connection between nonlinear evolution equations and ordinary differential equations of P-type, I and II', J. Math. Phys. 21 (1980), 715-721, 1006-1015.
[4] M.J. Ablowitz and H. Segur, Solitons and the inverse scattering transform (SIAM, Philadelphia, 1981).
[5] J.D. Cole, 'A quasilinear parabolic equation occurring in aerodynamics', Quart. Appl. Math. 9 (1951), 225-236.
[6] E. Hopf, 'The partial differential equation $u_{t}+u u_{x}=\mu u_{x x}$ ', Comm. Pure Appl. Math. 3 (1950), 201-230.
[7] N. Joshi and M.D. Kruskal, 'A direct proof that the solutions of the six Painlevé equations have no movable singularities except poles', Stud. Appl. Math. 93 (1994), 187-207.
[8] N. Joshi and J.A. Petersen, 'A method of proving the convergence of the Painleve expansions of partial differential equations', Nonlinearity 7 (1994), 595-602.
[9] S. Kichenassamy and W. Littman., 'Blow-up surfaces for nonlinear wave equations I', Comm. Partial Differential Equations 18 (1993), 431-452.
[10] L. Nirenberg, 'An abstract form of the nonlinear Cauchy-Kowalevski theorem', J. Differential Geom. 6 (1972), 561-576.
[11] J. Weiss, M. Tabor and G. Carnevale, 'The Painlevé property for partial differential equations', J. Math. Phys. 24 (1983), 522-526.

School of Mathematics
University of New South Wales
Sydney NSW 2052
Australia
e-mail: N.Joshi@unsw.edu.au

