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Abstract

We show that for λ ∈ [0, m1/(1 + √
1 − 1/m1)], the biased random walk’s speed on

a Galton–Watson tree without leaves is strictly decreasing, where m1 ≥ 2. Our result
extends the monotonic interval of the speed on a Galton–Watson tree.
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1. Introduction

In this paper, we investigate the properties of biased random walks denoted as RWλ on
Galton–Watson trees T. We focus our attention on the following inquiry: Is the speed of RWλ

monotonic non-increasing as a function of its bias λ when the Galton–Watson tree has no
leaves?

Let T denote a Galton–Watson tree with the root e, ν represent the offspring distribution
with m =E(ν) > 1. Denote the associated probability space as (�, P). Note that T is super-
critical and the extinction probability q = P[T is finite] < 1. Let ν(x) denote the number of
children of a vertex x ∈T. For any x ∈T \ {e}, let x∗ be the parent of x, which refers to the
neighbor of x that lies on a geodesic path from x to e. We write xi, 1 ≤ i ≤ ν(x), as the children
of x.

For any λ ≥ 0, a λ-biased random walk RWλ, (Xn)∞n=0, on the Galton–Watson tree T is
defined as follows. The transition probability from x to an adjacent vertex y is

p(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

ν(x)
if x = e,

λ

λ + ν(x)
if y = x∗, x �= e,

1

λ + ν(x)
otherwise.
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2 H. SONG ET AL.

(Xn)∞n=0 is a reversible Markov chain for λ > 0. Let Px be the quenched probability of RWλ

starting at x and Px the annealed probability obtained by the semi-direct product Px = P× Px.
Denote the respectively associated expectations by Ex and Ex. A motivation for the introduc-
tion of RWλ on trees is its ability to obtain almost uniform samples from the set of self-avoiding
walks of a given length on a lattice [6]. For further insights into the motivations for biased
random walks on graphs, see the existing surveys [3, 12].

On a general tree, [8] showed that there exists a critical parameter λc for RWλ, where λc
is equal to the exponential of the Hausdorff dimension of the tree boundary. It was found
that RWλ exhibits transient behavior for λ < λc and recurrent behavior for λ > λc. It was also
proved that, for almost every Galton–Watson tree conditioned on non-extinction, RWλ is tran-
sient for 0 ≤ λ < m. In [9], it was shown that, conditional on non-extinction, RWm is null
recurrent, while RWλ is positive recurrent for λ > m.

Let |x| be the graph distance between x and e for any vertex x ∈T. Note that |x| is also
the generation of x. Fix X0 = e. The speed �λ of RWλ is defined as the almost sure limit,
if it exists, of the ratio |Xn|/n as n → ∞. In this paper, the dependence of �λ with respect
to the environment will often be omitted. A transient RWλ may exhibit zero speed when
an excessive amount of time is allocated to the leaves. In [11], it was proved that, condi-
tional on non-extinction, �λ exists almost surely and �λ is deterministic and positive if and
only if λ ∈ (E(νqν−1), m). From [10], �1 =E((ν − 1)/(ν + 1)). An expression for �λ, shown
in (1), was specified in [2], though an artificial parent to e was added there. For related results,
see [7].

The following problem was raised in [11] (see also [12]), and was called the Lyons–
Pemantle–Peres monotonicity problem in [4].

Problem 1. ([11].) Assume P(ν = 0) = 0, namely that the Galton–Watson tree T has no leaf,
meaning that the extinction probability q = 0. Is the speed �λ of RWλ on T monotonic non-
increasing in λ ∈ [0, m)?

It was conjectured in [11, 12] that Problem 1 should have a positive answer. If we consider
general trees, monotonicity does not hold. Moreover, we should notice that speed might not
exist on general trees. For instance, on a binary tree with pipes (a binary tree to every ver-
tex of which is joined a unary tree), which is a multi-type Galton–Watson tree, the speed is
(2 − λ)(λ − 1)/(λ2 + 3λ − 2) for 1 ≤ λ ≤ 2 [12]. For any 0 < λ1 < λ2, by the repeated filter-
ing method we can produce a tree such that the speed of RWλ1 is less than that of RWλ2 [12].
Notice that these examples are not Galton–Watson trees and show the complexity of Problem 1.
Therefore, the monotonicity of �λ would represent a highly significant and fundamental
characteristic of Galton–Watson trees.

The Lyons–Pemantle–Peres monotonicity problem for Galton–Watson trees without leaves
was proven to have a positive solution for λ ≤ m1/1160 in [4], where m1 = min{k ≥ 1 :
P[ν = k] > 0} is the minimal degree of the Galton–Watson tree. This result was improved in
[1] to λ ≤ 1

2 by a completely different approach. In [5], the Einstein relation was obtained for
RWλ on Galton–Watson trees, which implies that Problem 1 holds in a neighborhood of m.
These slow advances indicate that Problem 1 is rather difficult. For more information on RWλ

on T, see [3, 12] and references therein. For the monotonicity of the speed of biased random
walks on groups, see [14, 15].

The main result of our study is presented as follows.

Theorem 1. The speed �λ of RWλ on a Galton–Watson tree T without leaves is strictly
decreasing in λ ∈ [0, m1/(1 + √

1 − 1/m1)] when m1 ≥ 2.
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The speed of a biased walk on a Galton–Watson tree 3

2. Proof of Theorem 1

Inspired by [1], based on some new observations, we prove Theorem 1. Let T∗ be the tree
obtained from T by adding an artificial parent e∗ to the root e. For any vertex x ∈T∗, let
τx = min{n ≥ 0, Xn = x}, where min ∅ = ∞ and (Xn)∞n=0 is a λ-biased random walk on T∗. For
x �= e∗, let β(x) := β(x, λ) = Px(τx∗ = ∞) be the quenched probability of never reaching the
parent x∗ of x when starting from x. Since T has no leaf and λ < m, we have β(x) > 0 due
to transience. Let (βi)i≥0 be generic independent and identically distributed random variables
distributed under P as β(e), and independent of ν.

The following expression for �λ was given in [2]:

�λ = E
(
(ν − λ)β0/

(
λ − 1 +∑ν

i=0 βi
))

E
(
(ν + λ)β0/

(
λ − 1 +∑ν

i=0 βi
)) , λ < m. (1)

Notice that (1) holds trivially when λ = 0. In this context, it is important to note that RWλ on
T∗ and RWλ on T have a slight difference, but due to λ < m and transience these two biased
random walks have the same speed when starting at e. Indeed, we have the following result.

Lemma 1. For λ < m, RWλ on T∗ and RWλ on T have the same speed when starting at e.

Proof. Since the random walk on RWλ (Xn)∞n=0 on T∗ is transience, the edge ee∗ (ee∗ denotes
the edge that connects the vertices e and e∗) can be visited only a finite number of times. We
can define K = sup{n, Xn �∈ {e, e∗}}, where K is finite. And RWλ (Xn)∞n=K+1 is a biased random
walk on T. This implies the lemma.

For the reader’s convenience, we provide a more detailed proof as follows.
For RWλ (Xn)∞n=0 on T∗ with X0 = e, define the following regenerative times [16]:

• τ0 = 0, σ0 = inf{n ≥ τ0 : Xn �∈ {e, e∗}};
• τ1 = inf{n ≥ σ0 : Xn = e}, σ1 = inf{n ≥ τ1 : Xn �∈ {e, e∗}} when τ1 < ∞;

• for any i ≥ 1, τi+1 = inf{n ≥ σi : Xn = e}, σi+1 = inf{n ≥ τi+1 : Xn �∈ {e, e∗}} when
τi+1 < ∞.

Since RWλ (Xn)∞n=0 is transient, there exists a unique î such that τ̂i < ∞ and τ̂i+1 = ∞. Define
a random walk (Yn)∞n=0 as follows:

(Yn)∞n=0 = (
Xτ0 , Xσ0 , . . . , Xτ1︸ ︷︷ ︸, Xσ1 , . . . , Xτ2︸ ︷︷ ︸, . . . , Xσ̂i−1

, . . . , Xτ̂i︸ ︷︷ ︸, Xσ̂i
, Xσ̂i+1, . . .

)
.

It is evident that the sequence (Yn)∞n=0 is just an RWλ on T starting at e. It is known that,
almost surely, both limn→∞ (|Yn|/n) and limn→∞ (|Xn|/n) exist and are deterministic. By con-
struction, there exists a random function s(·) on non-negative integers such that, almost surely,
Yn = Xs(n), n ≥ 1, and limk→∞ (s(k)/k) = 1. Therefore, almost surely,

lim
n→∞

|Yn|
n

= lim
n→∞

|Xs(n)|
n

= lim
n→∞

|Xs(n)|
s(n)

= lim
n→∞

|Xn|
n

.

This implies the lemma. �

For any n ≥ 1, let βn(x) := βn,λ(x) denote the probability of hitting level n before x∗ when
|x| ≤ n. Recall that, for a given vertex x, xi is its ith child and ν(x) is the number of its children.
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Then βn(x) = 1 if |x| = n and, for |x| < n,

βn(x) =
∑v(x)

i=1 βn(xi)

λ +∑v(x)
i=1 βn(xi)

.

Fix λ ∈ [0, m), and consider the derivative of βn(x) at λ; we have

lim
λ1→λ

βn,λ1 (x) − βn,λ(x)

λ1 − λ

=
( ∑v(x)

i=1 βn,λ1 (xi)

λ1 +∑v(x)
i=1 βn,λ1 (xi)

−
∑v(x)

i=1 βn,λ(xi)

λ +∑v(x)
i=1 βn,λ(xi)

)
/(λ1 − λ)

= lim
λ→λ1

(
λ +∑v(x)

i=1 βn,λ(xi)
)∑v(x)

i=1 βn,λ1 (xi) − (
λ1 +∑v(x)

i=1 βn,λ1 (xi)
)∑v(x)

i=1 βn,λ(xi)(
λ1 +∑v(x)

i=1 βn,λ1 (xi)
)(

λ +∑v(x)
i=1 βn,λ(xi)

) /(λ1 − λ)

= lim
λ→λ1

λ
∑v(x)

i=1 βn,λ1 (xi) − λ1
∑v(x)

i=1 βn,λ(xi)(
λ1 +∑v(x)

i=1 βn,λ1 (xi)
)(

λ +∑v(x)
i=1 βn,λ(xi)

)/(λ1 − λ) = −
∑v(x)

i=1 βn,λ(xi)(
λ +∑v(x)

i=1 βn,λ(xi)
)2 .

We can deduce that each βn(x) has a continuous derivative in λ when |x| ≤ n. Also, βn(e) ↓ β(e)
as n ↑ ∞, almost surely. To continue, we need Lemmas 2 and 3. For any natural number d, let
Td+1 denote the (d + 1)-regular tree.

Let Px represent the probability measure of RWλ starting at x on Td+1 with a fixed root e,
and τx∗ denote the hitting time of x∗.

Lemma 2. For any λ ≥ 0 and any vertex x ∈Td+1 \ {e} with parent x∗,

Px(τx∗ = ∞) = 1 − λ ∧ d

d
.

Proof. We can project the biased random walk on Z as the tree is regular. �

Let us analyze the meaning of β(e) within the framework of electric networks. Consider
any weighted graph (say, an electric network) G = (V(G), E(G)) with a non-negative edge
weight function c (here the weights are called conductances). Suppose a ∈ V(G) and Z ⊆
V(G). Write PG,c

a (a → Z) = PG,c
a (τZ < τ+

a ), where τZ = inf{n ≥ 0 : Xn ∈ Z}, τ+
a = inf{n ≥ 1 :

Xn = a}, (Xn)n≥0 is the random walk associated with electric network G, and PG,c
a is the law of

(Xn)n≥0 starting at a. Let π (x) =∑
y∈V(G):y∼x c({x, y}) for all x ∈ V(G), where y ∼ x means y is

adjacent to x. Then π (·) is a stationary measure of (Xn)n≥0. Call

CG(a ↔ Z) := CG,c(a ↔ Z) = π (a)PG,c
a (a → Z)

the effective conductance between a and Z. Note that PG,c
a (a → ∞) = Pa{Xi �= a for i ≥ 1}.

Then call
CG(a ↔ ∞) := CG,c(a ↔ ∞) = π (a)PG,c

a (a → ∞)

the effective conductance from a to ∞ in G.
To emphasize the concentration on T∗, denote β(e) = β(e, λ) by βT∗ (e, λ). When λ > 0, on

T∗ endow any edge {x, y} where x, y �= e∗ with a weight λ−|x|∧|y|−1, and the edge {e∗, e} with
weight 1; denote this weight function by c0. Then, for λ > 0, the RWλ on T∗ is the random
walk associated with the weighted graph (electric network) T∗;

βT∗ (e, λ) = PT∗,c0
e∗ (e∗ → ∞) = CT∗,c0 (e∗ ↔ ∞).
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Lemma 3. Assume the Galton–Watson tree T has no leaf. Then, almost surely,

1 − λ ∧ m1

m1
≤ βT∗(e, λ) ≤ 1 − λ

m2
, λ ∈ [0, m),

where m2 = sup{k ≥ 1 : P[ν = k] > 0}.
Proof. When m2 = ∞, β(e) ≤ 1 − λ/m2 holds trivially. Clearly, the lemma holds true when

λ = 0, so we assume m2 < ∞ (namely ν takes finitely many values) and 0 < λ < m. In a natural
way, we can embed an m1-ary tree H

1 into T and also embed T into an m2-ary tree H
2 such

that the roots of H1 and H
2 are the root e of T. Similarly to T∗, let each H

i∗ be obtained from
H

i by adding the artificial parent e∗ of e to H
i.

Like the electric network (T∗, c0), we endow each H
i∗ with a weight function ci, and view

c0 and c1 as functions on the set of edges of H2∗ by letting c0({x, y}) = 0 (c1({x, y}) = 0) when
{x, y} is not an edge of T∗ (H1∗). Then c1({x, y}) ≤ c0({x, y}) ≤ c2({x, y}) for any edge {x, y}
of H2∗.

Notice that

βT∗ (e, λ) = PT∗,c0
e∗ (e∗ → ∞) = PH

2∗,c0
e∗ (e∗ → ∞) = CH2∗,c0

(e∗ ↔ ∞),

β
H

i∗ (e, λ) = PH
i∗,ci

e∗ (e∗ → ∞) = PH
2∗,ci

e∗ (e∗ → ∞) = CH2∗,ci
(e∗ ↔ ∞), i = 1, 2.

Recall Rayleigh’s monotonicity principle from [13, Section 2.4]: Let G be an infinite con-
nected graph with two non-negative edge weight functions c and c′ such that c ≤ c′ everywhere.
Then, for any vertex a of G, CG,c(a ↔ ∞) ≤ CG,c′ (a ↔ ∞).

Therefore, we have CH2∗,c1
(e∗ ↔ ∞) ≤ CH2∗,c0

(e∗ ↔ ∞) ≤ CH2∗,c2
(e∗ ↔ ∞). In other words,

βH1∗ (e, λ) ≤ βT∗ (e, λ) ≤ βH2∗ (e, λ). Hence, by Lemma 2, we obtain that

1 − λ ∧ m1

m1
≤ βT∗(e, λ) ≤ 1 − λ

m2
.

The lemma holds. �

Put

An(x) = λ(
λ +∑v(x)

i=1 βn(xi)
)2 , Bn(x) =

∑v(x)
i=1 βn(xi)(

λ +∑v(x)
i=1 βn(xi)

)2 .

Now we are in a position to prove the following lemma on the derivative of β(e, λ).

Lemma 4. For a Galton–Watson tree T without leaves, β(e) = β(e, λ) almost surely has a
continuous derivative β ′(e) = β ′(e, λ) in λ ∈ [0, m1), with

0 < −β ′(e, λ) ≤ β(e, λ)

m1 − λ
, λ ∈ [0, m1).

Proof. Differentiating (1) for λ < m yields −β ′
n(x, λ) = An(x)

∑ν(x)
i=1 −β ′

n(xi, λ) + Bn(x),
where β ′

n(x, λ) is the derivative in λ. Then

−β ′
n(e, λ) =

n−1∑
k=0

∑
|x|=k

Bn(x)
k−1∏
i=0

An(xi), λ < m, (2)

https://doi.org/10.1017/jpr.2024.113 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.113


6 H. SONG ET AL.

where xi is the ancestor at generation i of x. And, for any k ∈ [0, n − 1],

βn(e, λ) =
∑
|x|=k

βn(x, λ)
k−1∏
i=0

1

λ +∑ν(xi)
i=1 βn(xij, λ)

, λ < m.

Here, xij is the jth child of the ancestor xi.
Clearly, βn(x, λ) is non-increasing in n. By Lemma 3, λ +∑ν(x)

i=1 βn(xi, λ) ≥ m1, λ < m.
Hence, for λ < m,

An(x) ≤ 1

m1

λ

λ +∑ν(x)
i=1 βn(xi, λ)

, Bn(x) ≤ 1

m1
βn(x, λ).

For λ < m,

∑
|x|=k

Bn(x)
k−1∏
i=0

An(xi) ≤ 1

mk+1
1

∑
|x|=k

βn(x, λ)
k−1∏
i=0

λ

λ +∑ν(xi)
i=1 βn(xij, λ)

= λk

mk
1

1

m1
βn(e, λ). (3)

By (2) and (3), almost surely,

0 ≤ −β ′
n(e, λ) ≤ βn(e, λ)

m1 − λ
≤ 1

m1 − λ
, λ < m1.

From this, given any small enough ε > 0, we see that, almost surely, as a sequence of
functions on [0, m1 − ε] {(βn(e, λ) : λ ∈ [0, m1 − ε])}n≥1 is equi-continuous. Combining this
with βn(e, λ) ↓ β(e, λ) as n ↑ ∞ for all λ ∈ [0, m) almost surely, by the Ascoli–Arzelà theo-
rem, {βn(e, λ) : λ ∈ [0, m1 − ε]}n≥1 converges uniformly to (β(e, λ) : λ ∈ [0, m1 − ε]) almost
surely.

Note that, for any vertex x ∈T, ({(βn(x, λ) : 0 ≤ λ < m)}n≥1, (β(x, λ) : 0 ≤ λ < m)) has
the same distribution as ({(βn(e, λ) : 0 ≤ λ < m)}n≥1, (β(e, λ) : 0 ≤ λ < m)). We obtain that,
almost surely, for any vertex x ∈T, {βn(x, λ) : λ ∈ [0, m1 − ε]}n≥1 converges uniformly to
(β(x, λ) : λ ∈ [0, m1 − ε]). Hence, by the definitions of An(x) and Bn(x), we have that, almost
surely, for any vertex x, An(x) and Bn(x) converge uniformly in λ ∈ [0, m1 − ε] to some
continuous functions A(x) and B(x) respectively.

Notice (2) and (3). By the dominated convergence theorem, we see that, almost surely,(
β ′

n(x, λ) : λ ∈ [0, m1 − ε]
)

converges uniformly to some continuous function (Fλ : λ ∈
[0, m1 − ε]). By the dominated convergence theorem again, almost surely,

∫ λ

0 β ′
n(e, s) ds

converges to
∫ λ

0 Fs ds, which is also β(e, λ) − 1 for all λ ≤ m1 − ε.
Since ε is arbitrary, β(e, λ) is almost surely differentiable in λ ∈ [0, m1). Further, almost

surely,

0 ≤ −β ′(e, λ) ≤ β(e)

m1 − λ
, λ ∈ [0, m1).

By checking (2) and the definitions of An(x) and Bn(x), when taking limits we indeed have,
almost surely,

0 < −β ′(e, λ) ≤ β(e)

m1 − λ
, λ ∈ [0, m1).

�

By symmetry, we have

�λ =E

(
ν − λ

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)/
E

(
ν + λ

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
.

https://doi.org/10.1017/jpr.2024.113 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.113


The speed of a biased walk on a Galton–Watson tree 7

By Lemma 4, each βi has a derivative in λ ∈ [0, m1), and so does �λ. Write each β ′
i and �′

λ for
the derivatives in λ ∈ [0, m1) of βi and �λ respectively. Then, by straightforward calculus [1],
for λ ∈ [0, m1), �′

λ < 0 is equivalent to

E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)

−E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
ν

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)

<
1

λ
E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
. (4)

Lemma 5. For a Galton–Watson tree T without leaves, when m1 ≥ 2 (4) is true for λ ∈
[0, m1/(1 + √

1 − 1/m1)].

Proof. Note that, by Lemma 4,

0 < −β ′
i (λ) ≤ βi(λ)

m1 − λ
, λ < m1, i ≥ 0.

By Lemma 3,

λ − 1 +
ν∑

i=0

βi ≥ λ − 1 +
(

1 − λ

m1

)
× (m1 + 1) = m1 − λ

m1
> m1 − 1, λ < m1. (5)

Then, for any λ < 1, 0 ≤ βi(λ) + (1 − λ)β ′
i (λ) < βi(λ) and

E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
ν

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)
≥ 0.

When λ < 1,

E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)

<
1

m1 − λ/m1
E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
.

Since λ < 1 and m1 ≥ 2, m1 − λ/m1 > λ and we obtain that, when λ < 1,

E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)

−E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
ν

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)

<
1

λ
E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
;

namely, (4) holds.
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When λ = 1, (4) becomes

E

(
ν

ν + 1

)
E

(
1

ν + 1

1∑ν
i=0 βi

)
−E

(
1

ν + 1

)
E

(
ν

ν + 1

1∑ν
i=0 βi

)
<E

(
ν

ν + 1

)
E

(
1

ν + 1

)
,

while, by Lemma 3,
∑ν

i=0 βi(1) ≥ m1 − 1/m1 > 1, which implies the above inequality.
When m1 > λ > 1,

βi + (1 − λ)β ′
i ≤ m1 − 1

m1 − λ
βi.

Combining this with (5), we obtain, for 1 < λ < m1,

E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)

≤ (m1 − 1)/(m1 − λ)

m1 − λ/m1
E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
.

When
(m1 − 1)/(m1 − λ)

m1 − λ/m1
≤ 1

λ

and 1 < λ < m1, namely λ ∈ (1, m1/(1 + √
1 − 1/m1)], we have

E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)

≤ 1

λ
E

(
ν

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
. (6)

Note when 1 < λ < m1,
∑ν

i=0 (βi + (1 − λ)β ′
i ) >

∑ν
i=0 βi > 0 and

E

(
1

ν + 1

∑ν
i=0 βi

λ − 1 +∑ν
i=0 βi

)
E

(
ν

ν + 1

∑ν
i=0 (βi + (1 − λ)β ′

i )(
λ − 1 +∑ν

i=0 βi
)2

)
> 0.

Therefore, combining with (6), we see that for λ ∈ (1, m1/(1 + √
1 − 1/m1)], (4) holds.

We have thus finished proving Theorem 1. �
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