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Higgs cohomology, p-curvature, and the

Cartier isomorphism

Arthur Ogus

Abstract

Let X/S be a smooth morphism of schemes in characteristic p and let (E,∇) be a sheaf
of OX -modules with integrable connection on X. We give a formula for the cohomology
sheaves of the de Rham complex of (E,∇) in terms of a Higgs complex constructed from
the p-curvature of (E,∇). This formula generalizes the classical Cartier isomorphism, with
which it agrees when (E,∇) is the constant connection.

1. Introduction

1.1

Let X/C be a smooth scheme over the complex numbers with associated analytic space Xan,
and let (E,∇) be a coherent sheaf with integrable connection on X/C. Then E∇ := (Ker∇an)
is a locally constant sheaf of finite-dimensional C-vector spaces on Xan, and the canonical map
E∇ ⊗C OXan → Ean is an isomorphism. Moreover, the de Rham complex E ⊗ Ω·

X/C of E is a
resolution of E∇ on Xan; that is,

Hi(Ean ⊗ Ω·
X/C) ∼=

{
E∇ if i = 0,
0 if i > 0.

(1.1.1)

If X/C is proper, or more generally if (E,∇) has regular singularities at infinity [Del70], the
above formula has an algebraic analog which computes the de Rham cohomology sheaves of (E,∇)
in the Zariski topology. Let α be the canonical map from Xan to X. The comparison theorems of
Grothendieck [Gro66] and Deligne [Del70] provide canonical isomorphisms

Hi(E ⊗ Ω·
X/C) ∼= Riα∗(E∇) (1.1.2)

for all i. In fact, if U is any open subset of X, there is a canonical isomorphism

H i(U,E ⊗ Ω·
X/C) ∼= H i(Uan, E∇).

Here the term on the left is the hypercohomology of the de Rham complex of E; if U is affine this
is computed simply by taking the cohomology of the complex of global sections of Ω·

X/C.

1.2

Our goal in this paper is to explain an analog of Equation (1.1.2) in positive characteristics.
Let f : X → S be a smooth morphism of schemes in characteristic p, and let (E,∇) be a sheaf of
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OX-modules with integrable connection on X/S. Consider the usual Frobenius diagram,

X
FX/S ��

���
��

��
��

��
��

��
��

� X ′ π ��

��

X

��
S

FS �� S

(1.2.1)

in which the square is Cartesian and π ◦ FX/S is the absolute Frobenius endomorphism FX of X.
The relative Frobenius morphism FX/S in this diagram is a homeomorphism, and the boundary
maps of the complex FX/S∗(E ⊗ Ω·

X/S) are OX′-linear. Thus

FX/S∗Hi(E ⊗ Ω·
X/S) ∼= Hi(FX/S∗(E ⊗ Ω·

X/S)),

and these sheaves, which we identify and denote simply by Hi
DR(E,∇), are naturally OX′-modules.

When (E,∇) is the constant connection (OX , d), they are calculated by the Cartier isomorphism
[Kat70, 7.2]:

C−1
X/S : Ωi

X′/S
∼= Hi

DR(OX , d). (1.2.2)

A similar formula holds if the p-curvature of (E,∇) (whose definition we shall recall below) is
zero. The p-curvature vanishes if and only if the natural map F ∗

X/SE
∇ → E is an isomorphism

[Kat70, § 5]. Then the de Rham complex of (E,∇) can be identified with E∇ ⊗ FX/S∗Ω·
X/S , and,

since FX/S∗Ω·
X/S is a complex of flat OX′ modules whose cohomology sheaves are also flat, the

natural map

E∇ ⊗ Ωi
X′/S

∼= E∇ ⊗Hi(FX/S∗Ω·
X/S) → Hi(E∇ ⊗ FX/S∗Ω·

X/S)

is an isomorphism.
We shall give a formula for the de Rham cohomology sheaves of an arbitrary module with

integrable connection which generalizes the Cartier isomorphisms above. The formula in the general
case depends, of course, on the p-curvature [Kat70, 7.2]. Recall that if D is a derivation of OX

over S, so is its pth iterate D(p), and the p-curvature ψ of ∇ is the OX -linear map ψ : E →
E ⊗ F ∗

X/S(Ω1
X′/S) characterized by the formula 〈ψ(e), 1 ⊗D〉 = ∇p

D(e) −∇D(p)(e) for every section
e of E and every derivation D. It turns out that this map satisfies the integrability condition in the
theory of Higgs fields [Sim92], and so iteration of ψ forms a complex

K·(E,ψ) := E
ψ �� E ⊗ F ∗

X/S(Ω1
X′/S) ψ �� F ∗

X/S(Ω2
X′/S) �� · · · . (1.2.3)

Endow each term in this complex with the tensor product connection, using the given connection ∇
on E and the Frobenius descent connection id ⊗ d on F ∗

X/S(Ωi
X′/S). We shall see that the boundary

maps in the K·(E,ψ) are compatible with these connections, and hence that the cohomology sheaves
Hi
ψ(E,∇) inherit a connection as well. Our generalization of Cartier’s result asserts that for every i

there is a natural isomorphism

Hi
ψ(E,∇)∇ ∼= Hi

DR(E,∇). (1.2.4)

This is evident when i = 0, and the general case follows easily when properly formulated.
Let MIC (X/S) denote the abelian category whose objects are the sheaves of OX -modules

endowed with an integrable connection ∇ and whose morphisms are morphisms of OX -modules com-
patible with the connections. For each i, Hi

DR and Hi∇
ψ are functors from the category MIC (X/S)

to the category of OX′ -modules. As it turns out, it will be a little more convenient to work with
−ψ instead of ψ; of course, the functors Hi∇

−ψ and Hi∇
ψ are isomorphic.
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Theorem 1.2.1. The sequences {Hi
DR : i ∈ N} and {Hi∇

−ψ : i ∈ N} form cohomological ∂-functors
[Gro57] from the abelian category MIC (X/S) to the category of OX′ -modules. Moreover, there is
a unique isomorphism of cohomological ∂-functors

C−1
X/S : H·∇

−ψ → H·
DR

which agrees with (1.2.4) in degree zero. In particular, if (E,∇) is an object of MIC (X/S), there is
a canonical isomorphism of OX′-modules

C−1
X/S : Hi

−ψ(E,∇)∇ ∼= Hi
DR(E,∇).

To compare the isomorphism in Theorem 1.2.1 with the Cartier isomorphism (1.2.2), take (E,∇)
to be (OX , d). Since ψ = 0, Hi

−ψ(E,∇) is just F ∗
X/SΩi

X′/S , and so Hi
−ψ(E,∇)∇ ∼= Ωi

X′/S . We shall
verify that, thanks to the choice of the sign, the isomorphism we construct in the above theorem
agrees with the usual Cartier isomorphism C−1

X/S in this case. Note that there is a natural isomor-
phism of complexes:

E
ψ ��

id

��

E ⊗ F ∗
X/S(Ω1

X′/S) ψ ��

−id

��

F ∗
X/S(Ω2

X′/S) ��

id

��

· · ·

E
−ψ �� E ⊗ F ∗

X/S(Ω1
X′/S) −ψ �� F ∗

X/S(Ω2
X′/S) �� · · ·

Thus, had we used ψ in place of −ψ, we would have obtained (−1)i times the usual Cartier
isomorphism in degree i.

1.3
Theorem 1.2.1 is very suggestive of Simpson’s non-abelian Hodge theory [Sim92] for a smooth
projective variety X over the complex numbers. Simpson associates to each irreducible object in
MIC (X/C) a new holomorphic sheaf E′ with a Higgs field θ : E′ → E′ ⊗ Ω1

X/C and constructs a
(transcendental) quasi-isomorphism between the de Rham complex of (E,∇) and the Higgs complex
of (E′, θ). Our result can be viewed as a sheaf-theoretic analog of this quasi-isomorphism.

Theorem 1.2.1 is also related to the following striking formula of Barannikov and Kontsevich
[Sab99]. Let X/C be quasi-projective and smooth, suppose f ∈ OX(X) defines a proper morphism
to the affine line, and let ∇ be the connection on OX sending 1 to df . Then the hypercohomologies
of the Higgs complex (K·(OX), df) and of the de Rham complex (OX ,∇) have the same finite
dimension in every degree. Recall that, in characteristic p, the p-curvature of the connection on OX

sending 1 to a closed 1-form ω is given by ψ(1) = F ∗
X/S(π∗ω−CX/S(ω)) [Kat72, 7.22]. In particular,

if ω = df , where f ∈ OX(X), then C(ω) = 0, ψ(1) = F ∗
X/Sπ

∗(df), and the p-curvature complex is
the pullback by FX of the complex

K·(OX , df) := OX
df �� Ω1

X/S
∧df �� · · · ,

If f has isolated critical points, one can deduce from Theorem 1.2.1 that the cohomologies of the
Higgs complex K·(OX , df) and the de Rham complex of (OX ,∇) have the same dimension, as in
the theorem of Barannikov and Kontsevich.

1.4
Our proof of Theorem 1.2.1 is quite simple. We show that, for i > 0, Hi,∇

−ψ and Hi
DR are effaceable.

Then the theorem follows from the universality of effaceable cohomological ∂-functors [Gro57].
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In fact, since the category of OX -modules with connection has enough injectives, both families can
be viewed as the right derived functors of the same functor. We actually present two versions of
the proof, first in the classical case, and then in the context of connections with log poles, or, more
generally, connections on log schemes. This presents some technical and conceptual difficulties,
since the theory of Frobenius descent is not so straightforward in this case. Finally, we give an
explicit formula for the isomorphism in terms of local coordinates, as well as a few consequences.
The appendix gives a formula for the action of p-curvature on divided powers.

2. Higgs complexes and effaceability

2.1
For the convenience of the reader, we recall from [Sim92] some basic facts about Higgs fields and
Higgs cohomology. Throughout this paper we will allow ourselves the following abuse of notation:
if E is a sheaf on a space X, we write e ∈ E to mean that e is a section of E over some open subset
of X.

Let Ω be a locally free sheaf of finite rank on a scheme X, let T be its dual, and let E be any
sheaf of OX-modules. Then the natural map

HomOX
(E,E ⊗ Ω) → HomOX

(T,EndOX
(E))

is an isomorphism. If φ : E → E⊗Ω and t is a local section of T , we denote by φt the corresponding
section of EndOX

(E). For each i > 0, let Ωi := ΛiΩ, and define φi by the diagram

E ⊗ Ωi
φ⊗id ��

φi

���������������� E ⊗ Ω ⊗ Ωi

id⊗∧
��

E ⊗ Ωi+1.

(2.1.1)

Definition 2.1.1. Let Ω be a locally free sheaf on a scheme X, let T be its dual, and let E be
a sheaf of OX-modules. A T -Higgs field on E is an OX -linear map φ : E → E ⊗ Ω such that the
composite of φ with the map φ1 : E ⊗ Ω → E ⊗ Λ2Ω induced by φ vanishes. If this is the case,
φi ◦ φi−1 = 0 for all i, and the sequence of maps

K·(E,φ) := E
φ �� E ⊗ Ω

φ1
�� E ⊗ Λ2Ω �� · · · ,

defines a complex, called the Higgs complex of (E,φ). The Higgs cohomology of (E,φ) is the
cohomology of this Higgs complex.

Giving a T -Higgs field φ on E is equivalent to giving an action of the symmetric algebra S·T
of T on E, compatibly with its given structure of an OX-module. Let Eφ denote this S·T -module.
If t· := (t1, . . . , tn) is a basis for T , then the Higgs complex of (E,φ) can be identified with the
Koszul complex K·(φ·, Eφ) of Eφ with respect to the corresponding sequence φ· of endomorphisms
of Eφ.

Remark 2.1.2. When E is quasi-coherent, one can give a geometric interpretation of the Higgs
complex of a T -Higgs sheaf (E,φ) in the following way. Let VT ∗ := SpecS·T , let π : VT ∗ → X
be the canonical projection, and let i : X → VT ∗ be the zero section. Let Ẽφ denote the sheaf
of OVT ∗-modules corresponding to (E,φ). Then there are canonical isomorphisms in the derived
category of sheaves of OX -modules:

K·(E,φ) ∼= Ri!Ẽφ ∼= Li∗Ẽφ[−n] ⊗ Ωn. (2.1.2)
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To see this, let us recall the coordinate free construction of the Koszul complex from [Ber71].
The canonical map u : π∗T → OVT ∗ can be viewed as a section of π∗Ω, and multiplication by (−1)n

times this section in the exterior algebra defines a complex of OVT ∗ -modules:

K·(u) := OVT ∗ → π∗Ω → π∗Ω2 → · · · π∗Ωn.

Here n is the rank of Ω, and the complex lives in degrees [−n, 0]. This complex gives a locally free
resolution of the sheaf i∗Ωn. Hence

K·(u) ⊗ Ẽφ ∼= i∗Ωn
L⊗ Ẽφ ∼= π∗Ωn ⊗ i∗OX

L⊗ Ẽφ
∼= Li∗(Ẽφ ⊗ π∗Ωn) ∼= Li∗(Ẽφ) ⊗ Ωn.

But the Higgs complex K·(E,φ) = K(u) ⊗ Ẽφ[−n]. Similarly,

Ri!(Ẽφ) ∼= RHom(i∗OX , Ẽφ) ∼= Hom(K·(u), Ẽφ) ⊗ π∗Ωn ∼= K·(E,φ),

where the last isomorphism is induced by the pairing Ωq ⊗ Ωn−q → Ωn.

2.2
The following result is a simple analog for Higgs fields of the construction of the Gauss–Manin
connection by Katz and Oda [Kat72, 1.4]. We continue with the previous notation: X is a scheme,
T a locally free sheaf of OX -modules of rank n, Ω its dual, and E a sheaf of OX -modules.

Proposition 2.2.1. Let φ be a T -Higgs field on E, and let 0 → Ω′ → Ω → Ω′′ → 0 be an exact
sequence of locally free OX -modules of finite type. Let φ′′ : E → E ⊗ Ω′′ be the composition of φ
with the projection E ⊗ Ω → E ⊗ Ω′′. Then each Higgs cohomology sheaf Hi(E,φ′′) is equipped
with a Higgs field φ′ with values in Ω′, and there is a spectral sequence

Ei,j2
∼= Hi(Hj(E,φ′′), φ′) ⇒ Hi+j(E,φ).

Proof. Let F denote the usual Koszul filtration of Λ·Ω associated to the inclusion of Ω′ in Ω. Thus,
F iΛjΩ is the image of the natural map ΛiΩ′ ⊗Λj−iΩ → ΛjΩ, and GriF Λi+jΩ ∼= ΛiΩ′ ⊗ΛjΩ′′. If we
also denote by F the corresponding filtration of E ⊗ Ω, then F is compatible with the boundary
maps of the Higgs complex of (E,φ), which thus can be regarded as a filtered complex. Let Ei,jr be
the spectral sequence of this filtered complex. Then

Ei,j0
∼= GriF (E ⊗ Λi+jΩ) ∼= E ⊗ ΛiΩ′ ⊗ ΛjΩ′′.

Furthermore, one verifies that the boundary map Ei,j0 → Ei,j+1
0 in the spectral sequence can be

identified with the identity of ΛiΩ′ times the boundary map of the Higgs complex of φ′′. Thus

Ei,j1
∼= Hj(E,φ′′) ⊗ ΛiΩ′,

and in particular d0,j
1 : E0,j

1 → E1,j
1 is a map

Hj(E,φ′′) → Hj(E,φ) ⊗ Ω′.

One checks that di,j1 is obtained from d0,j
1 as in the diagram (2.1.1). Hence d0,j

1 defines a Higgs field
on Hj(E,φ′′) with values in Ω′, and E·,j

1 can be identified with its Higgs complex. Thus

Ei,j2
∼= Hi(Hj(E,φ′′), φ′) ⇒ Hi+j(E,φ).

Corollary 2.2.2. Let φ be a T -Higgs field on an OX -module E. Suppose there exists a nowhere
vanishing section t of T such that φt is an automorphism of E. Then Hq(E,φ) = 0 for all q.

Proof. If, in addition to the hypothesis of the corollary, T has rank one, then t defines an
isomorphism Ω ∼= OX , and the Higgs complex of (E,φ) can be identified with the complex E → E
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whose boundary map is the endomorphism φt. Since φt is an isomorphism, this complex is acyclic.
In the general case, t defines an exact sequence 0 → Ω′ → Ω → OX → 0. Then the Higgs field φ′′ on
E with values in OX defined by this exact sequence is just φt, so Hj(E,φ′′) = 0 for all j. Thus the
corollary follows from the spectral sequence in Proposition 2.2.1.

Corollary 2.2.3. Let φ be a T -Higgs field on an OX-module E, let (t1, . . . , tn) be a basis for T ,
and let (φ1, . . . , φn) be the corresponding sequence of endomorphisms of E. Suppose that, for every
i, φi acts surjectively (respectively injectively) on the kernel (respectively cokernel) of the map

(φ1, . . . , φi−1) : E → Ei−1 (respectively of (φ1, . . . , φi−1) : Ei−1 → E).

Then Hq(E,φ) = 0 for all q > 0 (respectively q < n).

Proof. We shall give the proof in the surjective case, which is slightly less standard. If n = 1, the
Higgs complex can be identified with the complex φ1 : E → E, and the statement is a tautology.
Let T ′′ be the submodule of T generated by (t1, . . . , tn−1) and let T ′ be the quotient. The duals fit
into an exact sequence 0 → Ω′ → Ω → Ω′′ → 0, and an induction assumption implies that the Higgs
cohomology sheaves Hj(E,φ′′) vanish for j > 0. Thus, in the spectral sequence of Proposition 2.2.1,
Ei,j2 = 0 for j > 0. Then the spectral sequence degenerates, and Hi(E,φ) ∼= Hi(H0(E,φ′′), φ′) for
all i. But H0(E,φ′) is the kernel of the map (φ1, . . . , φn−1), and the Higgs field φ′ can be identified
with the endomorphism of this kernel induced by φn. The Higgs complex of φ′ has length one, so
its cohomology vanishes in degrees larger than one, and the cohomology vanishes in degree one if
(and only if) φ′ is surjective.

2.3
Let E be a sheaf of OX-modules on a scheme X with a T -Higgs field φ, where T is locally free of
rank n. If f : X ′ → X is a morphism and T ′ := f∗T , then E′ := f∗E inherits a T ′-Higgs field φ′.
By the right exactness of f∗, there is a natural isomorphism f∗Hn(E,φ) → Hn(E′, φ′). For example,
if x is a scheme-theoretic or geometric point of X and f : x := Speck(x) → X is the corresponding
morphism, we write E(x) for f∗E.

Proposition 2.3.1. SupposeX is noetherian and T is locally free of rank n. Let (E,φ) be a coherent
sheaf with a T -Higgs field on X, let Ẽφ be the corresponding sheaf on VT ∗, and let x be a point
of X. Then the following are equivalent.

i) The nth Higgs cohomology sheaf of (E(x), φ(x)) on the scheme x vanishes.

ii) The stalk of Ẽφ at i(x) vanishes, where i : X → VT ∗ is the zero section.

iii) The stalk of the Higgs complex K·(E,φ) at x is acyclic.

If k(x) is infinite, these are also equivalent to the existence of a t ∈ Tx which acts bijectively on Ex.

Proof. Suppose condition (i) holds. Since formation of the nth Higgs cohomology group commutes
with base change, it follows that the fiber of Hn(E,φ) at x vanishes. By Nakayama’s lemma, the
same is true of its stalk at x. By (2.1.2), Hn(E,φ) ∼= i∗Ẽφ ⊗ Ωn, and hence by Nakayama’s lemma
(now on VT ∗), the stalk of Ẽφ at i(x) vanishes. This shows that (i) implies (ii). If condition (ii)
holds, (2.1.2) shows that the stalk of the Higgs complex at x is quasi-isomorphic to the zero complex,
and hence is acyclic, so (ii) implies (iii). The implication of (i) by (iii) follows from the fact that
formation of Hn

φ commutes with base change. Condition (ii) implies that the maximal ideal p0 of
S·T (x) corresponding to i(x) does not belong to the support of Ẽφ(x). Then p0 does not contain any
associated prime p of Eφ(x), i.e. for each such p, the map p0 → k(p) is not zero. Since p0 is generated
by T (x), the map T (x) → k(p) is not zero, so its kernel is a proper k(x)-linear subspace of T (x).
Since k(x) is infinite and there are only finitely many associated primes, there exists an element of
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T (x) which is not in any of these kernels, and which then acts injectively, hence bijectively, on E(x).
Since the map Tx → T (x) is surjective, there exists a t ∈ Tx which acts bijectively on E(x). Then by
the implication (i) implies (iii) for the Higgs field defined by φt (with n = 1), it follows that φt is
bijective on Ex.

Definition 2.3.2. Let (E,φ) be a T -Higgs module on X and let x be a point of X. Then x is said
to be a critical point for φ if the stalk of the Higgs complex of (E,φ) at x is not acyclic. If this is
not the case, x is said to be non-critical.

For example, if X/S is smooth and f is a global section of OX , then df is a global section of
Ω1
X/S and defines a TX/S -Higgs field on OX . A point is a critical point for this Higgs field if and

only if it is a critical point of the function f .

2.4
Let X/S be a smooth morphism of schemes in characteristic p > 0 and let PX/S denote the
PD-envelope of the diagonal X → X ×S X [BO78, 3.19]. Recall that PX/S has the same underlying
topological space asX and that its structure sheaf PX/S , viewed as an OX -module through the right,
carries a canonical HPD stratification, induced by the map δ : PX/S → PX/S ⊗ PX/S (see [BO78,
p. 2.18]). Let ∇P denote the integrable connection on PX/S corresponding to this stratification, and

let JX/S be the ideal of X in PX/S . Then ∇P maps J [n]
X/S to J

[n−1]
X/S ⊗ Ω1

X/S for all n, and hence
induces a connection on the completion P̂X/S of PX/S with respect to the system {J [n]

X/S : n ∈ N}.
If E is any sheaf of OX-modules, let R(E) := E ⊗ PX/S and R̂(E) := E⊗̂PX/S , the completion
of R(E) with respect to the system {J [n]

X/S}. Note that we are computing the tensor product using
the left module structure of PX/S , so that the connection of PX/S coming from the right module
structure passes over to R(E) and R̂(E): ∇(e⊗ z) := e⊗∇(z) for z ∈ PX/S and e ∈ E.

The construction R can also be interpreted in terms of differential operators. Let DX/S denote
the ring of PD-differential operators [BO78, § 4] of X/S. Recall that, as a sheaf of OX-modules,

DX/S
∼= lim−→Hom(PX/S/J [n+1]

X/S ,OX ),

where the Hom is computed using the left OX -module structure on PX/S . Then the category of
OX -modules with connection can be identified with the category of left DX/S -modules. If E is any
OX -module, then R̂(E) ∼= HomOX

(DX/S , E). Here we are using the left OX -module structure on
DX/S , and the connection on R̂(E) corresponds to the left DX/S -action coming from the action of
DX/S on itself on the right. If E is injective in the category of OX -modules, R̂(E) is injective in the
category of DX/S-modules, since the functor R̂ has an exact left adjoint which consists of forgetting
the DX/S-module structure.

Proposition 2.4.1. If E is any sheaf of OX-modules, then for any q > 0

Hq
DR(R(E),∇) ∼= Hq

DR(R̂(E),∇) ∼= 0,

and

Hq
ψ(R(E),∇) ∼= Hq

ψ(R̂(E),∇) ∼= 0.

Proof. We may verify this proposition locally, with the aid of a system of coordinates (x1, . . . , xn)
for some open subset U of X/S. Let ξi := 1 ⊗ xi − xi ⊗ 1, and let ∂i := ∂/∂xi ∈ TX/S . For each

multi-index I := (I1, . . . , In), let ξ[I] := ξ
[I1]
1 · · · ξ[In]

n . Then the set of divided power monomials ξ[I]

forms a basis for PX/S as an OX-module (using either the left or right structure), and the dual
basis for DX/S is the set of monomials ∂I := ∂I11 · · · ∂Inn . Recall that the stratification on PX/S is
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induced from the map δ∗, which sends ξ[K] to
∑

I+J=K ξ
[I] ⊗ ξ[J ]. Hence the connection ∇P sends

ξ[I] to
∑

i ξ
[I−εi] ⊗ dxi, where (ε1, . . . , εn) is the standard basis for Z

n and where ξ[J ] := 0 if any
Ji < 0.

A section of R(E) (respectively of R̂(E)) over U can be written uniquely as a sum (respectively
formal sum)

∑
eI ⊗ ξ[I], where each eI is a section of E over U . The connection on E ⊗ PX/S on

such a (formal) sum is given by

∇P
(∑

I

eI ⊗ ξ[I]
)

=
∑
i

∑
I

eI ⊗ ξ[I−εi] ⊗ dxi. (2.4.1)

Then the vanishing of Hq
DR(R̂(E)) and Hq

DR(R(E)) for q > 0 follows from the standard calculation
used to prove the crystalline Poincaré lemma [BO78, 6.12].

Let ∂′i := π∗(∂i) and let ψi := ψ(∂′i) be the endomorphism of R(E) (respectively R̂(E)) induced
by the p-curvature of ∇P . Since ∂(p)

i = 0, ψi = ∇(∂i)p. Thus ψi(ξ[I]) = ξ[I−pεi]. Then the annihilator
of (ψ1, . . . , ψi) on R(E) (respectively R̂(E)) consists of the set of (formal) sums

∑
eI ⊗ ξ[I] such

that eIj = 0 whenever Ij � p and j � i. The action of ψi+1 on such sums is evidently surjective, so
the vanishing of Hq

ψ for q > 0 follows from Corollary 2.2.3.

2.5

An integrable connection on E is equivalent to the structure of a left DX/S -module on E. Such a
connection then defines a natural horizontal map ε : E → R̂(E), where ε(e)(D) := D(e) for each
section of e of E and D of DX/S .

Proof of Theorem 1.2.1. To see that (E ⊗ F ∗
X/SΩ·

X′/S , ψ) is a complex, we check that ψ defines an
F ∗TX′/S-Higgs field on E, as explained in (2.1.1). This can be checked locally. Let (∂1, . . . , ∂n) be
the basis for TX/S dual to the differentials (dx1, . . . , dxn) of a system of coordinates, and let ψi :=
ψ(π∗(∂i)). Since ∇ is integrable and [∂i, ∂j ] = 0, [∇(∂i),∇(∂j)] = 0. Since ∂(p)

i = 0, ψi = ∇(∂i)p,
so [ψi, ψj ] = 0. It follows that ψ satisfies the integrability condition in Definition 2.1.1 and that
ψi+1ψi = 0. It also follows that each ψi commutes with each ∇(∂i), which implies that the boundary
maps of the complex (E·, ψ) commute with the connection on each term.

We claim next that the p-curvature of the induced connection on the Higgs cohomology sheaves
vanishes. Again, it suffices to work locally, with the aid of a system of coordinates. Since the
p-curvature of F ∗

X/S(Ωi
X′/S) is zero, the p-curvature of the connection on E⊗F ∗

X/S(Ωi
X′/S) is the map

induced by p-curvature of E. Thus it suffices to show that, for each i and each j, the endomorphism
of Hi(E,ψ) induced by ψj ⊗ id is zero. But the Higgs cohomology can be identified with the
Koszul cohomology of E with respect to (ψ1, . . . , ψn), which is by construction annihilated by
each ψj .

Associated to a short exact sequence 0 → E′ → E → E′′ → 0 of OX -modules with integrable
connection there is short exact sequence of de Rham complexes

0 → E′ ⊗ Ω·
X/S → E ⊗ Ω·

X/S → E′′ ⊗ Ω·
X/S → 0,

and hence a long exact sequence of de Rham cohomology sheaves

· · · → Hi
DR(E′,∇) → Hi

DR(E,∇) → Hi
DR(E′′,∇) → Hi+1

DR (E′,∇) → · · · .
Similarly there is a short exact sequence of p-curvature complexes

0 → E′ ⊗ F ∗
X/SΩ·

X′/S → E ⊗ F ∗
X/SΩ·

X′/S → E′′ ⊗ F ∗
X/SΩ·

X′/S → 0,
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and consequently a long exact sequence:

· · · → Hi
ψ(E′,∇) → Hi

ψ(E,∇) → Hi
ψ(E′′,∇) → Hi+1

ψ (E′,∇) → · · · .
As we observed above, each term in this sequence admits an integrable connection with

p-curvature zero. It then follows from the theory of Cartier descent [Kat70, 5.1] that the sequence
of horizontal sections

· · · → Hi
ψ(E′,∇)∇ → Hi

ψ(E,∇)∇ → Hi
ψ(E′′,∇)∇ → Hi+1

ψ (E′,∇)∇ → · · ·
is still exact. (We should point out that the statement in op. cit. is for quasi-coherent sheaves, but the
proof also applies to arbitrary OX-modules. See also Corollary 3.2.2.) Thus, each of {Hi

DR : i � 0},
{Hi,∇

ψ : i � 0}, and {Hi,∇
−ψ : i � 0} forms a cohomological ∂-functor. If (E,∇) is a sheaf with an

integrable connection, there is a horizontal injection (E,∇) → (R̂(E),∇), so by Proposition 2.4.1
both sequences of functors are effaceable. Consequently, there is a unique isomorphism of cohomo-
logical ∂-functors H·,∇

−ψ → H·
DR extending the obvious one in degree zero.

Remark 2.5.1. A connection ∇ on E is quasi-nilpotent if, locally on X, every local section e of
E is annihilated by some power of the p-curvature. If this is the case, then the canonical map
ε : E → R̂(E) factors through R(E). This statement can be verified locally with the aid of a system
of coordinates as above. By definition, ε(e) is the formal sum

∑
∂I(e) ⊗ ξ[I], and, by [BO78, 4.10],

this sum is in fact a finite sum (locally on X). The standard connection ∇P on PX/S is quasi-
nilpotent, and the category MIC qn(X/S) of modules with quasi-nilpotent connection is a thick
abelian subcategory of MIC (X/S). Thus Theorem 1.2.1 is also true in this subcategory.

3. Log schemes and log connections

3.1
In this section we extend Theorem 1.2.1 to the case of connections with log poles. We shall do this
using the language of log schemes, which in fact considerably increases its generality and scope.
Readers who are unfamiliar with this language can restrict to the case of the log structures arising
from a smooth scheme X with a divisor D with normal crossings. In this case, the log structure
is just the inclusion MX → OX , where MX is the sheaf of sections of OX which are invertible
outside D.

The log case introduces several technical and conceptual difficulties (some of which do not
arise in the case of divisors with relative normal crossing or in the case of semistable reduction).
Let X/S be a smooth morphism of fine log schemes in characteristic p > 0. We denote simply by
Ω1
X/S the sheaf of relative log differentials and by TX/S its dual; these are locally free sheaves of finite

rank on X. First of all, in this generality it is not true that OX′ is the kernel of d : FX/S∗(OX) →
FX/S∗(Ω1

X/S). As Kato points out in [Kat89, 4.12], one must replace the relative Frobenius diagram
with a refinement:

X
FX/S ��

���
��

��
��

��
��

X ′

��

π

���
��

��
��

��
��

X ′′ ��

��

X

��
S

FS �� S

Here X ′′ is the fiber product of X with S over FX , computed in the category of fine log schemes, and
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X → X ′ → X ′′ is the canonical factorization of the weakly purely inseparable map X → X ′′ into an
exact morphism followed by an étale morphism. (Our notation is not the same as Kato’s.) In the case
of morphisms of Cartier type (for example, in the case of log structures arising from divisors with
normal crossings or a semistable degeneration) X ′ → X ′′ is the identity map and the underlying
scheme of X ′′ is the usual fiber product, so that this subtlety can safely be ignored. Since the
square is Cartesian and X ′ → X ′′ is (log) étale, it is still true that the map π∗Ω1

X/S → Ω1
X′/S is an

isomorphism. In this context, Kato constructs a canonical isomorphism

C−1
X/S : Ωi

X′/S → FX/S∗(Hi(Ω·
X/S)) (3.1.1)

generalizing the classical Cartier isomorphism.
Another difficulty is that Cartier descent is considerably more complicated for log schemes.

Even if S is the spectrum of a field with the trivial log structure and X/S is smooth, X might not
be regular, so FX/S need not be flat. And even in the classical DNC case, F ∗

X/S does not induce an
equivalence between the category of OX′ -modules and the category of OX -modules with integrable
and p-integrable connection. For a thorough discussion, see [Lor00].

Nevertheless, we shall see that there is indeed a log version of Theorem 1.2.1. In fact, with
proper formulation, the statement is almost the same. Let (E,∇) be a module with (logarithmic)
integrable connection on X/S. Again, the p-curvature of (E,∇) can be interpreted as an OX -linear
map

ψ : E → E ⊗ F ∗
X/SΩ1

X′/S ;
see [Ogu94, § 1]. One verifies easily as before that ψ defines an F ∗

X/STX/S-Higgs field on E and that
it is horizontal for the natural connections on its source and target. This allows us to define functors
{Hi∇

−ψ : i ∈ N} from the category MIC (X/S) to the category of OX′-modules.

Theorem 3.1.1. Let X/S be a smooth morphism of fine log schemes in characteristic p > 0,
let FX/S : X → X ′ be the exact relative Frobenius map, and let MIC (X/S) be the category of
sheaves of OX-modules equipped with an integrable connection. The sequences {Hi

DR : i ∈ N} and
{Hi∇

−ψ : i ∈ N} form cohomological ∂-functors from the abelian category MIC (X/S) to the category
of OX′-modules. Moreover, there is a unique isomorphism of cohomological ∂-functors

C−1
X/S : H·∇

−ψ → H·
DR

which agrees with the obvious one in degree zero. In particular, if (E,∇) is an object of MIC (X/S),
there is a canonical isomorphism of OX′-modules

C−1
X/S : Hi

−ψ(E,∇)∇ ∼= Hi
DR(E,∇).

3.2
The first step is to show that {Hi∇

−ψ : i ∈ N} forms a cohomological ∂-functor. Recall [Ogu94, § 1]
that if X/S is a smooth morphism of fine log schemes, then locally on X there exists a sequence
of sections (m1, . . . ,mn) of MX defining an étale map from X to the logarithmic affine space An×S .
Here An× is the log scheme corresponding to the prelog structure N

n → Z[Nn] and An×S := An××S.
In particular, (d logm1, . . . , d logmn) forms a basis of Ω1

X/S ; let (∂1, . . . , ∂n) be the dual basis of TX/S .
(For example, in the case of the trivial log structure, each mi is a section of O∗

X , d logmi = dmi/mi,
and ∂i = mi∂/∂mi.) Thus each ∂i is a (log) derivation OX → OX relative to S, and hence defines
a (log) PD-differential operator of order one. Since the connection ∇ is integrable, it defines an
action of DX/S on E, and if D ∈ DX/S we denote by ∇D or ∇(D) the corresponding OX′-linear
endomorphism of E. For each i, let ∂′i := π∗(∂i) ∈ DX′/S

∼= π∗DX/S .
The following result already appears in the proof of [Ogu94, 1.3.4]. (The formulas for hi given

there look different, but reduce to the simpler ones here when pOX = 0.)
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Proposition 3.2.1. Suppose X/S is equipped with a system of log coordinates (m1, . . . ,mn), and
let (E,∇) be an OX-module with integrable connection. For each i ∈ {1, . . . , n}, let ψi := ψ(∂′i) ∈
EndOX

(E), and let hi := id − ∂p−1
i ∈ DX/S .

i) ∇(∂i)∇(hi) = ∇(hi)∇(∂i) = −ψi.
ii) Let h be the PD-differential operator

∏
i hi. Then if the p-curvature of E is zero, ∇(h) : E → E

is a projection operator with image E∇.

Proof. In the ring DX/S , the pth power Dp of a derivation D is a differential operator of order p
and needs to be distinguished from the derivation D(p) used in the definition of p-curvature. If ∂i is
one of the log derivations coming from a system of log coordinates as above, then ∂(p)

i = ∂i [Ogu94,
1.2.2]. Then

ψ(∂′i) = ∇(∂i)p −∇(∂(p)
i ) = ∇(∂pi ) −∇(∂i)

= ∇(∂i)∇(∂p−1 − 1) = −∇(∂i)∇(hi).

This proves the first statement. It follows that if ψ = 0, ∇∇h(e) = 0 for every e ∈ E. On the other
hand, if ∇(e) = 0, then ∇∂i

(e) = 0 for every i, and hence ∇hi
(e) = e for every i and ∇h(e) = e.

Corollary 3.2.2. Let X/S be a smooth morphism of fine log schemes. Then if

0 → (E′,∇′) → (E,∇) → (E′′,∇′′) → 0

is an exact sequence of OX -modules with integrable connection whose p-curvature vanishes, the
sequence

0 → E′∇′ → E∇ → E′′∇′′ → 0

is also exact.

Proof. The statement is local on X, so we may assume that there exists a set of log coordinates.
Then the exactness follows from the existence of the projection operator ∇(h) of Proposition 3.2.1.

Proof of Theorem 3.1.1. The fact that {Hi∇
ψ : i ∈ N} and {Hi

DR : i ∈ N} form cohomological
∂-functors follows as in the proof of Theorem 1.2.1, thanks to Corollary 3.2.2. Thus, to prove the
theorem it suffices to show that both are effaceable. We use the logarithmic version of the construc-
tion R̂. In terms of the ring DX/S of (logarithmic) differential operators, R̂(E) := Hom(DX/S , E).
Suppose that X/S admits a sequence of logarithmic coordinates (m1, . . . ,mn). Then DX/S is a free
left OX -module [Ogu94, 1.1]. In fact there are two useful bases that we shall want to use. Let P
denote the structure sheaf of the (exact) divided power envelope P of the diagonal X → X ×s X.
If m is a section of MX , p�2(m) and p�1(m) are two sections of MP with the same restriction to the
diagonal, so there exists a section η of the ideal JX/S of the diagonal such that p�2(m) = p�1(m)(1+η).
If ηi is the section thus constructed for each mi, then (η1, . . . , ηn) is a sequence of divided power
generators for JX/S , and the set of divided power monomials η[I] := η

[I1]
1 · · · η[In]

n is a basis for P
over OX (as either a left or right module). Let

ζi := log(1 + ηi) := ηi − η
[2]
i + 2!η[3]

i + · · · .
Then the divided power monomials in the ζ’s also furnish a basis for P. Let {∂I} be the basis for
DX/S dual to {η[I]} and let {DI} be the basis dual to {ζ [I]}. It follows from the definitions and the
cocycle condition that

δ∗(ζi) = 1 ⊗ ζi + ζi ⊗ 1, δ∗(ζK) =
∑

I+J=K

ζ [I] ⊗ ζ [J ].
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Hence DIDJ = DI+J and

∇ζ [I] =
∑
i

ζ [I−εi] ⊗ d logmi.

Then the fact that Hq
DR(R̂(E)) = 0 for q > 0 again reduces to the divided power Poincaré lemma.

For the effaceability of {Hq∇
−ψ : q > 0}, one can either calculate directly or use the explicit local

comparison Proposition 4.1.1 in the next section. For the direct calculation, note that the p-curvature
operator ψi corresponding to Di is Dp

i −Di. Hence

ψi(ζ [I]) = ζ [I−pεi] − ζ [I−εi].

Again we verify that Hq
−ψ(R̂(E)) = 0 for q > 0 using Corollary 2.2.3. Let e be a local section of

R̂(E) annihilated by (ψ1, . . . , ψi−1), and write e as a formal sum
∑

i eI ⊗ ζ [I]. Define e′I inductively
by setting

e′I :=

{
0 if Ii < p,
eI−pεi + e′I−pεi+1 if Ii � p.

Then e′ :=
∑
e′I ⊗ ζ [I] is annihilated by (ψ1, . . . , ψi−1) and ψi(e′) = e.

Remark 3.2.3. This is perhaps a good place to point out that, as Berthelot has observed, the
equation on page 17 of [Ogu94] should read

∆∗(η[n]
i ) =

∑
a+b+c=n

c!
(
a+ c
c

)(
b+ c
c

)
η

[a+c]
i ⊗ η

[b+c]
i .

4. Explicit formulas

4.1
Our first goal in this section is to give an explicit formula for the isomorphism CX/S of Theorem 3.1.1
in terms of local coordinates. For this purpose, let X/S be a smooth morphism of fine log schemes,
and suppose that (m1, . . . ,mn) is a system of log coordinates for X/S. Then (d logm1, . . . , d logmn)
is a basis for Ω1

X/S . Let (∂1, . . . , ∂n) be the dual basis for TX/S . Let ωi := d logmi ∈ Ω1
X/S and

ω′
i := F ∗

X/Sπ
∗ωi ∈ F ∗

X/SΩ1
X′/S . If I is a subset of {1, . . . , n} and q := |I|, we also denote by I the

unique increasing function {1, . . . , q} → {1, . . . , n} whose image is I. Let ωI := ωI1∧· · ·∧ωIq ∈ Ωq
X/S ,

with similar notation for ω′
I . Note that each ωi is closed, and that Kato’s inverse Cartier operator

(3.1.1) takes ω′
I to ωI . The set of ωI with |I| = q forms a basis for Ωq

X/S , and similarly for Ωq
X′/S .

Let (E,∇) be a sheaf of OX -modules with integrable connection on X/S. For each q we construct
additive maps

αq : E ⊗ Ωq
X/S → E ⊗ F ∗

X/SΩq
X′/S ,

βq : E ⊗ F ∗
X/SΩq

X′/S → E ⊗ Ωq
X/S

as follows. For each i, let hi := id − ∂p−1
i in the ring of (log) PD-differential operators. For each

I ⊆ {1, . . . , n}, define PD-differential operators αI :=
∏{hi : i ∈ I} and βI :=

∏{hi : i �∈ I}.
Then define

α

( ∑
eI ⊗ ωI

)
=

∑
∇αI

(eI) ⊗ ω′
I ,

β

(∑
eI ⊗ ω′

I

)
=

∑
∇βI

(eI) ⊗ ωI .
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Proposition 4.1.1. With the above notation, α := ⊕αq and β := ⊕βq define morphisms of com-
plexes:

(E ⊗ Ω·
X/S ,∇) α ��

βα
��������������������

(E ⊗ F ∗
X/SΩ·

X′/S ,−ψ)

β

��

αβ

����������������������

(E ⊗ Ω·
X/S ,∇) α �� (E ⊗ F ∗

X/SΩ·
X′/S ,−ψ)

with the following properties.

i) βα is homotopic to the identity.

ii) H·(αβ) : H·
−ψ(E) → H·

−ψ(E) is a projection onto H·∇(E).
iii) α and β induce isomorphisms

α′ : H·
DR(E) → H·∇

−ψ(E), β′ = α′−1 : H·∇
−ψ(E) → H·

DR(E).

Proof. In order to save space, we write De instead of ∇D(e) if D is a PD-differential operator and
e is a section of E. Let φ := −ψ and write E·

DR for the de Rham complex of (E,∇) and E·
φ for the

Higgs complex of (E,−ψ). If i ∈ {1, . . . , n} and I ⊆ {1, . . . , n}, let εi,I := (−1)m(i,I), where m is the
cardinality of the set of elements of I which are less than i. Thus

ωi ∧ ωI =

{
εi,IωI∪i if i �∈ I,

0 if i ∈ I.

Any local section e of E ⊗ Ωq
X/S can be written uniquely as a sum e =

∑
eI ⊗ ωI with eI ∈ E.

Then the differential d of the complex E·
DR is given explicitly as follows:

d(eI ⊗ ωI) =
∑
i�∈I

∂ieI ⊗ εi,IωI∪i.

Similarly, any element e of E ⊗ F ∗
X/S(Ωq

X′/S) can be written uniquely as a sum e =
∑
eI ⊗ ω′

I , and
the differential φ of the complex E·

φ is given explicitly as

φ(eI ⊗ ω′
I) =

∑
i�∈I

φieI ⊗ εi,Iω
′
I∪i.

To check that α and β form morphisms of complexes, we use Proposition 3.2.1:

αd(eI ⊗ ωI) = α

(∑
i�∈I

∂ieI ⊗ εi,IωI∪i
)

=
∑
i�∈I

αI∪i(∂ieI) ⊗ εi,Iω
′
I∪i =

∑
i�∈I

αI(hi∂ieI) ⊗ εi,Iω
′
I∪i

=
∑
i�∈I

αI(φieI) ⊗ εi,Iω
′
I∪i =

∑
i�∈I

φi(αIeI) ⊗ εi,Iω
′
I∪i

= φ(αIeI ⊗ ω′
I) = φα(eI ⊗ ωI).

This shows that α is a morphism of complexes. The proof for β is similar:

βφ(eI ⊗ ω′
I) = β

(∑
i�∈I

φieI ⊗ εi,Iω
′
I∪i

)

=
∑
i�∈I

βI∪iφieI ⊗ εi,IωI∪i =
∑
i�∈I

βI∪ihi∂ieI ⊗ εi,IωI∪i
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=
∑
i�∈I

βI∂ieI ⊗ εi,IωI∪i =
∑
i�∈I

∂iβIeI ⊗ εi,IωI∪i

= d(βIeI ⊗ ωI) = dβ(eI ⊗ ω′
I).

Evidently βα is given by βα(eI ⊗ ωI) = h(eI) ⊗ ωI , where h :=
∏{hi : 1 � i � n} is the

operator of Proposition 3.2.1. Similarly, αβ(eI ⊗ω′
I) = h(eI)⊗ω′

I . Since hi := id−∂p−1
i , there exist

differential operators ri such that

h = id +
n∑
i=1

∂iri.

Define R : E ⊗ Ωq
X/S → E ⊗ Ωq−1

X/S by

R(eI ⊗ ωI) :=
∑
j∈I

εj,IrjeI ⊗ ωI\j.

We compute

(dR +Rd)(eI ⊗ ωI) =
∑
j∈I

d(εj,IrjeI ⊗ ωI\j) +
∑
i�∈I

R(εi,I∂ieI ⊗ ωI∪i)

=
∑
j∈I

∑
i�∈I\j

εi,I\jεj,I∂irjeI ⊗ ωI\j∪i +
∑
i�∈I

∑
j∈I∪i

εj,I∪iεi,Irj∂ieI ⊗ ωI∪i\j

=
∑
j∈I

εj,I\jεj,I∂jrjeI ⊗ ωI +
∑
j∈I

∑
i�∈I

εi,I\jεj,I∂irjeI ⊗ ωI\j∪i

+
∑
i�∈I

εi,I∪iεi,Iri∂ieI ⊗ ωI +
∑
i�∈I

∑
j∈I

εj,I∪iεi,Irj∂ieI ⊗ ωI∪i\j.

Since εj,I = εj,I\j if j ∈ I and εi,I = εi,I∪i if i �∈ I and ∂i and ri commute,

∑
j∈I

εj,Iεj,I\j∂jrjeI ⊗ ωI +
∑
i�∈I

εi,Iεi,I∪iri∂ieI ⊗ ωI =
n∑
i=1

∂irieI ⊗ ωI .

On the other hand, if j ∈ I and i �∈ I, then i �= j. If i < j, then m(j, I ∪ i) = m(j, I) + 1 and
m(i, I) = m(i, I \ j). If j < i, then m(j, I ∪ i) = m(j, I) and m(i, I) = m(I, I \ j) + 1. In any case,
εi,I\jεj,I + εj,I∪iεi,I = 0. Thus the expression above reduces to

(dR+Rd)(eI ⊗ ωI) =
n∑
i=1

∂irieI ⊗ ωI = (h− id)(eI ⊗ ωI).

This proves that βα is homotopic to the identity.
It follows that the map on cohomology H(α) : H(E·

DR) → H(E·
φ) is injective and split, the map

H(β) : H(E·
φ) → H(E·

DR) is surjective and split, and the image of α coincides with
the image of H(αβ). Recall that E·

φ is a complex of modules with integrable connection, and
that the corresponding cohomology groups inherit a connection whose p-curvature is zero. Thus by
Proposition 3.2.1 the action of H(αβ) on these cohomology groups is a projection onto the horizontal
part. In other words, H(α) identifies H·

DR(E) with H·
φ(E)∇, as claimed in the theorem.

Remark 4.1.2. Let us continue to suppose that X/S admits a set of log coordinates as in
Proposition 4.1.1. Then for any E, the morphism of complexes

βE : K·(E,−ψ) → (E ⊗ Ω·,∇)

induces morphisms of cohomology sheaves:

H·(βE)∇ : H·
−ψ(E)∇ → H·(E,∇).
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As E varies, these maps form a morphism of cohomological ∂-functors which agrees with the tauto-
logical one on H0. It follows from the uniqueness theorem for such morphisms that H·(β)∇ is in fact
the isomorphism labeled C−1

X/S in Theorem 3.1.1. Let us apply this remark when (E,∇) = (OX , d).

Taking into account the explicit formula for β, we see that C−1
X/S takes ω′

I to ωI for any I with
|I| = q. Thus the isomorphism of Theorem 3.1.1 agrees with the one defined by Kato, and, when
the log structure is trivial, with the classical Cartier operator.

4.2
The classical Cartier operator is often described as a mapping from the set of closed i-forms on
X to the set of i-forms on X ′. At least for i = 1, this is possible in our generalized context as
well: there is a map from the closed 1-forms in the de Rham complex of E to the closed forms
in its p-curvature complex which lifts CX/S . We show this with the aid of a construction that has
essentially already appeared in [Ogu77, 2.11]. This gives a ‘physical interpretation’ of the generalized
Cartier isomorphism CX/S of Theorem 3.1.1 in this case.

Proposition 4.2.1. Let X/S be a smooth morphism of fine log schemes in characteristic p > 0,
let ω ∈ Γ(X,E ⊗Ω1

X/S) be closed, and let [ω] be its class in Γ(X,H1
DR(E,∇)). Define an integrable

connection ∇′ on E′ := E ⊕OX by ∇′(e⊕ a) := ∇(e) + aω ⊕ da.

i) The p-curvature ψ′ of ∇′ is given by ψ′(e⊕ a) = (ψ(e) − aω′, 0), where ψ is the p-curvature of
E and ω′ ∈ E ⊗ F ∗

X/SΩ1
X/S satisfies

〈π∗D,ω′〉 = 〈D(p), ω〉 − ∇p−1
D 〈D,ω〉.

for every D ∈ TX/S .

ii) The element ω′ defined above is a closed cycle in the Higgs complex (E⊗F ∗
X/SΩ·

X/S ,−ψ), and

its image in Γ(X,H1
−ψ(E,∇)) is CX/S([ω]).

Proof. One checks easily that ∇′ is integrable. In fact, there is an exact sequence of modules with
integrable connection

0 → (E,∇) → (E′,∇′) → (OX , d) → 0
whose class in Γ(X, Ext1(OX , E))∼=H0(X,H1

DR(E)) corresponds to [ω]. According to Theorem 3.1.1,
this sequence produces a commutative diagram

H0
DR(OX , d) ��

CX/S

��

H1
DR(E,∇)

CX/S

��

H0,∇
−ψ (OX , d) �� H1,∇

−ψ (E,∇)

The image of 1 along the top row is, by construction, the class of ω. The image of 1 along the
bottom row is, by definition, −ψ′(0 ⊕ 1), where ψ′ is the p-curvature of ∇′. It is clear a priori that
ψ′(e⊕a) = ψ(e)−aω′ for some ω′ ∈ E⊗F ∗

X/SΩ1
X′/S . In particular, −ψ′(0⊕1) = ω′, so the diagram

shows that CX/S [ω] is the class of ω′.
To compute ω′, first check by induction on k that

∇′k
D(e⊕ a) =

(
∇k
De+

k−1∑
i=0

(
k
i

)
Di(a)∇k−i−1

D 〈D,ω〉 ⊕Dka

)
.

Hence
∇′p
D(e⊕ a) = (∇p

De+ a∇p−1
D 〈D,ω〉 ⊕Dpa),
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and

ψ′
π∗D(e⊕ a) = ∇′p

D(e⊕ a) −∇′
D(p)(e⊕ a)

= ψD(e) + a∇p−1
D 〈D,ω〉 − a〈D(p), ω〉 ⊕Dpa−D(p)a.

Since Dpa = D(p)a, we see that ψ′(e ⊕ a) = (ψ(e) − aω′ ⊕ 0), where ω′ ∈ F ∗
X/S(Ω1

X′/S) satisfies

〈π∗D,ω′〉 = 〈D(p), ω〉 − ∇p−1
D 〈D,ω〉.

5. Consequences and remarks

5.1
Throughout this section we let X/S be a smooth morphism of fine log schemes in characteristic
p > 0.

A special case of the following result has already appeared in [Ogu77], where it was one of the
key ingredients in the proof of Katz’s formula [Kat72] relating p-curvature to the Kodaira–Spencer
mapping.

Corollary 5.1.1. Let (E,∇) be a module with integrable connection on X/S endowed with a
horizontal filtration N such that the p-curvature of GrN E vanishes. Let (E, d) be the spectral
sequence of the filtered complex (E ⊗ Ω·

X/S , N). Then there is a commutative diagram whose
horizontal arrows are isomorphisms:

Ei,j1

∼= ��

di,j
1

��

Hi+j
DR(GriN E ⊗ Ω·

X/S)

��

GriN (E)∇ ⊗ Ωi+j
X′/S

C−1
X/S��

−ψ
��

Ei+1,j
1

∼= �� Hi+j+1
DR (Gri+1

N E ⊗ Ω·
X/S) Gri+1

N (E)∇ ⊗ Ωi+j+1
X′/S

C−1
X/S��

Proof. Consider the short exact sequence in the category MIC (X/S);

0 → Gri+1
N E → N iE/N i+2E → GriN E → 0.

The arrow di,j1 of the spectral sequence is the boundary map in the long exact sequence of
cohomology associated to this sequence by the cohomological ∂-functor HDR. By Theorem 3.1.1,
there is a commutative diagram

Hi+j
−ψ (GriN E)∇ ∂ ��

C−1
X/S

��

Hi+j+1
−ψ (Gri+1

N E)∇

C−1
X/S

��

Hi+j
DR(GriN E) ∂ �� Hi+j+1

DR (Gri+1
N E)

But −ψ acting on GriN E is zero, so Hi+j
−ψ (GriN E)∇ ∼= GriN E ⊗ Ωi+j

X′/S , and the boundary map di,j1

is just the map induced by −ψ.

5.2
For the remainder of this section, we suppose that X/S is a smooth morphism of fine log schemes,
with S noetherian of characteristic p > 0. The following result is an immediate consequence of
Theorem 3.1.1 and Proposition 2.3.1.
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Corollary 5.2.1. Let (E,∇) be a coherent sheaf with integrable connection on X/S. If x ∈ X is
non-critical (see Definition 2.3.2) for the p-curvature of ∇, then the de Rham complex (E⊗Ω·

X/S,∇)
is acyclic in some neighborhood of x.

Proposition 5.2.2. Let (E,∇) be a sheaf with integrable connection on X/S, where S = SpecA
is affine. Then the E2 term of the ‘second spectral sequence’ of hypercohomology

Ei,j2 = H i(X,Hj(E ⊗ Ω·
X/S)) ⇒ H i+j

DR (E,∇)

can be rewritten as

Ei,j2
∼= H i(X ′,Hj

−ψ(E)∇).
Consequently, if E is coherent and the critical locus (see 2.3.2) of ψ is proper over S, then the global
hypercohomology H i

DR(E,∇) is finitely generated over A.

Proof. Since F : X → X ′ is a homeomorphism, Theorem 3.1.1 implies that we can rewrite Ei,j2 as
H i(X ′,Hj

−ψ(E)∇). This gives the reinterpretation of the spectral sequence. The sheaves Hj
−ψ(E)∇

are coherent sheaves of OX′ -modules. If their support is proper, it follows that each Ei,j2 is finitely
generated over A, and hence so is the abutment.

If (E,∇) is an OX-module with integrable connection and ω is a 1-form on X, then the ω-twist
of (E,∇) is the connection ∇ω on E defined by ∇ω(e) := ∇(e)+e⊗ω. If ω is closed, then ∇ω is again
integrable. If (E,∇) is the constant connection on OX , this connection is denoted by Lω, and its
p-curvature is the map 1 �→ F ∗

X/S(π∗ω−CX/S [ω])⊗e where CX/S [ω] is the Cartier operator applied to
the cohomology class of ω (see [Kat72, 7.1.2]). In general, the ω-twist of (E,∇) is the tensor product
of (E,∇) with Lω, and hence its p-curvature ψω is the map e �→ ψ(e) + F ∗

X/S(π∗ω − CX/S [ω]) ⊗ e.
In particular, if f ∈ OX(X) and ω = df , then ψ′ = ψ + F ∗

X(df) ⊗ id. Note that if (E,∇) is
quasi-nilpotent, as in Remark 2.5.1, then the critical locus of ψ′ coincides with the critical locus
of f .

Corollary 5.2.3. Suppose that S = SpecA, let (E,∇) be a coherent sheaf on X/S with integrable
connection, and let f be a global section of OX . If the p-curvature of (E,∇) is nilpotent and the
critical locus of f is proper over S, then the de Rham cohomology of the df -twist of (E,∇) is finitely
generated over A.

Acknowledgements

It is a pleasure to thank Spencer Bloch and Hélène Esnault for an inspiring lecture series in Japan
which mentioned the theorem of Barannikov and Kontsevich and motivated my search for a charac-
teristic p analog. Thanks also go to J.-P. Serre and (as usual) Ofer Gabber for reminding me about
signs. I am also grateful to Luc Illusie and Elmar Grosse-Kloene for comments and discussions, and
especially to the referee for a meticulous review which has, I think, greatly improved the exposition.

Appendix A. p-curvature and divided powers

A.1
The key to the effaceability of the functors Hq

ψ for q > 0 was the computation of the p-curvature
of the divided power envelope of the diagonal embedding. For this purpose, a local calculation,
involving a choice of coordinates, was sufficient. In some circumstances it can be desirable to have
an intrinsic formulation, and this is the purpose of the following proposition.

Let X/S be a smooth morphism of schemes in characteristic p > 0, and let (A,∇) be a sheaf
of OX -modules with integrable connection on X/S. Suppose that A is endowed with the structure
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of an OX -algebra which is compatible with the connection, and that there exists an ideal I of A
endowed with a divided power structure {γm : I → I : m � 1} such that

∇D(γm(a)) = γm−1(a)∇D(a)

for all m � 1, a ∈ I, and D ∈ TX/S . Observe that ap = 0 for any a ∈ I. Hence if f ∈ OX , a ∈ I,
and D ∈ TX/S ,

(∇D(fa))p = (D(f)a+ f∇D(a))p = fp(∇D(a))p.

Thus the map φD sending a to (∇D(a))p is a linear map I → FX∗(A). Since ∇D sends I [2] to I, φD
annihilates I [2]. It is also FX -linear in D, so that D �→ φD defines an OX-linear map

φ : F ∗
XI → A⊗ F ∗

X/SΩ1
X′/S

which factors through F ∗
X(I/I [2]). We write a[m] for γm(a) and use the conventions γ0(a) := 1 for

all a and γm(a) := 0 for m < 0.

Proposition A.1.1. Let (A, I, γ,∇) be as above and let ψ be the p-curvature of (A,∇). Then for
any section a of I and any m > 0,

ψ(a[m]) = a[m−1]ψ(a) + a[m−p]φ(1 ⊗ a).

Proof. We need to calculate the action of differential operators on the divided powers of elements
of I. The formula which follows does not use the fact that pA = 0, and is expressed in terms of
partitions. If T is a set, by a partition of T we mean a set π of disjoint non-empty subsets of T
whose union is all of T . Thus if π is such a partition, an element s of π is a subset of T . We let |s|
denote the cardinality of |s| and |π| the cardinality of π.

Lemma A.1.2. For any n � 1,

∇n
D(a[m]) =

∑
π

a[m−|π|] ∏
s∈π

∇|s|
D (a),

where the sum is taken over the set Pn of all partitions of {1, . . . , n}.

Proof. If n = 1, the formula just says that ∇D(a[m]) = a[m−1]∇D(a), which is certainly true for
all m ∈ Z. We proceed by induction on n. Assume the formula is true for n. If π is a partition of
{1, . . . , n} and s is an element of π, let πs be the partition of {1, . . . , n + 1} obtained by adding
n+ 1 to s and leaving the other elements of π unchanged: πs := π \ {s} ∪ {s ∪ {n+ 1}}. Similarly,
denote by π∅ the partition obtained by adjoining the singleton {n + 1} to π: π∅ := π ∪ {{n + 1}}.
In this way we obtain all the partitions of {1, . . . , n + 1}. Note that |πs| = |π| and π∅ = |π| + 1.

From the Leibnitz rule and the induction hypothesis, we obtain

∇n+1
D a[m] = ∇D

( ∑
π∈Pn

a[m−|π|] ∏
s∈π

∇|s|
D (a)

)

=
∑
π∈Pn

∇D(a[m−|π|])
∏
s∈π

∇|s|
D (a) +

∑
π∈Pn

a[m−|π|]∇D

∏
s∈π

∇|s|
D (a)

=
∑
π∈Pn

a[m−|π|−1]∇D(a)
∏
s∈π

∇|s|
D (a)

+
∑
π∈Pn

a[m−|π|] ∑
s∈π

∇|s|+1
D (a)

∏
s′∈π\{s}

∇|s′|
D (a)
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=
∑
π∈Pn

a[m−|π∅|]
∏
t∈π∅

∇|t|
D (a) +

∑
s∈π∈Pn

a[m−|πs|] ∏
t∈πs

∇|t|
D (a)

=
∑

π∈Pn+1

∏
t∈π

a[m−|π|]∇|t|
D(a).

If π ∈ Pn and |π| = r, write π = (s1, . . . , sr) with |s1| � |s2| � · · · � |sr|, and let c(π) :=
(|s1|, . . . , |sr|). Then c(π) does not depend on the choice of the ordering of π, and c is a function
from Pn to the set of finite non-decreasing subsequences of the positive integers. The fibers of c are
exactly the orbits of Pn under the natural action of the symmetric group Sn. For each subsequence
I = (I1, . . . , Ir), let νn(I) denote the cardinality of the corresponding orbit, and let r(I) be the
length of I. Then Lemma A.1.2 implies that

∇n
D(a[m]) =

∑
I

νn(I)a[m−r(I)] ∏
j

∇Ij
D(a). (A.1.1)

The cyclic group Z/nZ operates on Pn through its inclusion in the symmetric group Sn, and it
is evident that the only partitions fixed under this action are the partitions π1 := {1, . . . , n} and
πn := {{1} · · · {n}}. In particular, when n = p, all the other orbits have cardinality p, and hence all
the other orbits under the full action of Sn have cardinality divisible by p. Thus, if n = p, νn(I) is
divisible by p unless I = (p) or I = (1, 1, . . . , 1). Hence, if pA = 0, Equation (A.1.1) when p = n
reduces to

∇p
D(a[m]) = a[m−1]∇p

D(a) + a[m−p]∇D(a)p.

By the definition of p-curvature,

ψD(a[m]) = ∇p
D(a[m]) −∇D(p)(a[m])

= a[m−1]∇p
D(a) + a[m−p]∇D(a)p − a[m−1]∇D(p)(a)

= a[m−1]ψD(a) + a[m−p]φD(1 ⊗ a).

This completes the proof of Lemma A.1.1.
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