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Abstract. Although detailed descriptions of the possible types of behaviour inside periodic
Fatou components have been known for over 100 years, a classification of wandering
domains has only recently been given. Recently, simply connected wandering domains
were classified into nine possible types and examples of escaping wandering domains of
each of these types were constructed. Here we consider the case of oscillating wandering
domains, for which only six of these types are possible. We use a new technique based on
approximation theory to construct examples of all six types of oscillating simply connected
wandering domains. This requires delicate arguments since oscillating wandering domains
return infinitely often to a bounded part of the plane. Our technique is inspired by
that used by Eremenko and Lyubich to construct the first example of an oscillating
wandering domain, but with considerable refinements which enable us to show that
the wandering domains are bounded, to specify the degree of the mappings between
wandering domains and to give precise descriptions of the dynamical behaviour of these
mappings.
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1. Introduction
Let f be a transcendental entire function. We consider the iterates of f, which we denote
by f n, n ≥ 1. The complex plane is divided into two sets: the Fatou set, F(f ), where the
iterates (f n) form a normal family in a neighbourhood of every point, and its complement,
the Julia set J (f ). An introduction to the theory of iteration of transcendental entire and
meromorphic functions can be found in [Ber93].

The Fatou set is open and consists of connected components, which are called Fatou
components. Fatou components can be periodic, preperiodic or wandering domains.
A Fatou component U is called a wandering domain if f n(U) ∩ f m(U) = ∅, for all
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n �= m. Although Sullivan showed in [Sul85] that rational maps have no wandering
domains, transcendental entire functions can have wandering domains. The first example of
such a function was given by Baker [Bak76] who proved that a certain entire function given
by an infinite product has a multiply connected wandering domain. Several examples of
simply connected wandering domains have been constructed since then (see, for example,
[Her84, p. 104], [Sul85, p. 414], [Bak84, pp. 564 and 567], [Dev90, p. 222], [EL87,
Examples 1 and 2], [FH06]).

In [BRS13] the authors gave a complete description of the dynamical behaviour in
multiply connected wandering domains. Recently, in [BEF+21] the authors gave a detailed
classification of simply connected wandering domains in terms of the hyperbolic distance
between orbits of points and in terms of convergence to the boundary. More specifically,
they classified simply connected wandering domains into contracting, semi-contracting
and eventually isometric depending on whether, for almost all pairs of points in the
wandering domain, the hyperbolic distances between the orbits of these points, tend to 0,
decrease but do not tend to 0, or are eventually constant, respectively (see Theorem 5.1). In
terms of convergence to the boundary, the orbits of all points stay away from the boundary,
come arbitrarily close to the boundary but do not converge to it (bungee), or converge to the
boundary (see Theorem 5.2). These two classifications give nine possible types of simply
connected wandering domains. Using a new technique, based on approximation theory,
they show that all of these nine possible types are indeed realizable.

All the examples constructed in [BEF+21] were escaping wandering domains. Hence
it is natural to ask whether there exist oscillating wandering domains of all nine types.
(It remains a major open question as to whether it is possible to have wandering domains
of bounded orbit.) A wandering domain U is called oscillating if there exist (nk), (mk)
such that f nk (z) → ∞ and (f mk (z)) stays bounded for all z ∈ U . Since in oscillating
wandering domains the iterates of f have finite limit points in J (f ), as well as ∞, it is
impossible for the orbit of a point in such a wandering domain to stay away from the
boundary. Thus three of the nine possible types are not realizable. In this paper we show
that the remaining six possible types of oscillating wandering domains are all realizable.

The first transcendental entire function with oscillating wandering domains was given
by Eremenko and Lyubich in [EL87]; this was also the first application of approximation
theory in complex dynamics. The authors used sequences of discs and half-annuli and
a model function which was constant on the half-annuli and a translation on the discs.
This model function was approximated on the closure of every disc and half-annulus
by a transcendental entire function using an extended version of Runge’s approximation
theorem. Their technique did not show though whether their wandering domains are
bounded or not, and did not give information on the degree of the entire function on each
of the wandering domains.

Motivated by the construction in [EL87], we adapt the new techniques from [BEF+21]
to construct bounded oscillating wandering domains, which, moreover, have the property
that the degree of f on each of the wandering domains is equal to that of our model map.
We state and prove our main construction theorem in §3.

It is worth pointing out that, in order for the wandering domains to be oscillating, the
set-up needs to be much more complicated than that used for escaping wandering domains
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in [BEF+21]. Although some of the building blocks of our proof are similar to those used
in the analogous result for escaping wandering domains, the proof here requires several
additional techniques. In particular, great care has to be taken over the accumulating errors
in the approximation, as each of the discs on which the approximation takes place contains
infinitely many domains in the orbit of the wandering domain.

In §5 we use the main construction theorem to construct all six types of oscillating
wandering domains, proving the following result. This requires several preliminary results
concerning Blaschke products which we prove in §4.

THEOREM 1.1. For each of the six possible types of simply connected oscillating
wandering domains, there exists a transcendental entire function with a bounded, simply
connected oscillating wandering domain of that type.

Oscillating wandering domains for functions in the Eremenko–Lyubich class B have
been constructed, first by Bishop in [Bis15], using the novel technique of quasiconformal
folding, and more recently in [Boc21, FJL19, MPS20]. It would be interesting to see
whether their methods can be adapted to classify the resulting wandering domains as one
of the six possible types described above.

2. Preliminary results
In this section we give some existing results which are used in the proof of the main
construction theorem. The following theorem, which is [BEF+21, Theorem D], plays a
key role in the proof. We say that a curve σ surrounds a curve σ ′ if σ ′ is contained in a
bounded complementary component of σ . Also, for two compact sets S, S ′ we say that S
lies exterior to S′ if S is contained in the unbounded complementary component of S ′.

THEOREM 2.1. Let f be a transcendental entire function and suppose that there exist
Jordan curves γn and �n, n ≥ 0, compact sets Lk , k ≥ 0, and a bounded domain D such
that:
(a) �n surrounds γn, for n ≥ 0;
(b) the sets �n, n ≥ 0, Lk , k ≥ 0, and D all lie exterior to each other;
(c) γn+1 surrounds f (γn), for n ≥ 0;
(d) f (�n) surrounds �n+1, for n ≥ 0;
(e) f (D ∪ ⋃

k≥0 Lk) ⊂ D;
(f) there exists nk → ∞ such that

max{dist(z, Lk) : z ∈ �nk } = o(dist(γnk , �nk )) as k → ∞.

Then there exists an orbit of simply connected wandering domains Un such that int γn ⊂
Un ⊂ int �n, for n ≥ 0.

Moreover, if there exists zn ∈ int γn such that both f (γn) and f (�n) wind dn times
around f (zn), then f : Un → Un+1 has degree dn, for n ≥ 0.

In order to obtain the transcendental entire function with the required properties, we
consider an analytic function which is our model function and then apply the following
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result which is an extension of the well-known Runge approximation theorem and was the
Main Lemma in [EL87].

LEMMA 2.2. Let (En) be a sequence of compact subsets of C with the following
properties:

(i) C \ En is connected, for n ≥ 0;
(ii) En ∩ Em = ∅, for n �= m;

(iii) min{|z| : z ∈ En} → ∞ as n → ∞.
Suppose ψ is holomorphic on E = ⋃∞

n=0 En. For n ≥ 0, let εn > 0 and let zn ∈ En. Then
there exists an entire function f satisfying, for n ≥ 0,

|f (z)− ψ(z)| < εn for z ∈ En; (2.1)

f (zn) = ψ(zn), f ′(zn) = ψ ′(zn). (2.2)

Remark 2.3. We note that if the sets En are each real-symmetric (that is, En = En), the
function ψ is real-symmetric in E (that is, ψ(z) = ψ(z), for z ∈ E), and the points zn,
n ≥ 0, are all real, then we can take the entire function f to be real-symmetric on C. Indeed,
if f satisfies the conclusions of Lemma 2.2, then g(z) = 1

2 (f (z)+ f (z)) is real-symmetric
and entire, and satisfies the conclusions of Lemma 2.2.

We also need the following result, which is a version of [EL87, Lemma 2].

LEMMA 2.4. Let g be an analytic function in the disc {z : |z| < R} such that g(0) =
g′(0) = 0 and |g(z)| < εR for |z| < R and some ε < 1/4. Then

|g(z)| ≤ ε

R
|z|2 for |z| < R.

Finally, we need the following lemma about hyperbolic distances in discs, which is
[BEF+21, Lemma 5.2]. Here we define Dr = D(0, r) and D = D1.

LEMMA 2.5. Suppose that 0 < s < r < 1 < R and set

c(s, R) = 1 − s2

R − s2/R
, Dr = D(0, r) and DR = D(0, R).

If |z|, |w| ≤ s, then

distDR(z, w) = distD(z/R, w/R) ≥ c(s, R) distD(z, w) (2.3)

and

distDr (z, w) = distD(z/r , w/r) ≤ 1
c(s/r , 1/r)

distD(z, w). (2.4)

Also 0 < c(s, R) < 1, and if the variables s, r and R satisfy in addition

1 − r = o(1 − s) as s → 1 and R − 1 = O(1 − r) as r → 1, (2.5)

then

c(s, R) → 1 as s → 1, (2.6)
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and

c(s/r , 1/r) → 1 as s → 1. (2.7)

3. Main construction
In this section we state and prove our construction result. Throughout,D(z, r) denotes the
open disc with centre z and radius r.

THEOREM 3.1. (Main construction) Let (bn)n≥0 be a sequence of Blaschke products of
corresponding degree dn ≥ 1, and let (αn)n≥0 be a sequence of real numbers with α0 = 1
and αn+1/αn ≤ 1/6. For n ≥ 0, let

Dn = D(9n, αn),

	n = D(an, αn) and 	′
n = D(an, 2αn) where an = 9n+ 4αn,

and

Gn = D(κn, 1) and G′
n = D(κn, 5/4) where κn = an + 3.

We consider the function

ϕ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
z+ 9 if z ∈ Dn, n ≥ 0,
z− an

αn
+ κn if z ∈ 	′

n, n ≥ 0,

αn+1bn(z− κn)+ 4αn+1 if z ∈ G′
n, n ≥ 0,

and define Vm, ζm and ρm by

Vm = D(ζm, ρm)

= ϕm(	0) =

⎧⎪⎪⎨
⎪⎪⎩
	n if m = �n − 1, n ≥ 0,

Gn if m = �n, n ≥ 0,

D(9k + 4αn+1, αn+1) ⊂ Dk if m = �n + k + 1, 0 ≤ k ≤ n,

where (�n) is defined by �0 = 1 and �n+1 = �n + n+ 3, n ≥ 0.
For a suitable choice of (αn), there exists a transcendental entire function f having

an orbit of bounded, simply connected, oscillating wandering domains Um such that, for
m, n ≥ 0:
(i) D(ζm, rm) ⊂ Um ⊂ D(ζm, Rm), where 0 < rm < ρm < Rm, and rm ∼ ρm and

Rm ∼ ρm as m → ∞;
(ii) |f (z)− ϕ(z)| ≤ εm on D(ζm, Rm), where ε0 ≤ 1/24 and ε�n+k = α2

n+1/2
k+1, for

0 ≤ k ≤ n+ 2;
(iii) f (9n) = ϕ(9n) = 9(n+ 1) and f ′(9n) = ϕ′(9n) = 1;
(iv) f : Um → Um+1 has degree qm, where q�n = dn, and qm = 1 otherwise.
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Finally, if z, z′ ∈ U0 and there existsN ∈ N such that f �N (z), f �N (z′) ∈ D(κN , r�N ), then,
for n ≥ N , we have

kn distGn(f
�n(z), f �n(z′)) ≤ distU�n (f

�n(z), f �n(z′)) ≤ Kn distGn(f
�n(z), f �n(z′)),

(3.1)

where 0 < kn < 1 < Kn with kn, Kn → 1 as n → ∞.

Remark 3.2. If the Blaschke products bn are real-symmetric for each n ≥ 0, then f can be
taken to be real-symmetric; see Remark 2.3.

Proof. We consider the sets Vm = ϕm(	0), where 	0 = D(4, 1), as defined in the
statement of Theorem 3.1, and construct a function f which is sufficiently close to ϕ in
parts of the plane in order to ensure that f has a bounded wandering domain U with f m(U)
close to Vm, for m ≥ 0, in the sense that the Hausdorff distance between Um and Vm tends
to 0 as m → ∞.

3.1. The sets Vm. We begin by noting that it follows from the definition of ϕ and the fact
that αm+1/αm ≤ 1/6, for m ≥ 0, that, for each n ≥ 0,

ϕ(	n) = Gn,

ϕ2(	n) = D(4αn+1, αn+1) ⊂ D(0, α0) = D0,

so, for 0 ≤ k ≤ n,

ϕk+2(	n) = D(9k + 4αn+1, αn+1) ⊂ D(9k, αk) = Dk

and

ϕn+3(	n) = D(9(n+ 1)+ 4αn+1, αn+1) = 	n+1.

This gives the following properties of Vm, stated in Theorem 3.1:

Vm = D(ζm, ρm)

= ϕm(	0) =

⎧⎪⎪⎨
⎪⎪⎩
	n if m = �n − 1, n ≥ 0,

Gn if m = �n, n ≥ 0,

D(9k + 4αn+1, αn+1) ⊂ Dk if m = �n + k + 1, 0 ≤ k ≤ n,
(3.2)

where (�n) is defined by �0 = 1 and �n+1 = �n + n+ 3, for n ≥ 0.
In words, if Vm ⊂ D0, then ϕ repeatedly translates Vm to the right by 9 until the

translated image lands on	n, for some n ∈ N, at which point ϕ maps the disc	n ontoGn
and then maps Gn into D0 (see Figure 1).

3.2. Construction of the circles γn and �n. We now give an inductive definition of the
values rm and Rm described in Theorem 3.1(i) and define αn inductively at the same time.
We will choose these values in such a way that, if we define

γm = {z : |z− ζm| = rm} and �m = {z : |z− ζm| = Rm},
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FIGURE 1. The action of the model function ϕ.

then, for m ≥ 0,

γm+1 surrounds ϕ(γm) (3.3)

and

ϕ(�m) surrounds �m+1. (3.4)

Further, we choose these values in such a way that we are able to use Lemma 2.2 and
Lemma 2.4 to approximate the map ϕ by an entire function f such that ϕ can be replaced
by f in (3.3) and (3.4). This in turn allows us to apply Theorem 2.1 to deduce that f has
wandering domains with the required properties.

Our construction uses the Blaschke products bn which, for n ≥ 0, we write as

bn(z) = eiθn
dn∏
j=1

z+ pn,j

1 + pn,j z
,

where pn,j ∈ D = {z : |z| < 1} are not necessarily different from each other, and θn ∈
[0, 2π). We also use the maps defined by

Bn(z) = bn(z− κn) for n ≥ 0, (3.5)

noting that Bn has degree dn and maps Gn to D0 = D.
First take

r0 ∈ (5/6, 1) and R0 ∈ (1, 7/6), (3.6)

and recall that α0 = 1. We then choose r1 such that

0 < 1 − r1 ≤ min
{

1 − r0

2
, dist(ϕ(γ0), ∂G0)

2
}

(3.7)

and

B0(γ1) winds exactly d0 times round D(0, 1/2),
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so

ϕ(γ1) winds exactly d0 times round D(ζ2, ρ2/2),

and choose R1 such that

0 < R1 − 1 ≤ min
{
R0 − 1

2
, dist(ϕ(�0), ∂G0),

1
maxj |p0, j | − 1

}
. (3.8)

Now assume that, for some n ≥ 0, αk has been chosen for 0 ≤ k ≤ n, and rm and Rm
have been chosen for 0 ≤ m ≤ �n. (Note that �0 = 1 and we have already specified α0, r0,
R0, r1 and R1.) We shall give a rule for choosing αn+1 and also for choosing rm and Rm
for �n + 1 ≤ m ≤ �n+1. There are three different cases, depending on the value of m.

Case 1. First we consider the case when m = �n + 1 (and so Vm ⊂ D0). We also specify
αn+1 as part of this case.

We begin by choosing cn+1, Cn+1 to be circles centred at 0, lying in the interior and
exterior of D0 respectively, such that

dist(cn+1, ∂D0) ≤ min
{
ρ�n − r�n

6
,

1
2

dist(Bn(γ�n), ∂D0)

}
(3.9)

and

dist(Cn+1, ∂D0) ≤ min
{
R�n − ρ�n

6
, dist(cn+1, ∂D0),

1
2

dist(Bn(��n), ∂D0)

}
. (3.10)

We set

αn+1 = dist(Cn+1, ∂D0) (3.11)

and note, using the fact that ϕ(z) = αn+1Bn(z)+ 4αn+1, for z ∈ G′
n, that V�n+1 =

ϕ(V�n) = D(4αn+1, αn+1), so ρ�n+1 = αn+1. We then set

r�n+1 = ρ�n+1 − α2
n+1 (3.12)

and

R�n+1 = ρ�n+1 + α2
n+1. (3.13)

Note that, together with (3.9), (3.11) and (3.10), these definitions imply that

ρ�n+1 − r�n+1 = α2
n+1 ≤ αn+1 dist(cn+1, ∂D0) ≤ 1

2 dist(ϕ(γ�n), ∂V�n+1), (3.14)

R�n+1 − ρ�n+1 = α2
n+1 = αn+1 dist(Cn+1, ∂D0) ≤ 1

2 dist(ϕ(��n), ∂V�n+1), (3.15)

and hence

R�n+1 − r�n+1 = 2α2
n+1 ≤ min{dist(ϕ(γ�n), ∂V�n+1), dist(ϕ(��n), ∂V�n+1)}. (3.16)

Case 2. We now consider the cases when m = �n + k + 1, for 1 ≤ k ≤ n+ 1. Then

V�n+k+1 = ϕk(V�n+1) ⊂ Dk for 1 ≤ k ≤ n,

and

V�n+n+2 = V�n+1−1 = D(9(n+ 1)+ 4αn+1, αn+1) = 	n+1.
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In all these cases, we simply choose rm and Rm to satisfy

ρm − rm = ρm−1 − rm−1

2
(3.17)

and

Rm − ρm = Rm−1 − ρm−1

2
. (3.18)

Case 3. Finally, we consider the case when m = �n+1 = �n + n+ 3, so Vm = Gn+1. In
this case, we choose r�n+1 and R�n+1 so that

0 < ρ�n+1 − r�n+1 ≤ min
{
ρ�n+1−1 − r�n+1−1

2
, dist(ϕ(γ�n+1−1), ∂Gn+1)

2
}

, (3.19)

Bn+1(γ�n+1) winds exactly dn+1 times round D(0, 1/2), (3.20)

0 < R�n+1 − ρ�n+1

≤ min
{
R�n+1−1 − ρ�n+1−1

2
, dist(ϕ(��n+1−1), ∂Gn+1),

1
maxj {|pn+1,j |} − 1

}
. (3.21)

This inductive process defines the values rm and Rm, and hence the circles γm and �m,
for m ≥ 0. Note that it follows from (3.10), (3.11), (3.18), (3.13) and (3.21) that

αn+1 ≤ R�n − ρ�n

6
<
R�n−1+1 − ρ�n−1+1

6
= α2

n

6
<
αn

6
for n ≥ 1.

Moreover, it follows from the definition of ϕ together with (3.5) and (3.2) that we have

ϕ(z) = αn+1Bn(z)+ 4αn+1 = ρ�n+1Bn(z)+ ζ�n+1 for z ∈ Gn, n ≥ 0. (3.22)

So (3.20) implies that, for n ≥ 0,

ϕ(γ�n+1) winds exactly dn+1 times round D(ζ�n+1+1, ρ�n+1+1/2). (3.23)

We also note that it follows from (3.15), (3.18) and (3.2) that, for m = �n + k + 1,
where 0 ≤ k ≤ n+ 1, we have Rm − ρm ≤ R�n+1 − ρ�n+1 < αn+1 = ρm. So, for
m = �n + k + 1, where 0 ≤ k ≤ n, we have

V ′
m = D(ζm, Rm) ⊂ D(ζm, 2ρm) = D(9k + 4αn+1, 2αn+1) ⊂ D(9k, 6αn+1) ⊂ Dk

(3.24)

and

V ′
�n+n+2 = V ′

�n+1−1 = D(ζ�n+1−1, R�n+1−1) ⊂ 	′
n+1 (3.25)

by the definitions of D(ζm, ρm) and 	′
n in the statement of Theorem 3.1.

It then follows from (3.16), and the fact that αn < 1/2 for n > 0, that

V ′
�n+1

= D(ζ�n+1 , R�n+1) ⊂ G′
n+1. (3.26)

Also, ϕ is analytic in V ′
�n+1

by (3.22) together with the last condition in (3.21).
It follows from (3.14) that, for n ≥ 0,

γ�n+1 surrounds ϕ(γ�n), (3.27)
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FIGURE 2. Sketch of the set-up of Theorem 3.1, showing the location of the circles γn and �n (in blue), and the
arcs Ln (in red). (Colour available online.)

and from (3.15) that, for n ≥ 0,

ϕ(��n) surrounds ��n+1. (3.28)

Thus (3.3) and (3.4) hold when m = �n, where n ≥ 0.
Also, ifm = �n + k + 1, where n ≥ 0, 0 ≤ k ≤ n+ 1, then ϕ is a translation on γm and

�m, by (3.24) and the definition of ϕ. Since, by (3.17), we have

ρm+1 − rm+1 ≤ ρm − rm

2
and, by (3.18),

Rm+1 − ρm+1 ≤ Rm − ρm

2
,

it follows that (3.3) and (3.4) hold for these values of m too.
Finally, it follows from (3.25) that, on γ�n+1−1 and ��n+1−1, n ≥ 0, the function ϕ is a

scaling by a factor of 1/αn+1 > 1 followed by a translation, and so it follows from (3.19)
and (3.21) that (3.3) and (3.4) hold in this case too.

We note that the sets V ′
m are disjoint since, if V ′

�n+k+1, V ′
�n+1+k+1 ⊂ Dk , for some

n ≥ 0, 0 ≤ k ≤ n, then V ′
�n+k+1 ⊂ D(9k + 4αn+1, 2αn+1) and V ′

�n+1+k+1 ⊂ D(9k +
4αn+2, 2αn+2), and

D(9k + 4αn+1, 2αn+1) ∩D(9k + 4αn+2, 2αn+2) = ∅,

since

4αn+2 + 2αn+2 = 6αn+2 ≤ αn+1 < 4αn+1 − 2αn+1.

3.3. Construction of the function f. Our aim now is to use Lemma 2.2 and Lemma 2.4 to
approximate the map ϕ by a single entire function f such that, for m ≥ 0, γm+1 surrounds
f (γm) and f (�m) surrounds �m+1. We also require f to map certain curves Ln nearGn in
such a way that we can apply Theorem 2.1.

We define Ln, for n ≥ 0, to be the circular arc

Ln := {z : |z− an| = R�n + δ2
�n
/2, | arg(z− an)| ≤ π − δ2

�n
}, (3.29)

where δm = Rm − rm → 0 as m → ∞; see Figure 2.
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We also define approximation error quantities εm, for m ≥ 0, by

εm = min{ 1
4 dist(ϕ(γm), ∂Vm+1), 1

4 dist(ϕ(�m), ∂Vm+1), 1
4δm+1} > 0. (3.30)

We now show that these errors have the upper bounds stated in part (ii) of our theorem.
First, it follows from (3.6), (3.7) and (3.8) that

ε0 ≤ (R1 − r1)/4 ≤ (R0 − r0)/8 < 1/24.

Next we note that it follows from (3.16) that, for n ≥ 0,

ε�n = δ�n+1/4 = (R�n+1 − r�n+1)/4 = 2α2
n+1/4 = α2

n+1/2.

It then follows from (3.17), (3.18), (3.19) and (3.21) that, for 0 ≤ k ≤ n+ 1, n ≥ 0,

ε�n+k+1 = (R�n+k+2 − r�n+k+2)/4 = (R�n+1 − r�n+1)/2k+3 = α2
n+1/2

k+2. (3.31)

Thus

ε�n+k = α2
n+1/2

k+1 for 0 ≤ k ≤ n+ 2, n ≥ 0, (3.32)

as required for part (ii).
Since ϕ is analytic in each set V ′

�n+1
, for n ≥ 0, it follows from Lemma 2.2 that there

exists an entire function f such that, for n ≥ 0,

|f (z)− ϕ(z)| < ε�n+n+1 for z ∈ Dn, (3.33)

|f (z)− ϕ(z)| < ε�n−1 for z ∈ 	′
n, (3.34)

|f (z)− ϕ(z)| < ε�n for z ∈ G′
n, (3.35)

f (9n) = 9(n+ 1), (3.36)

f ′(9n) = 1, (3.37)

and such that

|f (z)+ 4| ≤ 1/2 for z ∈ D(−4, 1) ∪
⋃
n≥0

Ln. (3.38)

It follows from (3.33), (3.36) and (3.37) that for each k ≥ 0 we can apply Lemma 2.4
in the disc Dk = D(9k, αk), with g(z) = f (z)− ϕ(z), R = αk and associated constant
ε = ε�k+k+1/αk . Note that the conditions of Lemma 2.4 are satisfied since it follows from
(3.32) that

ε = ε�k+k+1/αk = α2
k+1

αk2k+2 <
αk+1

6
< 1/4 for k ≥ 0.

So, by Lemma 2.4, for all z ∈ Dk , k ≥ 0, we have

|f (z)− ϕ(z)| ≤ ε�k+k+1

α2
k

|z− 9k|2. (3.39)

We will now show that this implies that, for each m ≥ 0,

|f (z)− ϕ(z)| < εm for z ∈ V ′
m. (3.40)
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First we note that (3.40) follows from (3.25) and (3.26) together with (3.34) and (3.35)
when m = �n or m = �n − 1, for some n ≥ 0. Other values of m are of the form m =
�n + k + 1, for some n ≥ 0, 0 ≤ k ≤ n, and it follows from (3.24) that, in this case,

V ′
m ⊂ D(9k, 6αn+1) ⊂ Dk .

Therefore, by (3.39), (3.32) and using the fact that αk+1 ≤ αk/6, we have, for z ∈
V�n+k+1, n ≥ 0 and 0 ≤ k ≤ n,

|f (z)− ϕ(z)| ≤ ε�k+k+1

α2
k

(6αn+1)
2

= α2
k+1

2k+2α2
k

36α2
n+1

≤ α2
n+1

2k+2 = ε�n+k+1.

Thus (3.40) holds for all m ≥ 0.
It now follows from (3.3), (3.4), (3.30) and (3.40) that, for m ≥ 0,

γm+1 surrounds f (γm), (3.41)

f (�m) surrounds �m+1. (3.42)

We now apply Theorem 2.1 to the Jordan curves γm, �m,m ≥ 0, the compact curvesLn,
n ≥ 0, and the bounded domain D = D(−4, 1), noting that these sets satisfy the required
hypotheses by construction and by (3.41), (3.42), (3.29) and (3.38). Part (i) of Theorem 3.1
now follows from Theorem 2.1, part (ii) follows from (3.40) together with the upper bounds
for the errors that we obtained earlier, and part (iii) follows from (3.36) and (3.37).

Next we outline the proof of part (iv). The fact that f : U�n+1 → U�n+1+1 has degree
dn+1 follows from the final statement of Theorem 2.1, since (3.23), (3.30) and (3.35)
together imply that f (γ�n+1) and f (��n+1) both wind exactly dn+1 times round the
disc D(ζ�n+1+1, ρ�n+1+1/2); for the details of this argument see the proof of [BEF+21,
Theorem 5.3]. Since ϕ is univalent in all other cases, the same argument applies to show
that f : Um → Um+1 is univalent in all other cases.

To complete the proof of Theorem 3.1, we note that the double inequality that compares
the hyperbolic distances inU�n between points of two orbits under f with the corresponding
hyperbolic distances in the discs Gn follows by applying Lemma 2.5 with

s = 1 − 3
4 dist(ϕ(γ�n−1), ∂Gn), r = r�n and R = R�n ,

and noting that f �n+1−�n(D(κn, r�n) ⊂ D(κn+1, r�n+1); we omit the details, which are
similar to those given in the proof of the final statement of [BEF+21, Theorem 5.3].

4. Preliminary results for Theorem 1.1
In this section we prove some results which we use in order to construct our examples.
In particular, we obtain estimates on the orbits of points in a wandering domain U of a
transcendental entire function f obtained by applying Theorem 3.1 with specific Blaschke
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products bn. Our first result is used repeatedly in our constructions and gives estimates of
the distances between orbits under the function f and under the model function ϕ.

LEMMA 4.1. Let f be a transcendental entire function with a wandering domain U arising
from applying Theorem 3.1 with the Blaschke products bn. Then, using the notation of
Theorem 3.1,
(a) if z, z′ ∈ U�n , for some n ≥ 0, we have

|f n+3(z)− ϕn+3(z′)| ≤ αn+1 + |bn(z− κn)− bn(z
′ − κn)|;

(b) and hence, if z, z′ ∈ D(ζ0, r0) ⊂ U0, we have

|f �n+1(z)− ϕ�n+1(z′)| ≤ αn+1 + |bn(f �n(z)− κn)− bn(ϕ
�n(z′)− κn)|.

Proof. To prove part (a), we begin by considering the case that z = z′. We first use
induction to show that, if z ∈ U�n , for some n ≥ 0, then

|f m(z)− ϕm(z)| ≤
m−1∑
k=0

ε�n+k for 1 ≤ m ≤ n+ 2. (4.1)

We note that, for m = 1, this holds by Theorem 3.1(ii). Now assume that (4.1) holds for
some m, 1 ≤ m < n+ 2. We have

|f m+1(z)− ϕm+1(z)| ≤ |f (f m(z))− ϕ(f m(z))| + |ϕ(f m(z))− ϕm+1(z)|. (4.2)

Since z ∈ U�n , we have f m(z) ∈ U�n+m ⊂ D(ζ�n+m, R�n+m) and ϕm(z) ∈ D(ζ�n+m,
R�n+m). Also, ϕ is a translation on D(ζ�n+m, R�n+m) and so, together with Theorem
3.1(ii), we can deduce from (4.2) that

|f m+1(z)− ϕm+1(z)| ≤ ε�n+m + |f m(z)− ϕm(z)| ≤
m∑
k=0

ε�n+k .

Thus (4.1) holds as claimed.
Next, we note that for z ∈ U�n we have f n+2(z), ϕn+2(z) ∈ 	′

n, on which ϕ is a scaling
by a factor of 1/αn+1 followed by a translation and so, by (4.1) and Theorem 3.1(ii),

|f n+3(z)− ϕn+3(z)| ≤ |f (f n+2(z))− ϕ(f n+2(z))| + |ϕ(f n+2(z))− ϕn+3(z)|

≤ ε�n+n+2 + 1
αn+1

n+1∑
k=0

ε�n+k

≤ αn+1

2n+3 + αn+1

n+1∑
k=0

1
2k+1

< αn+1.

This shows that

|f n+3(z)− ϕn+3(z)| ≤ αn+1, (4.3)

which is the result of part (a) in the case that z = z′.
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We now use this fact to prove part (a) in general. If z, z′ ∈ U�n , for some n ≥ 0, then it
follows from (4.3) and the definition of ϕ that

|f n+3(z)− ϕn+3(z′)| ≤ |f n+3(z)− ϕn+3(z)| + |ϕn+3(z)− ϕn+3(z′)|
≤ αn+1 + |bn(z− κn)− bn(z

′ − κn)|.
This completes the proof of part (a).

Now we suppose that z, z′ ∈ D(ζ0, r0). It follows from Theorem 3.1(i) that z ∈ U0 and
hence f �n(z) ∈ U�n , for n ≥ 0. It also follows from (3.3) in the proof of Theorem 3.1 that
ϕ�n(z′) ∈ D(ζ�n , r�n) and hence, by Theorem 3.1(i), that ϕ�n(z′) ∈ U�n , for n ≥ 0. So part
(b) follows from part (a) by replacing z and z′ by f �n(z) and ϕ�n(z′), respectively.

Our next result gives a precise estimate for a Blaschke product that is used in one of our
examples. We use this result in the proof of Lemma 4.3(a).

LEMMA 4.2. Let b(z) = ((z+ 1/3)/(1 + z/3))2 and suppose that 0 < r < 1. Then 0 <
r < b(r) < 1 and ∣∣∣∣b(x)− b(r)

x − r

∣∣∣∣ < b2(r)− b(r)

b(r)− r
for 0 < x < b(r). (4.4)

Proof. Our proof is based on a useful relationship between the cross-ratio of four points
a < b < c < d on R, defined as

(a, b, c, d) = (b − a)(d − c)

(d − a)(c − b)
,

and the Schwarzian derivative of a real function f, defined as

Sf = f ′′′

f ′′ − 3
2

(
f ′′

f ′

)2

.

It is well known that if f is monotonic on an interval I and Sf < 0 on I, then

(f (a), f (b), f (c), f (d)) < (a, b, c, d) whenever a, b, c, d ∈ I , a < b < c < d.
(4.5)

See, for example, de Melo and van Strien [dMvS89, §1] for a good account of the
relationship between functions with negative Schwarzian and the cross-ratio, including
a proof of the above fact. Other key properties (also mentioned in [dMvS89]) are that
Möbius maps have zero Schwarzian and the composition rule for Schwarzians is

S(g ◦ f )(x) = Sg(f (x))(f ′(x))2 + Sf (x).

Since the Schwarzian derivative of a Möbius map is zero on its domain in R, it follows
immediately from this composition rule that the function b has negative Schwarzian on the
interval (−3, ∞).

It is straightforward to check that 1 is a fixed point of the function b and that r < b(r) <

1, for r ∈ (0, 1). Note also that b is increasing on (−1/3, ∞) and convex on (−3, 1). We
first prove (4.4) in the case when r < x < b(r), by considering the four points r , x, b(r), 1.
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Since b is increasing on (−1/3, ∞) and has negative Schwarzian there, we deduce that

(b(x)− b(r))(1 − b2(r))

(1 − b(r))(b2(r)− b(x))
<
(x − r)(1 − b(r))

(1 − r)(b(r)− x)
.

Since b is convex on (0, 1) we deduce that

1 − b(r)

1 − r
<

1 − b2(r)

1 − b(r)
.

We deduce from the previous two inequalities that

b(x)− b(r)

b2(r)− b(x)
<

(1 − b(r))2

(1 − r)(1 − b2(r))

x − r

b(r)− x
<

x − r

b(r)− x
,

and hence (by taking reciprocals and adding 1 to both sides) that

b(x)− b(r)

b2(r)− b(r)
<

x − r

b(r)− r
.

This proves (4.4) in the case when r < x < b(r).
For the case when 0 < x < r , similar reasoning can be used with the points x, r , b(r), 1,

to deduce that
b(r)− b(x)

b2(r)− b(r)
<

r − x

b(r)− r
.

This completes the proof of Lemma 4.2.

The following lemma describes dynamical properties of the transcendental entire
functions arising from Theorem 3.1 when using specific Blaschke products of a certain
form. Two of our examples will be constructed using these Blaschke products. The proof
of this result takes several pages.

LEMMA 4.3. Let b be a Blaschke product of degree 2, and let f be an entire function
arising by applying Theorem 3.1 with bn = b, for n ≥ 0.
(a) If b(z) = ((z+ 1/3)/(1 + z/3))2 then there exist x, y ∈ U0 ∩ R, N ∈ N and c > 0,

with f n(x) �= f n(y) for n ≥ 0, such that

f �N (x) = κN and κn + 1 − f �n(x) ∼ c

n1/2 as n → ∞,

and

f �N (y) = κN + 1/9 and κn + 1 − f �n(y) ∼ c

(n+ 1)1/2
as n → ∞,

and moreover,

f �n(y)− f �n(x) = O(1)
n3/2 as n → ∞.

(b) If b(z) = ((z+ 1/2)/(1 + z/2))2 then there exist x, y ∈ U0 ∩ R and N ∈ N, with
f n(x) �= f n(y) for n ≥ 0, such that

f �N (x) = κn and κn + 1 − f �n(x) = cλn(1 + ηn) for n ≥ N ,
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and

f �N (y) = κn + 1/4 and κn + 1 − f �n(y) = cλn+1(1 + ξn) for n ≥ N ,

where c > 0, λ = 2/3 and max{|ηn|, |ξn|} ≤ 1/10, for n ≥ N .

Proof. First we observe that in both parts it is sufficient to prove the stated results about
the behaviours of f �n−�N (xN) and f �n−�N (yN) when xN , yN ∈ U�N for some particular
positive integer N.

(a) Recall that, by the analysis of the behaviour in D of the iterates of b near its parabolic
fixed point 1 (see [BEF+21, Lemma 6.2(c)], for example), there are positive constants c
and d such that

1 − bn(0) ∼ c

n1/2 as n → ∞, (4.6)

and

bn+1(0)− bn(0) ∼ d

n3/2 as n → ∞. (4.7)

Therefore, we can choose N so large that

d

2n3/2 < bn+1(0)− bn(0) <
2d
n3/2 for n ≥ N , (4.8)

and also such that

4
d 6n

≤ 1
10

for n ≥ N . (4.9)

We then take rn = bn−N(0), for n ≥ N , and define

xN = κN and xn+1 = f n+3(xn) for n ≥ N , (4.10)

and

x′
n := κn + rn ∈ Gn ∩ R for n ≥ N .

It follows from the definition of ϕ that

x′
n+1 = ϕn+3(x′

n) = b(x′
n − κn) for n ≥ N .

We use Lemma 4.2 to show that the orbit of xN = κN under f closely follows that of xN
under ϕ. More precisely, we shall show that

|xn − x′
n| <

1
10
(rn+1 − rn) for n ≥ N + 1. (4.11)

Note that it follows from (4.10) that x′
n ∈ U�n ∩ R since x′

N = xN ∈ U�N ∩ R and f is a
real entire function.

We shall prove (4.11) by using induction to show that

|xn − x′
n| ≤ (rn+1 − rn)

n∑
k=N+1

1
6k(rk+1 − rk)

for n ≥ N + 1. (4.12)
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Before proving (4.12), we show that it implies (4.11). Using (4.8) and (4.9), it follows that,
for n ≥ N + 1,

|xn − x′
n|

rn+1 − rn
≤

n∑
k=N+1

1
6k(rk+1 − rk)

≤
n∑

k=N+1

2(k −N)3/2

d6k

= 2
d 6N+1

n−N−1∑
j=0

(j + 1)3/2

6j

≤ 4
d 6N+1 <

1
10

,

since the sum in the penultimate expression is dominated by the geometric series 1 +
1/2 + 1/4 + · · · . Thus (4.11) holds.

To start the proof of (4.12), we have

|xN+1 − x′
N+1| = |f N+3(xN)− ϕN+3(xN)| ≤ 1

6N+1 ,

by Theorem 3.1(iv), since xN ∈ U�N . Now we assume that (4.12) holds for some n ≥ N +
1 and deduce that it holds for n+ 1. Note that, whenever (4.11) holds (and so whenever
(4.12) holds), we have x′

n ∈ [κn, κn + 1), by the definition of xn.
By the definition of ϕ, Lemma 4.1(a), Lemma 4.2 and Theorem 3.1(iv), we have

|xn+1 − x′
n+1| ≤ αn+1 + |b(xn − κn)− b(x′

n − κn)|

≤ 1
6n+1 + |xn − x′

n|
(
b2(x′

n − κn)− b(x′
n − κn)

b(x′
n − κn)− (x′

n − κn)

)

= 1
6n+1 + |xn − x′

n|
(
rn+2 − rn+1

rn+1 − rn

)

≤ 1
6n+1 + (rn+2 − rn+1)

n∑
k=N+1

1
6k(rk+1 − rk)

= (rn+2 − rn+1)

n+1∑
k=N+1

1
6k(rk+1 − rk)

.

This proves (4.12), so (4.11) holds.
Next, we define

yN = κN + b(0) = κN + 1/9 and yn+1 = f n+3(yn) for n ≥ N ,

and

y′
n := κn + rn+1 ∈ Gn ∩ R for n ≥ N ,

https://doi.org/10.1017/etds.2021.169 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.169


1256 V. Evdoridou et al

with the same value of N as used earlier. Then

y′
n − x′

n = rn+1 − rn = bn+1−N(0)− bn−N(0) for n ≥ N , (4.13)

and

y′
n+1 = ϕn+3(y′

n) = b(y′
n − κn) for n ≥ N .

Reasoning as above, we obtain

|yn − y′
n| ≤ 1

10
(rn+2 − rn+1) for n ≥ N + 1. (4.14)

Combining (4.6) and (4.7) with (4.11) and (4.14), we obtain

κn + 1 − xn ∼ c

n1/2 as n → ∞
and

|yn − xn| ≤ |yn − y′
n| + |y′

n − x′
n| + |x′

n − xn|

≤ 1
10
(rn+2 − rn+1)+ (rn+1 − rn)+ 1

10
(rn+1 − rn)

= O(1)
n3/2 as n → ∞,

which gives the required result by taking x, y ∈ U0 such that f �N (x) = xN = κN and
f �N (y) = yN = κN + b(0) = κN + 1/9. Note that yn �= xn for n ≥ N , by (4.11), (4.13)
and (4.14), so we deduce that f n(x) �= f n(y) for n ≥ 0.

(b) The proof of part (b) is similar to that of part (a), and we outline the argument briefly.
As in part (a), we take rn = bn−N(0), for n ≥ N , for some sufficiently large N ∈ N to

be specified later in the proof, and put

xN = κN and xn+1 = f n+3(xn) for n ≥ N , (4.15)

and

x′
n := κn + rn ∈ Gn ∩ R for n ≥ N ,

so once again

x′
n+1 = ϕn+3(x′

n) = b(x′
n − κn) for n ≥ N .

Now note that the function b has fixed point 1 with multiplier λ = 2/3. It follows that

1 − rn+1 = λ(1 − rn)(1 +O(1 − rn)) as n → ∞, (4.16)

so, for some constant c > 0,

κn + 1 − xn = 1 − rn ∼ cλn as n → ∞. (4.17)

Also, since b is univalent in the disc {z : |z− 1| < 1} (or by a direct calculation), we have

|b′(z)| ≤ λ(1 + C|z− 1|) for |z− 1| < 1/2,
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where C is a positive constant, and so

|b(w)− b(z)| ≤ λ(1 + C|z− 1|)|w − z| for |w − z| < 1/4, |z− 1| < 1/4. (4.18)

As in part (a), we show that the orbit of xN under f closely follows that of xN under ϕ.
To be precise, we claim that for N sufficiently large we have

|xn − x′
n| ≤ c

10
λn for n ≥ N . (4.19)

Indeed, for n ≥ N , we have

|xn+1 − x′
n+1| ≤ αn+1 + |b(xn − κn)− b(xn − κn)|

≤ 1
6n+1 + λ(1 + C(1 − rn))|xn − x′

n|,

by Lemma 4.1(a), Theorem 3.1(iv), (4.17) and (4.18), provided that N is sufficiently large.
Since xN = x′

N = κN , it follows easily by induction that, for n ≥ N + 1, we have

δn ≤
( ∞∏
k=N+1

(1 + C(1 − rk))

)( n∑
k=N+1

1
(6λ)k

)
where δn = |xn − x′

n|
λn

,

and (4.19) easily follows by (4.17) and by taking N sufficiently large.
We obtain the first estimate in part (b) by taking x ∈ U0 such that f �N (x) = xN = κN .

The second estimate follows by a similar argument, but this time we use an orbit under
f whose subsequence passing through U�n , n ≥ N , closely follows the sequence y′

n :=
κn + rn+1, n ≥ N , by taking y ∈ U0 such that f �N (y) = yN = κN + b(0) = κN + 1/4.
The proof that f n(x) �= f n(y) for n ≥ 0 uses (4.19) and is similar to that in part (a).

Finally in this section, we give several estimates for a Blaschke product used in another
of our examples.

LEMMA 4.4. For n ≥ 0, let bn(z) = μ̃n(μn(z)
2), where

μn(z) = z+ sn

1 + snz
and μ̃n(z) = z− s2

n

1 − s2
nz

,

and let

λn = 2sn
1 + s2

n

,

where sn ∈ (0, 1). Then, for n ≥ 0,

λn x ≤
(
x + λn

1 + λnx

)
x = bn(x) ≤ x for 0 < x < 1, (4.20)

and

λn(y − x) ≤ bn(y)− bn(x) ≤ 2
1 + λn

(y − x) for 0 ≤ x < y < 1. (4.21)

https://doi.org/10.1017/etds.2021.169 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.169


1258 V. Evdoridou et al

Proof. For x ∈ (0, 1) and n ≥ 0, we have

bn(x) = ((x + sn)/(1 + snx))
2 − s2

n

1 − s2
n((x + sn)/(1 + snx))2

= (x + sn)
2 − s2

n(1 + snx)
2

(1 + snx)2 − s2
n(x + sn)2

= x2 + 2snx − 2s3
nx − s4

nx
2

1 + 2snx − 2s3
nx − s4

n

=
(
(1 − s4

n)x + (1 − s2
n)2sn

1 − s4
n + (1 − s2

n)2snx

)
x

=
(
(1 + s2

n)x + 2sn
1 + s2

n + 2snx

)
x

=
(
x + λn

1 + λnx

)
x.

Since

a ≤ x + a

1 + ax
≤ 1,

for x, a ∈ [0, 1], part (a) follows.
For part (b), we deduce from the expression for bn given in part (a) that, for 0 ≤ x <

y < 1 and n ≥ 0,

bn(y)− bn(x) = y

(
y + λn

1 + λny

)
− x

(
x + λn

1 + λnx

)

= (y − x)
y + x + λn(1 + xy)

(1 + λny)(1 + λnx)
,

and the conclusion then easily follows from the facts that 0 < λn < 1, for n ≥ 0, and 0 ≤
x < y < 1.

5. Proof of Theorem 1.1.
In this section we construct six examples of bounded oscillating wandering domains, based
on the two simply connected wandering domain classifications given in [BEF+21]. First,
in terms of hyperbolic distances between orbits of points, simply connected wandering
domains are classified as follows [BEF+21, Theorem A].

THEOREM 5.1. (First classification theorem) Let U be a simply connected wandering
domain of a transcendental entire function f and let Un be the Fatou component containing
f n(U), for n ∈ N. Define the countable set of pairs

E = {(z, z′) ∈ U × U : f k(z) = f k(z′) for some k ∈ N}.
Then exactly one of the following statements holds.
(1) distUn(f

n(z), f n(z′))−→
n→∞c(z, z

′) = 0 for all z, z′ ∈ U , and we say that U is (hyper-
bolically) contracting.
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(2) distUn(f
n(z), f n(z′))−→

n→∞c(z, z
′) > 0 and distUn(f

n(z), f n(z′)) �= c(z, z′) for

all (z, z′) ∈ (U × U) \ E, n ∈ N, and we say that U is (hyperbolically) semi-
contracting.

(3) There exists N > 0 such that for all n ≥ N , distUn(f
n(z), f n(z′)) = c(z, z′) > 0 for

all (z, z′) ∈ (U × U) \ E, and we say that U is (hyperbolically) eventually isometric.

Next, in terms of convergence of orbits to the boundary there are again three types of
simply connected wandering domains (see [BEF+21, Theorem C]), though only the latter
two types ((b) and (c)) are realizable for oscillating wandering domains as explained in the
introduction.

THEOREM 5.2. (Second classification theorem) Let U be a simply connected wandering
domain of a transcendental entire function f and let Un be the Fatou component containing
f n(U), for n ∈ N. Then exactly one of the following statements holds.
(a) lim infn→∞ dist(f n(z), ∂Un) > 0 for all z ∈ U , that is, all orbits stay away from the

boundary.
(b) There exists a subsequence nk → ∞ for which dist(f nk (z), ∂Unk ) → 0 for all z ∈

U , while for a different subsequence mk → ∞ we have that

lim inf
k→∞ dist(f mk (z), ∂Umk ) > 0 for z ∈ U .

(c) dist(f n(z), ∂Un) → 0 for all z ∈ U , that is, all orbits converge to the boundary.

Each of the examples in this section is constructed by applying Theorem 3.1 with an
appropriate choice of the Blaschke products bn. We make repeated use of the following
two results.

LEMMA 5.3. Let f be a transcendental entire function with an orbit of wandering domains
(Un) arising from applying Theorem 3.1 with the Blaschke products (bn)n≥0 and suppose
that there exist s, t ∈ U0, N ∈ N with

f �N (s), f �N (t) ∈ D(κN , r�N ),

where the sequences (�n), (κn) and (rn) are as defined in Theorem 3.1.
(a) If distGn(f

�n(s), f �n(t))−→
n→∞0 and f �n(s) �= f �n(t), for n ≥ 0, then U0 is contract-

ing.
(b) If lim infn→∞ distGn(f

�n(s), f �n(t)) > 0 and f : Un → Un+1 has degree greater
than 1 for infinitely many n ∈ N, then U0 is semi-contracting.

Proof. (a) In this case it follows from the last part of Theorem 3.1 that

distUn(f
�n(s), f �n(t))−→

n→∞0.

It now follows from Theorem 5.1 that the only possibility is for U0 to be contracting.
(b) In this case it follows from the last part of Theorem 3.1 that

lim inf
n→∞ distUn(f

�n(s), f �n(t)) > 0
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and so U0 is not contracting. Since f : Un → Un+1 has degree greater than 1 for infinitely
many n ∈ N, we know that U0 is not eventually isometric, and so it follows from
Theorem 5.1 that U0 is semi-contracting.

LEMMA 5.4. Let f be a transcendental entire function with an orbit of wandering domains
(Un) arising from applying Theorem 3.1 with the Blaschke products (bn)n≥0 and let s ∈ U0

with

f �n(s) ∈ Gn for n ≥ 0,

where the sets Gn and the sequence (�n), n ≥ 0 are as defined in Theorem 3.1.
(a) If lim infn→∞ dist(f �n(s), ∂Gn) > 0, then orbits of points in U0 behave as

described in Theorem 5.2(b).
(b) If dist(f �n(s), ∂Gn) → 0 as n → ∞, then orbits of points inU0 behave as described

in Theorem 5.2(c).

Proof. We begin by noting that it follows from Theorem 3.1 that

ϕm(	0) = D(ζm, ρm)

=

⎧⎪⎪⎨
⎪⎪⎩
	n = D(an, αn) if m = �n − 1 where n ≥ 0,

Gn = D(κn, 1) if m = �n, where n ≥ 0,

D(9k + 4αn+1, αn+1) ⊂ Dk if m = �n + k + 1, where 0 ≤ k ≤ n.
(5.1)

Since we know from Theorem 3.1(i) that the wandering domains Um are approximated
increasingly well by the sets ϕm(	0) as m → ∞, it follows that diamUm → 0 as m → ∞
for m �= �n, n ≥ 0. So, if s ∈ U0, then

dist(f m(s), ∂Um) → 0 as m → ∞, m �= �n, n ≥ 0. (5.2)

(a) In this case it follows from (5.1) together with Theorem 3.1(i) that

lim inf
n→∞ dist(f �n(s), ∂U�n) > 0.

Together with (5.2), this implies that orbits of points inU0 behave as described in Theorem
5.2(b).

(b) In this case it follows from (5.1) together with Theorem 3.1(i) that

dist(f �n(s), ∂U�n) → 0 as n → ∞.

Together with (5.2), this implies that orbits of points inU0 behave as described in Theorem
5.2(c).

In some of the examples we make use of the following estimate for the hyperbolic
distance in the unit disc.
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Observation 1. For two points r , s ∈ (0, 1) with r < s we have that

distD(r , s) =
∫ s

r

2dt
1 − t2

,

and so

log
1 − r

1 − s
=

∫ s

r

dt

1 − t
≤ distD(r , s) =

∫ s

r

2dt
1 − t

= 2 log
1 − r

1 − s
. (5.3)

We now give the examples that together prove Theorem 1.1. Examples 1, 2 and 3, which
follow, correspond to the three cases of Theorem 5.1. Within each example we give two
functions, corresponding to the two realizable cases of Theorem 5.2.

Example 1. (Two contracting wandering domains) For each of the cases (b) and (c)
of Theorem 5.2, there exists a transcendental entire function f having a sequence of
bounded, simply connected, oscillating contracting wandering domains (Un) with the
stated behaviour.

Proof. First example. We construct an oscillating contracting wandering domain U0 with
the behaviour described in Theorem 5.2(b) by applying Theorem 3.1 with bn(z) = z2, for
n ≥ 0.

We begin by considering the orbits of points in the disc D(4, 1/12) ⊂ D(4, r0) under
iteration by ϕ. We note that, if z ∈ D(κn, R�n), for some n ≥ 0, then

|ϕn+3(z)− κn+1| = |bn(z− κn)| = |z− κn|2.

So, if z ∈ D(4, 1/12), then, for n ≥ 0, we have

|ϕ�n(z)− κn| = |ϕ(z)− κ0|2n = |z− 7|2n ≤ (1/12)2
n → 0 as n → ∞. (5.4)

Next we claim that, if z ∈ D(4, 1/12), then

|f �n(z)− ϕ�n(z)| ≤
n∑
i=1

αi

3n−i
+ |f (z)− ϕ(z)|

3n
for n ≥ 0, (5.5)

and

|f �n(z)− κn| ≤ 1
4 for n ≥ 0. (5.6)

We prove (5.6) and (5.5) together using induction. First, we note that they are true when
n = 0, since if z ∈ D(4, 1/12), then |f �0(z)− ϕ�0(z)| = |f (z)− ϕ(z)| ≤ ε0 ≤ 1/24, by
Theorem 3.1(ii), and |ϕ�0(z)− κ0| = |ϕ(z)− κ0| ≤ 1/12 by (5.4).

Next, we suppose that (5.5) and (5.6) hold for n = m ≥ 0. It follows from these two
estimates and Lemma 4.1(b), together with (5.4), that if z ∈ D(4, 1/12), then

|f �m+1(z)− ϕ�m+1(z)| ≤ αm+1 + |bm(f �m(z)− κm)− bm(ϕ
�m(z)− κm)|

= αm+1 + |(f �m(z)− κm)
2 − (ϕ�m(z)− κm)

2|
≤ αm+1 + |f �m(z)− ϕ�m(z)| (|f �m(z)− κm| + |ϕ�m(z)− κm|)
≤ αm+1 + 1

3 |f �m(z)− ϕ�m(z)|
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≤ αm+1 + 1
3

( m∑
i=1

αi

3m−i + |f (z)− ϕ(z)|
3m

)

=
m+1∑
i=1

αi

3m+1−i + |f (z)− ϕ(z)|
3m+1 ,

which gives (5.5) with n = m+ 1, and also

|f �m+1(z)− κm+1| ≤ |f �m+1(z)− ϕ�m+1(z)| + |ϕ�m+1(z)− κm+1|

≤
m+1∑
i=1

αi

3m+1−i + |f (z)− ϕ(z)|
3m+1 +

(
1
12

)2m+1

≤
n∑
i=1

1
3m+1−i6i

+ 1
12

1
3m+1 +

(
1
12

)2m+1

≤ 1
6

+ + 1
12

1
3m+1 +

(
1
12

)2m+1

<
1
4

,

which gives (5.6) with n = m+ 1.
Since αn ≤ 1/6n for n ≥ 0, it follows from (5.5) that if z ∈ D(4, 1/12), then

|f �n(z)− ϕ�n(z)| → 0 as n → ∞.

Together with (5.4), this implies that, if z ∈ D(4, 1/12), then

|f �n(z)− κn| → 0 as n → ∞. (5.7)

We now use (5.7) together with Lemma 5.3 and Lemma 5.4 to show that the
wandering domain U0 has the required properties. First we take s, t ∈ D(4, 1/12) such
that f (s), f (t) ∈ D(κ0, r1) with f �n(s) �= f �n(t), for n ≥ 0. Since Gn = D(κn, 1), for
n ≥ 0, it follows from (5.7) that

distGn(f
�n(s), f �n(t)) → 0 as n → ∞,

and hence, by Lemma 5.3(a), U0 is contracting.
Also, it follows from (5.7) that

lim
n→∞ dist(f �n(s), ∂Gn) = 1

and hence, by Lemma 5.4(a), orbits of points in U0 behave as described in Theorem 5.2(b).

Second example. We construct an oscillating contracting wandering domain U0 with
the behaviour described in Theorem 5.2(c) by applying Theorem 3.1 with bn(z) =
((z+ 1/3)/(1 + z/3))2, for n ≥ 0. Let x, y ∈ U0 be as in Lemma 4.3(a). Since
Gn = D(κn, 1), for n ≥ 0, it follows from Lemma 4.3(a) and the hyperbolic metric
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estimate (5.3) that

distGn(f
�n(x), f �n(y)) ≤ 2 log

κn + 1 − f �n(x)

κn + 1 − f �n(y)

= 2 log
(

1 + f �n(t)− f �n(x)

κn + 1 − f �n(y)

)

∼ 2 log
(

1 + O(1)/n3/2

c(n+ 1)1/2

)

= O(1)
n

as n → ∞.

It now follows from Lemma 5.3(a) that U0 is contracting. We also know from Lemma
4.3(a) that

dist(f �n(x), ∂Gn) → 0 as n → ∞,

and so it follows from Lemma 5.4(b) that orbits of points in U0 behave as described in
Theorem 5.2(c).

Example 2. (Two semi-contracting wandering domains) For each of the cases (b) and
(c) of Theorem 5.2, there exists a transcendental entire function f having a sequence of
bounded, simply connected, oscillating semi-contracting wandering domains (Un) with
the stated behaviour.

Proof. First example. We construct an oscillating semi-contracting wandering domain
with the behaviour described in Theorem 5.2(b) by applying Theorem 3.1 with bn(z) =
μ̃n(μn(z)

2), for n ≥ 0, where

μn(z) = z+ sn

1 + snz
and μ̃n(z) = z− s2

n

1 − s2
nz

.

We shall use the estimates for bn obtained in Lemma 4.4, and once again put

λn = 2sn
1 + s2

n

for n ≥ 0.

We now choose sn ∈ (0, 1) with sn → 1 as n → ∞ so quickly that
∞∏
j=0

λj ≥ 8/9 and
∞∏
j=0

2
1 + λj

≤ 4/3. (5.8)

We first consider the orbit of the point 4 under iteration by f, noting that

ϕ�n(4) = κn for n ≥ 0. (5.9)

It follows from (5.9), Lemma 4.1(b) and (4.20) in Lemma 4.4 that, for n ≥ 0,

|f �n+1(4)− κn+1| = |f �n+1(4)− ϕ�n+1(4)|
≤ αn+1 + |bn(f �n(4)− κn)− bn(ϕ

�n(4)− κn)|
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= αn+1 + |bn(f �n(4)− κn)|
≤ αn+1 + |f �n(4)− κn|.

Together with Theorem 3.1(ii) and (5.9), this implies that, for n ≥ 0,

|f �n(4)− κn)| ≤ |f (4)− κ0| +
n−1∑
i=1

αi = |f (4)− ϕ(4)| +
n−1∑
i=1

αi ≤ 1
24

+
n−1∑
i=1

1
6i
<

1
4

.

(5.10)

Now we consider the orbit of 19/4 under f. Once again, we begin by considering the
orbit under ϕ. We claim that

ϕ�n(19/4)− κn ≥ 3
4

n−1∏
i=0

λi . (5.11)

We prove (5.11) by induction, first noting that it holds for n = 0, since ϕ�0(19/4) =
ϕ(19/4) = κ0 + 3/4. Next, suppose that (5.11) holds for n = m. Then, by (4.20),

ϕ�m+1(19/4)− κm+1 = bn(ϕ
�m(19/4)− κm)

≥ λm(ϕ
�m(19/4)− κm)

≥ 3
4
λm

m−1∏
i=0

λi = 3
4

m∏
i=0

λi .

Thus (5.11) holds for n = m+ 1 and hence, by induction, for all n ≥ 0. Together with
(5.8), this implies that

ϕ�n(19/4)− κn ≥ 2
3 for n ≥ 0. (5.12)

Next we claim that, for n ≥ 0,

|f �n(19/4)− ϕ�n(19/4)| ≤
n∑
i=1

αi

n−1∏
j=i

2
1 + λj

+
n−1∏
i=0

2
1 + λi

|f (19/4)− ϕ(19/4)|.

(5.13)

We prove (5.13) by induction, noting that it holds for n = 0. Next, suppose that (5.13)
holds for n = m ≥ 0. Then it follows from Lemma 4.1(b) and (4.21) that

|f �m+1(19/4)− ϕ�m+1(19/4)|
≤ αm+1 + |bm(f �m(19/4)− κm)− bm(ϕ

�n(19/4)− κm)|
≤ αm+1 + 2

1 + λm
|f �m(19/4)− ϕ�m(19/4)|

≤ αm+1 + 2
1 + λm

( m∑
i=1

αi

m−1∏
j=i

2
1 + λj

+
m−1∏
i=0

2
1 + λi

|f (19/4)− ϕ(19/4)|
)

=
m+1∑
i=1

αi

m∏
j=i

2
1 + λj

+
m∏
i=0

2
1 + λi

|f (19/4)− ϕ(19/4)|.
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Thus (5.13) holds for n = m+ 1 and hence, by induction, for all n ≥ 0. It now follows
from Theorem 3.1(ii) and (5.8) that

|f �n(19/4)− ϕ�n(19/4)| ≤
∞∏
j=0

2
1 + λj

( ∞∑
i=1

1
6i

+ 1
24

)
≤ 1

4

∞∏
j=0

2
1 + λj

≤ 1
3

. (5.14)

It follows from (5.12), (5.14) and (5.10) that, for n ≥ 0,

|f �n(19/4)− f �n(4)| = |ϕ�n(19/4)− κn + f �n(19/4)− ϕ�n(19/4)+ κn − f �n(4)|
≥ |ϕ�n(19/4)− κn| − |f �n(19/4)− ϕ�n(19/4)| − |f �n(4)− κn|

≥ 2
3

− 1
3

− 1
4

= 1
12

.

Since Gn = D(κn, 1), for n ≥ 0, together with (5.10) this implies that

lim inf
n→∞ distGn(f

�n(19/4), f �n(4)) > 0.

Also, it follows from Theorem 3.1(iv) that f : U�n → U�n+1 has degree greater than 1,
for n ≥ 0. So, by Lemma 5.3(b), U0 is semi-contracting.

Finally, it follows from (5.10) that

lim inf
n→∞ dist(f �n(4), ∂Gn) > 0

and so, by Lemma 5.4(a), orbits of points in U0 behave as described in Theorem 5.2(b).

Second example. We construct an oscillating semi-contracting wandering domain U0

with the behaviour described in Theorem 5.2(c) by applying Theorem 3.1 with bn(z) =
((z+ 1/2)/(1 + z/2))2, for n ≥ 0. Let x, y ∈ U be as in Lemma 4.3(b). Since Gn =
D(κn, 1), for n ≥ 0, it follows from Lemma 4.3(b) and the hyperbolic metric estimate
(5.3) that for n sufficiently large we have

distGn(f
�n(x), f �n(y)) ≥ log

κn + 1 − f �n(x)

κn + 1 − f �n(y)

≥ log
cλn(1 − 1/10)
cλn+1(1 + 1/10)

= log
9

11λ
= log

27
22
> 0,

recalling that λ = 2/3.
Also, it follows from Theorem 3.1 that f : U�n → U�n+1 has degree greater than 1, for

n ≥ 0, so U0 is semi-contracting by Lemma 5.3(b). Finally, we know from Lemma 4.3(b)
that

dist(f �n(x), ∂Gn) → 0 as n → ∞
and so, by Lemma 5.4(b), orbits of points inU0 behave as described in Theorem 5.2(c).

Example 3. (Two eventually isometric wandering domains) For each of the cases (b) and
(c) of Theorem 5.2, there exists a transcendental entire function f having a sequence of
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bounded, simply connected, oscillating eventually isometric wandering domains (Un)with
the stated behaviour.

Proof. First example. We construct an oscillating eventually isometric wandering domain
U0 with the behaviour described in Theorem 5.2(b) by applying Theorem 3.1 with
bn(z) = z, for n ≥ 0.

Since bn is univalent, for n ≥ 0, it follows from Theorem 3.1(iv) that f : Um → Um+1

is also univalent, for m ≥ 0. Thus U is eventually isometric.
We now consider the orbit of 4 under iteration by f. We claim that, for n ≥ 0,

|f �n(4)− ϕ�n(4)| ≤
n∑
i=1

αi + |f (4)− ϕ(4)|. (5.15)

We prove (5.15) by induction, noting that it is true for n = 0. Next, suppose that (5.15)
holds for n = m ≥ 0. Then it follows from Lemma 4.1(b) that

|f �m+1(4)− ϕ�m+1(4)| = αm+1 + |bm(f �m(4)− κm)− bm(ϕ
�m(4)− κm)|

= αm+1 + |f �m(4)− ϕ�m(4)|

= αm+1 +
m∑
i=1

αi + |f (4)− ϕ(4)|

=
m+1∑
i=1

αi + |f (4)− ϕ(4)|.

Thus (5.15) holds for n = m+ 1 and hence, by induction, for all n ≥ 0.
Since αn ≤ 1/6n for n ≥ 0, and |f (4)− ϕ(4)| ≤ 1/24, by Theorem 3.1(ii), it follows

from (5.15) that

|f �n(4)− ϕ�n(4)| ≤ 1/2 for n ≥ 0.

Since ϕ�n(4) = κn andGn = D(κn, 1), for n ≥ 0, it follows from Lemma 5.4(a) that orbits
of points in U0 behave as described in Theorem 5.2(b).

Second example. We construct an oscillating eventually isometric wandering domain U0

with the behaviour described in Theorem 5.2(c) by applying Theorem 3.1 with bn(z) =
b(z) = (z+ 5/6)/(1 + 5z/6), for n ≥ 0.

Since bn is univalent, for n ≥ 0, it follows from Theorem 3.1(iv) that f : Um → Um+1

is also univalent, for m ≥ 0. Thus U0 is eventually isometric.
We now consider the orbit of 4 under iteration by ϕ, noting that

ϕ�n(4) = κn + bn(0) for n ≥ 0.

The Blaschke product b has an attracting fixed point at 1 and we have

bn(0) → 1 as n → ∞ and bn(0) ≥ 5/6 for n ∈ N, (5.16)

and so

dist(ϕ�n(4), ∂Gn) → 0 as n → ∞, and ϕ�n(4)− κn ≥ 5/6 for n ∈ N. (5.17)

https://doi.org/10.1017/etds.2021.169 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.169


Oscillating simply connected wandering domains 1267

We also note that if 0 ≤ z1, z2 < 1, then

|b(z1)− b(z2)| =
∣∣∣∣ 11(z1 − z2)

(6 + 5z1)(6 + 5z2)

∣∣∣∣ ≤ 11|z1 − z2|
36

. (5.18)

Next, we take a point x ∈ D(4, r0) such that f (x) = κ0, which is possible by Theorem
3.1(i), and consider the orbit of x under iteration by f. We claim that, for n ≥ 0,

|f �n(x)− ϕ�n(4)| ≤
n∑
i=1

αi

(
11
36

)n−i
≤ 1

2n
. (5.19)

We prove (5.19) by induction. First, we note that it is true if n = 0, since f (x)−
ϕ(4) = 0. Next, suppose that (5.19) holds for n = m ≥ 0. Then it follows from (5.17) and
(5.19) that f �m(x) > 0, and so it follows from Lemma 4.1(b) together with (5.18) that, for
m ≥ 0,

|f �m+1(x)− ϕ�m+1(4)| ≤ αm+1 + |bm(f �m(x)− κm)− bm(ϕ
�m(4)− κm)|

≤ αm+1 + 11|f �m(x)− ϕ�m(4)|
36

≤ αm+1 +
m∑
i=1

αi

(
11
36

)m+1−i

=
m+1∑
i=1

αi

(
11
36

)m+1−i

≤
m+1∑
i=1

1
6i

(
11
36

)m+1−i
≤ m+ 1

3m+1 ≤ 1
2m+1 .

Thus (5.19) holds for n = m+ 1 and hence, by induction, for all n ≥ 0.
It follows from (5.19) together with (5.17) that

dist(f �n(s), ∂Gn) → 0 as n → ∞
and so, by Lemma 5.4(b), orbits of points inU0 behave as described in Theorem 5.2(c).
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