The oxidation stability of a vegetarian omega-3 oil in water nanoemulsion with enhanced bioavailability

K.E. Lane1, W. Li2, C. Smith and E. Derbyshire

1School of Sport Studies, Leisure and Nutrition, Liverpool John Moores University, Liverpool, United Kingdom L17 6BD and 2Institute of Food Science and Innovation, University of Chester, Parkgate Road, Chester, CH1 4BJ

Long chain omega-3 polyunsaturated fatty acids (LC3PUFA) have been linked to healthy aging, health promotion and disease reduction throughout the life cycle[1; 2]. Dietary surveys indicate that LC3PUFA are currently under consumed, particularly amongst vegetarians/vegans, adult men, pregnant/breast feeding women, infants, non-fish eaters and certain ethnic groups[3; 4; 5]. New vegetarian food vehicles such as LC3PUFA micro algal oils have been developed to address this issue[4].

Nanoemulsions are systems with droplet sizes in range of 20 to 500 nm(6). The incorporation of algal oil into foods using nanoemulsions (N) stabilised with sunflower lecithin over a storage period of 37 days at temperatures of 4, 20 and 40 °C. Total oxidation values (TV) were then calculated by TV = 2PV + AV. Results were analysed using one and two-factor repeated measures ANOVA tests with Tukey and Duncan tests and a Bonferroni correction at 5 per cent. Increased storage and temperatures had a significant effect on oxidation stability for all samples (P < 0.05). For samples stored at 4 °C the bulk sample was significantly more stable to oxidation than the coarse emulsion and nanoemulsion samples (P < 0.05), however all samples remained within safe ranges at 4 °C(9). Further research is now warranted to investigate the oxidation stability of LC3PUFA nanoemulsions using more sophisticated measures such as gas chromatography head space analysis. This will enable the analysis of volatile headspace compounds to further assess the impact of emulsion droplet sizes and food enrichment matrices on oxidation stability.

Increased storage and temperatures had a significant effect on oxidation stability for all samples (P < 0.05). For samples stored at 4 °C the bulk sample was significantly more stable to oxidation than the coarse emulsion and nanoemulsion samples (P < 0.05), however all samples remained within safe ranges at 4 °C(9). Further research is now warranted to investigate the oxidation stability of LC3PUFA nanoemulsions using more sophisticated measures such as gas chromatography head space analysis. This will enable the analysis of volatile headspace compounds to further assess the impact of emulsion droplet sizes and food enrichment matrices on oxidation stability.