AN ANALOGUE OF THE RADON-NIKODYM PROPERTY FOR NON-LOCALLY CONVEX QUASI-BANACH SPACES

by N. J. KALTON
(Received 1st November 1977)

1. Introduction

In recent years there has been considerable interest in Banach spaces with the Radon-Nikodym Property; see (1) for a summary of the main known results on this class of spaces. We may define this property as follows: a Banach space X has the Radon-Nikodym Property if whenever $T \in \mathscr{L}\left(L_{1}, X\right)$ (where $L_{1}=L_{1}(0,1)$) then T is differentiable i.e.

$$
T f=\int_{0}^{1} f(x) g(x) d x
$$

where $g:(0,1) \rightarrow X$ is an essentially bounded strongly measurable function.
In this paper we examine analogues of the Radon-Nikodym Property for quasiBanach spaces. If $0<p<1$, there are several possible ways of defining "differentiable" operators on L_{p}, but they inevitably lead to the conclusion that the only differentiable operator is zero. For example, a differentiable operator on L_{1} has the Dunford-Pettis property; operators on L_{1} with the Dunford-Pettis property map the unit ball of L_{∞} to a compact set (cf (12)). However any operator on $L_{p}(p<1)$ with this property is zero (4).

Thus we define a quasi-Banach space X to be p-trivial if $\mathscr{L}\left(L_{p}, X\right)=\{0\}$. The concept of p-triviality is then hoped to be an analogue of the Radon-Nikodym property amongst locally p-convex quasi-Banach spaces. It turns out that this hope is fulfilled to some extent. Our main results in Sections 4 and 5 demonstrate an analogue of Edgar's theorem (2) and of the Phelps characterisation of the Radon-Nikodym Property ((1), (9)) to this setting. Precisely we show that a locally p-convex quasiBanach space is p-trivial if and only if every closed bounded p-convex set is the closed p-convex hull of its "strongly p-extreme points". Our analogue of Edgar's theorem is that if C is a bounded closed p-convex subset of a p-trivial quasi-Banach space then every $x \in C$ may be represented in the form

$$
x=\sum_{n=1}^{\infty} a_{n} u_{n}
$$

where $a_{n} \geqslant 0, \sum a_{n}^{p}=1$, and each u_{n} is a p-extreme point of C. We observe in this connection that a similar Choquet-type theorem for compact p-convex sets was proved in (5).

In our final Section 6 we briefly discuss the associated super-property. Here there
is a slight divergence between the Radon-Nikodym Property for Banach spaces and p-triviality for quasi-Banach spaces. A Banach space with the super-Radon-Nikodym property is super-reflexive (11); thus there is a space X such that ℓ_{1} is not finitely representable in X but which fails the Radon-Nikodym Property (3). However if $\boldsymbol{\ell}_{p}$ $(0<p<1)$ is not finitely representable in a quasi-Banach space then it is p-trivial.

2. Notation

A quasi-norm on a real vector space X is a map $x \mapsto\|x\|$ such that
(1) $\|x\|>0$ if $x \neq 0$.
(2) $\|t x\|=|t|\|x\| \quad t \in R, x \in X$.
(3) $\|x+y\| \leqslant k(\|x\|+\|y\|) \quad x, y \in X$.
where k is the modulus of concavity of the quasi-norm. If $k=1,\|\cdot\|$ is a norm. In general the quasi-norm is r-subadditive ($0<r \leqslant 1$) if
(4) $\|x+y\|^{r} \leqslant\|x\|^{r}+\|y\|^{r} \quad x, y \in X$.

The sets $\{x:\|x\|<\alpha\}$ define the base of neighbourhoods for a Hausdorff vector topology on X. If X is complete, we say that X is a quasi-Banach space; if the quasi-norm is also r-subadditive then X is an r-Banach space.

The Aoki-Rolewicz theorem (10, p. 57) asserts that every quasi-norm is equivalent to a quasi-norm which is r-subadditive for some $r>0$. Here $\|\cdot\|$ and $\|\cdot\|^{*}$ are equivalent if there exists $0<m \leqslant M<\infty$ such that

$$
m\|x\| \leqslant\|x\|^{*} \leqslant M\|x\| \quad x \in X
$$

A subset C of X is p-convex (where $0<p \leqslant 1$) if given $x, y \in C$ and $0 \leqslant a, b \leqslant 1$ with $a^{p}+b^{p}=1$, then $a x+b y \in C$. Observe that if $0<p<1$ and C is a closed p-convex set then C contains 0 . We say that X is (locally) p-convex if there is a bounded p-convex neighbourhood of zero; this is equivalent to the existence of an equivalent p-subadditive quasi-norm on X.

If C is a p-convex subset of X then a point x of C is p-extreme if $x=a_{1} x_{1}+a_{2} x_{2}$ with $x_{1}, x_{2} \in X$ and $0<a_{1}, a_{2}<1, a_{1}^{p}+a_{2}^{p}=1$ implies that $x=x_{1}=x_{2}$.

A point $x \in C$ is strongly p-extreme if whenever $y_{n}, z_{n} \in C, 0 \leqslant a_{n}, b_{n} \leqslant 1, a_{n}^{p}+$ $b_{n}^{p}=1$ and $a_{n} y_{n}+b_{n} z_{n} \rightarrow x$ then $\max \left(a_{n}, b_{n}\right) \rightarrow 1$. According to our definition 0 is never strongly p-extreme, although it may well be p-extreme. We regard strongly p-extreme points as an analogue of denting points.

The set of p-extreme points of C is denoted $\partial_{p} C$. If A is any set its p-convex hull is denoted by $\operatorname{co}_{p} A$ and its closed p-convex hull by $\overline{\cos }_{p} A$.

3. p-trivial spaces

We define a quasi-Banach space X to be p-trivial $(0<p<1)$ if $\mathscr{L}\left(L_{p}, X\right)=\{0\}$, where $L_{p}=L_{p}(0,1)$. As we observed in the introduction, this is the appropriate generalisation, to the case $p<1$, of the Radon-Nikodym property for Banach spaces. In this section, we observe some examples of p-trivial quasi-Banach spaces.

Theorem 3.1. Suppose X satisfies either of the following conditions:
(a) For any closed infinite-dimensional subspace Y of X there exists $q>p$ and a q-convex quasi-Banach space Z such that $\mathscr{L}(Y, Z) \neq\{0\}$.
(b) For any closed infinite-dimensional subspace Y of X there exists an F-space and a non-zero compact linear operator $T: Y \rightarrow Z$.

Then X is p-trivial.
Proof. We prove only (b). Suppose $S \in \mathscr{L}\left(L_{p}, X\right)$ and $S \neq 0$. Then since $L_{p}^{*}=\{0\}$, $Y=\overline{S\left(L_{p}\right)}$ is infinite-dimensional. Let $T: Y \rightarrow Z$ be a non-zero compact operator on Y. Then $T S$ is a non-zero compact operator on L_{p}, contradicting the results of (4).

A quasi-Banach space X is pseudo-dual if there exists a Hausdorff vector topology τ on X such that the unit ball of x is relatively compact (cf (8)).

Theorem 3.2. Let X be a p-trivial quasi-Banach space and let Y be a closed subspace of X which is either q-convex for some $q>p$ or isomorphic to a pseudo-dual space. Then X / Y is p-trivial.

Proof. In either case a linear operator $S: L_{p} \rightarrow X / Y$ may be lifted to a linear operator $\tilde{S}: L_{p} \rightarrow X$ (see (8)).

Theorem 3.3. Let X be a quasi-Banach space, and let Y be a closed p-trivial subspace of X such that X / Y is p-trivial.

Then X is p-trivial.
Proof. Immediate.
Theorem 3.4. Let X be a quasi-Banach space which possesses no infinitedimensional subspace isomorphic to a Hilbert space. Then X is p-trivial.

Proof. This is immediate from (4) Theorem 3.4.
The author has recently constructed a non- p-trivial space which is p-convex, but contains no copy of L_{p}; details will appear elsewhere.

Theorem 3.5. Suppose X is a subspace of L_{p}. Then X is p-trivial if and only if X has no subspace isomorphic to L_{p}.

Proof. By the results of (6), if $T \in \mathscr{L}\left(L_{p}, L_{p}\right)$ and $T \neq 0$, there is a subspace Y of L_{p}, such that $Y \cong L_{p}$ and $T \mid Y$ is an isomorphism.

4. Edgar's theorem for \boldsymbol{p}-trivial spaces

Our first main result generalises Edgar's theorem (2) on Banach spaces with the Radon-Nikodym property.

Theorem 4.1. Suppose $0<p<1$ and that X is a p-trivial quasi-Banach space.

Suppose C is a closed bounded p-convex subset of X and that $x \in C$. Then there exists a sequence $u_{n} \in \partial_{p} C$ and $a_{n} \geqslant 0$ such that $\Sigma a_{n}^{p} \leqslant 1$ and

$$
x=\sum_{n=1}^{\infty} a_{n} u_{n} .
$$

Proof. We shall assume the contrary and produce a contradiction. Let \mathscr{B} be the σ-algebra of Borel subsets of $[0,1]$. For a sub- σ-algebra \mathscr{A} of \mathscr{B} let $L_{p}(\mathscr{A})$ denote the closed subspace of $L_{p}[0,1]=L_{p}(\mathscr{B})$ of all \mathscr{A}-measurable functions. Let Ω denote the first uncountable ordinal. We shall construct, by transfinite induction, an increasing transfinite sequence of σ-algebras $\mathscr{B}_{\alpha}(1 \leqslant \alpha<\Omega)$ and of linear operators $T_{\alpha}: L_{p}\left(\mathscr{B}_{\alpha}\right) \rightarrow X$ such that
(1) $\mathscr{B}_{1}=\{[0,1], \phi\}$ and $T_{1}(c .1)=c x$ where 1 denotes the characteristic function of [0, 1].
(2) If $\alpha<\beta$ and $f \in L_{p}\left(\mathscr{B}_{\alpha}\right)$ then $T_{\beta} f=T_{a} f$.
(3) If $f \in L_{p}\left(\mathscr{B}_{\alpha}\right), f \geqslant 0$ and $\|f\|_{p} \leqslant 1$ then $T f \in C$.
(4) If $\epsilon_{\alpha}=\inf \left\{\Sigma_{n=1}^{\infty} \lambda\left(B_{n}\right)^{1 / p}: B_{n} \in \mathscr{B}_{\alpha} ; \cup_{n=1}^{\infty} B_{n}=[0,1]\right\}$ then $\left\{\epsilon_{\alpha}: 1 \leqslant \alpha<\Omega\right\}$ is strictly decreasing.

Of course if we can satisfy (1), (2), (3), (4) then we have an immediate contradiction since any well-ordered subset of \mathbf{R} is countable.

Define \mathscr{B}_{1}, T_{1} as above. Now suppose $1<\alpha<\Omega$ and that $\mathscr{B}_{\beta}, T_{\beta}$ have been defined for $\beta<\alpha$. If α is a limit ordinal, let \mathscr{B}_{α} be the σ-algebra generated by $\cup\left(\mathscr{B}_{\beta}: \beta<\alpha\right)$. Since

$$
\left\|T_{\beta}\right\| \leqslant 2 k \sup _{y \in C}\|y\| \quad \beta<\alpha
$$

we can define T_{α} to be the unique extension of each T_{β} to $L_{p}\left(\mathscr{B}_{\alpha}\right)$. Then conditions (2), (3), (4) are immediate.

Next suppose $\alpha=\gamma+1$. Let ($B \boldsymbol{j}: j \in J$) be a maximal family of disjoint atoms of β_{γ} i.e., $\lambda\left(B_{j}^{\gamma}\right)>0$ and $B \in \mathscr{B}_{\gamma}, B \subset B_{\gamma}^{\gamma}$ implies either $\gamma(B)=\lambda\left(B_{j}^{\gamma}\right)$ or $\lambda(B)=0 . J$ is at most countable; let $B^{*}=[0,1] \backslash \cup_{j} B \gamma$. Since X is p-trivial we have $T_{\gamma} \mid L_{p}\left(B^{*}, \mathscr{B}_{\gamma}\right)=0$.

Let $a_{j}=\lambda\left(B_{j}^{j}\right)^{1 / p}$ and $v_{i}=a_{j}^{-1} T 1_{B \gamma}(j \in J)$. Then

$$
x=T_{y}(1)=\sum_{j \in J} a_{j} v_{j}
$$

Hence by assumption there exists i such that $v_{i} \notin \partial_{p} C$ i.e.,

$$
v_{i}=s u+t w
$$

where $u, w \in C, s, t>0$ and $s^{p}+t^{p}=1$.
Choose $A \in \mathscr{B}$ such that $A \subset B_{\gamma}^{\gamma}$, and $\lambda(A)=\left(s a_{j}\right)^{p}$.
Let \mathscr{B}_{α} be the σ-algebra generated by adjoining A to \mathscr{B}_{γ}. Extend T_{γ} by defining

$$
T_{\alpha} 1_{A}=s a_{j} u
$$

Then

$$
T_{\alpha} 1_{B Y \mid A}=t a_{j} w
$$

and conditions (2), (3) follow easily. For (4), observe that

$$
\epsilon_{\gamma}=\sum_{i \in J} a_{i}
$$

while

$$
\epsilon_{\alpha}=\sum_{j \neq i} a_{j}+(s+t) a_{i}<\epsilon_{\gamma}
$$

This completes the proof.
Remark. It is easy, given Theorem 4.1, to modify the representation of x so that $\Sigma a_{n}^{p}=1$. This follows from the fact that $0 \in C$ (see (5) for the details).

5. Geometric characterisations of \boldsymbol{p}-trivial spaces

Suppose that C is a bounded p-convex set with 0 as an interior point (this implies that X is p-convex). Denote by C_{0} the interior of C. Then if $x \in C$ and $0 \leqslant t<1$, $t x \in C_{0}$. Let us define a function $\varphi: C_{0} \rightarrow \mathbf{R}$ by

$$
\varphi(x)=\inf \sum_{n=1}^{\infty} a_{n}
$$

where the infimum is taken over all non-negative series Σa_{n} such that $\sum a_{n}^{p}=1$ and there exist $u_{n} \in C_{0}$ with

$$
x=\sum_{n=1}^{\infty} a_{n} u_{n}
$$

Let us observe that the infimum may be taken instead over all non-negative series $\sum a_{n}$ such that $\sum a_{n}^{p} \leqslant 1$ and

$$
x=\sum_{n=1}^{\infty} a_{n} u_{n} .
$$

For if

$$
x=\sum_{n=1}^{\infty} a_{n} u_{n}
$$

where $a_{n} \geqslant 0$ and $\Sigma a_{n}^{p} \leqslant 1$, then for any N, we may write

$$
x=\sum_{n=1}^{\infty} a_{n} u_{n}+\alpha(0+0+\cdots+0)
$$

where $\alpha^{p}=N^{-1}\left(1-\Sigma a_{n}^{p}\right)$, and there are N zero terms. Thus

$$
\begin{aligned}
\varphi(x) & \leqslant \sum a_{n}+N \alpha \\
& =\sum a_{n}+N^{1-1 / p}\left(1-\sum a_{n}^{p}\right)^{1 / p} .
\end{aligned}
$$

Letting $N \rightarrow \infty$ we see that

$$
\varphi(x) \leqslant \sum a_{n}
$$

For $x \in C$, we define

$$
\begin{gathered}
\varphi_{*}(x)=\underset{y \rightarrow x}{\liminf } \varphi(y) \\
\varphi^{*}(x)=\limsup _{y \rightarrow x} \varphi(y)
\end{gathered}
$$

Thus φ_{*} is lower-semi-continuous and φ^{*} is upper-semi-continuous on C and $\varphi_{*} \leqslant \varphi^{*}$. Let

$$
\begin{aligned}
V & =\left\{x \in C: \varphi^{*}(x)=1\right\} \\
W & =\left\{x \in C: \varphi_{*}(x)=1\right\} .
\end{aligned}
$$

Then V is closed and W is a G_{δ}-set; also $W \subset V$. Clearly any member of W is strongly p-extreme for C.

The following lemmas prepare our main theorem. We assume that X is p-trivial.
Lemma 5.1. If $x \in C_{0}$, there exist $v_{m} \in V$ and $a_{m} \geqslant 0$ such that $\Sigma a_{m}^{p} \leqslant 1$ and $\sum a_{m} v_{m}=x$.

Proof. (cf. Theorem 4.1). Suppose $x \in C_{0}$. Let $\mathscr{B}_{1}=\{(0,1), \phi\}$ and define $T_{1}: L_{p}\left(\mathscr{B}_{1}\right) \rightarrow X$ by $T_{1}(c .1)=c x$ By induction we construct an increasing sequence of atomic sub- σ-algebras \mathscr{B}_{n} of \mathscr{B} and a sequence of linear operators $T_{n}: L_{p}\left(\mathscr{B}_{n}\right) \rightarrow X$ such that
(1) $T_{n+1} \mid L_{p}\left(\mathscr{B}_{n}\right)=T_{n} . \quad n \geqslant 2$,
(2) $T_{n}\left\{f: f \in L_{p}\left(\mathscr{B}_{n}\right) ; \quad f \geqslant 0,\|f\|_{p} \leqslant 1\right\} \subset C_{0}$.

Indeed suppose \mathscr{B}_{n} has atoms ($B_{j}^{n}: j \in J$) where J is at most countable. Let $b_{j}=\lambda\left(B_{j}^{n}\right)^{1 / p}, j \in J$ and

$$
u_{j}=b_{j}^{-1} T_{n} 1_{B j} .
$$

Then $u_{j} \in C_{0}$. Then write

$$
u_{j}=\sum_{i=1}^{\infty} a_{i j} w_{i j}
$$

where $w_{i j} \in C_{0}, \Sigma a_{i j}^{p}=1$

$$
\sum_{i=1}^{\infty} a_{i j} \leqslant \frac{1}{2}\left(1+\varphi\left(u_{j}\right)\right)
$$

(the sum may, of course, be finitely non-zero). Split each B_{j}^{n} into atoms $\left\{B_{i j}^{n}: i=\right.$ $1,2, \ldots\}$ where $\lambda\left(B_{i j}^{n}\right)=a_{i j}^{p} b_{j}^{p}$. Let $\mathscr{B}_{n+1}=\sigma\left\{B_{i j}^{n}: j \in J, i=1,2, \ldots\right\}$ and define T_{n+1} on $L_{p}\left(\mathscr{B}_{n+1}\right)$ so that

$$
T_{n+1} 1_{B_{i j}}=b_{j}^{-1} a_{i j}^{-1} w_{i j}
$$

It is easy to verify the conditions.
Now let $\mathscr{B}_{\infty}=\sigma\left(\cup_{n=1}^{\infty} \mathscr{B}_{n}\right)$ and let T be the unique continuous extension of each T_{n} to $L_{p}\left(\mathscr{B}_{\infty}\right)$. Then \mathscr{B}_{∞} has atoms $\left\{B_{j}: j \in J_{\infty}\right\}$ and since X is $L_{p \text {-trivial }}$

$$
x=\sum_{i \in \bigoplus_{\infty}} a_{j} v_{j}
$$

where $a_{j}=\lambda\left(B_{j}\right)^{1 / p}$ and $v_{j}=a_{i}^{-1} T 1_{B_{i}}$ Clearly $v_{i} \in C$ and $\Sigma a_{j}^{p} \leqslant 1$. It remains to show that $v_{j} \in V$.

For each n, let A_{j}^{n} be the atom of \mathscr{B}_{n} including B_{j}. Then $\bigcap_{n} A_{i}^{n}=B_{i}$; let

$$
z_{i}^{n}=\lambda\left(A_{i}^{n}\right)^{-1 / p} T 1_{A_{i}} .
$$

Then $z_{j}^{n} \in C_{0}$ and $z_{j}^{n} \rightarrow v_{j}$. Now for each n,

$$
\frac{1}{2}\left(1+\varphi\left(z_{j}^{n}\right)\right) \geqslant\left(\lambda\left(B_{j}\right) / \lambda\left(A_{j}^{n}\right)\right)^{1 / p}
$$

and hence $\varphi\left(z_{j}^{n}\right) \rightarrow 1$. Thus $v_{j} \in V$.
Since X is necessarily p-convex we can assume that the norm on X is p subadditive. We also choose $\delta>0$ such that $\{x:\|x\| \leqslant \delta\}$ is contained in C.

Lemma 5.2. Suppose $x \in C_{0}$ and $0 \leqslant t<1$. Then

$$
\varphi(t x) \leqslant t \varphi_{*}(x)
$$

Proof. Suppose $\epsilon>0$, and

$$
\epsilon \leqslant \delta t^{-1}\left(1-t^{p}\right)^{1 / p}
$$

Then there exists $u,\|u\|<\epsilon$ such that $x-u \in C_{0}$ and

$$
\varphi(x-u)<\varphi_{*}(x)+\epsilon .
$$

Hence

$$
x-u=\sum_{n=1}^{\infty} a_{n} x_{n}
$$

where $x_{n} \in C_{0}, a_{n} \geqslant 0, \Sigma a_{n}^{p}=1$ and

$$
\Sigma a_{n} \leqslant \varphi_{*}(x)+\epsilon .
$$

Thus

$$
t x=\sum_{n=1}^{\infty} t a_{n} x_{n}+\frac{t \epsilon}{\delta}\left(\frac{\delta u}{\epsilon}\right)
$$

and

$$
\sum t^{p} a_{n}^{p}+t^{p} \epsilon^{p} \delta^{-p} \leqslant 1
$$

By the remark at the beginning of the section,

$$
\begin{aligned}
\varphi(t x) & \leqslant t\left(\sum a_{n}\right)+t \epsilon \delta^{-1} \\
& \leqslant t\left(\varphi_{*}(x)+\epsilon\right)+t \epsilon \delta^{-1} .
\end{aligned}
$$

Now let $\epsilon \rightarrow 0$,

$$
\varphi(t x) \leqslant t \varphi_{*}(x)
$$

Lemma 5.3. Suppose $x_{n} \in C, a_{n} \geqslant 0$ and $\Sigma a_{n}^{p} \leqslant 1$. Then

$$
\varphi_{*}\left(\sum_{n=1}^{\infty} a_{n} x_{n}\right) \leqslant \sum_{n=1}^{\infty} a_{n} \varphi_{*}\left(x_{n}\right) .
$$

Proof. For $\epsilon>0$, there exist $u_{n} \in C_{0}$ such that

$$
\left\|x_{n}-u_{n}\right\| \leqslant \epsilon
$$

and

$$
u_{n}=\sum_{k=1}^{\infty} c_{n k} v_{n k}
$$

where $v_{n k} \in C_{0}, c_{n k} \geqslant 0, \Sigma c_{n k}^{p} \leqslant 1$ and

$$
\sum_{k} c_{n k} \leqslant \varphi_{*}\left(x_{n}\right)+\epsilon
$$

Thus

$$
\left\|\sum_{n=1}^{\infty} a_{n} x_{n}-\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{n} c_{n k} v_{n k}\right\| \leqslant \epsilon .
$$

and

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{n} c_{n k} & \leqslant \sum_{n=1}^{\infty} a_{n}\left(\varphi_{*}\left(x_{n}\right)+\epsilon\right) \\
& \leqslant \sum_{n=1}^{\infty} a_{n} \varphi_{*}\left(x_{n}\right)+\epsilon
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$ we obtain the result.
Lemma 5.4. $\quad W$ is dense in V.
Proof. Let

$$
M=\sup _{x \in C}\|x\| .
$$

Fix $n \in \mathbb{N}$ and let

$$
W_{n}=\left\{x \in C: \varphi_{*}(x)>1-1 / n\right\} .
$$

Then W_{n} is relatively open in C. We shall show that $W_{n} \cap V$ is dense in V. Fix $x \in V$ and $\epsilon>0$.
Choose $v>0$ such that

$$
(1-v)^{p / 1-p}-v>1-1 / n .
$$

and

$$
v^{p}+M^{p}\left[v^{p}+\left(1-(1-v)^{1 / 1-p}\right)^{p}+\left(1-(1-v)^{p / 1-p}\right)\right]<\epsilon^{p} .
$$

Since $x \in V$ there exists $y \in C_{0}$ with

$$
\varphi(y)>1-v
$$

and

$$
\|x-y\|<v
$$

Since $y \in C_{0}$, there exists $\tau, 1<\tau<1+v$ such that $\tau y \in C_{0}$ and then we have

$$
\varphi_{*}(\tau y)>1-v
$$

by Lemma 5.2.
Now by Lemma 5.1

$$
\tau y=\sum_{m=1}^{\infty} a_{m} v_{m}
$$

where $v_{m} \in V, a_{m} \geqslant 0$ and $\Sigma a_{m}^{p} \leqslant 1$. Then by Lemma 5.3

$$
\sum_{m=1}^{\infty} a_{m} \varphi_{*}\left(v_{m}\right)>1-v
$$

and in particular

$$
\sum a_{m}>1-\mathbf{v}
$$

Suppose $a_{1} \geqslant a_{2} \geqslant \ldots$; then

$$
a_{1}>(1-v)^{1 /(1-p)}
$$

and hence

$$
\sum_{m=2}^{\infty} a_{m}^{p}<1-(1-v)^{p /(1-p)}
$$

Thus

$$
\begin{aligned}
& a_{1} \varphi_{*}\left(v_{1}\right)>1-v-\sum_{m=2}^{\infty} a_{m} \\
&>(1-v)^{p /(1-p)}-v .
\end{aligned}
$$

In particular

$$
\varphi_{*}\left(v_{1}\right)>(1-v)^{p /(1-p)}-\nu
$$

so that $v_{1} \in W_{n}$; also

$$
\begin{aligned}
\left\|x-v_{1}\right\|^{p} & \leqslant\|x-y\|^{p}+\|\tau y-y\|^{p}+\left\|\tau y-v_{1}\right\|^{p} \\
& \leqslant v^{p}+v^{p} M^{p}+\left(\left(1-a_{1}\right)^{p}+\sum_{m=2}^{\infty} a_{m}^{p}\right) M^{p} . \\
& =v^{p}+M^{p}\left[v^{p}+\left[1-(1-v)^{1 /(1-p)}\right]^{p}+1-(1-v)^{p /(1-p)}\right] \\
& <\epsilon^{p} .
\end{aligned}
$$

Thus it follows that $W_{n} \cap V$ is dense in V. Since V is closed in X and $W_{n} \cap V$ is relatively open in V, we may deduce from the Baire Category Theorem that $\left(\cap_{n=1}^{\infty} W_{n}\right) \cap V$ is dense in V i.e., W is dense in V.

Lemma 5.5. $C=\overline{\operatorname{co}_{p}} W$.
Proof. $\overline{\operatorname{co}_{p}} W=\overline{\operatorname{co}_{p}} V \supset C_{0}$ by Lemma 5.1. Since $\overline{C_{0}}=C$, we have the result.
The next theorem is our main result of the section, and may be regarded as a p-convex analogue of the characterisation of the Radon-Nikodym property for Banach spaces given by Phelps (9 Theorem 5).

Theorem 5.6. Let X be a p-convex quasi-Banach space. Then X is p-trivial if and only if every closed bounded p-convex subset of X is the closed p-convex cover of its strongly p-extreme points.

Proof. Suppose X is not p-trivial and that $T: L_{p} \rightarrow X$ is a bounded linear operator. Let U be the unit ball of L_{p} and consider $\overline{T(U)}$. Suppose x is strongly p-extreme for $\overline{T(U)}$. Then there exists $f_{n} \in U$ with $T f_{n} \rightarrow x$. However for each f_{n} we may write (by splitting the interval)

$$
f_{n}=\left(\frac{1}{2}\right)^{1 / p} g_{n}+\left(\frac{1}{2}\right)^{1 / p} h_{n}
$$

where $g_{n}, h_{n} \in U$. Thus $2^{-1 / p} T g_{n}+2^{-1 / p} T h_{n} \rightarrow x$ and so we have a contradiction. Hence $\overline{T(U)}$ has no strongly p-extreme points.

Conversely suppose X is p-trivial and D is a closed bounded p-convex subset of X. Let S be the set of strongly p-extreme points for D.

Let B be the closed unit ball of X and for $\delta>0$ let $C=C_{\delta}=\overline{\cos _{p}}(D \cup \delta B)$. Using the notation of the preceding lemmas, $C=\overline{\mathrm{co}_{p}} W$. However W is contained in the set T_{δ} of strongly p-extreme points for C.

Suppose $x \in T_{\delta}$ and $\|x\|>\delta$. Then there exist $y_{n} \in D$ and, $w_{n} \in \delta B, 0 \leqslant a_{n} \leqslant 1$, such that

$$
a_{n} y_{n}+\left(1-a_{n}^{p}\right)^{1 / p} w_{n} \rightarrow x .
$$

Hence $\max \left(a_{n},\left(1-a_{n}^{p}\right)^{1 / p}\right) \rightarrow 1$. It is easy to see that since $\|x\|>\delta$ we have $a_{n} \rightarrow 1$ and hence $x \in D$. This implies that $x \in S$.

Now suppose $z \in D$ and $z \notin \overline{\operatorname{co}_{p}} S$. Let

$$
\delta=\frac{1}{2} d\left(z, \overline{\operatorname{co}_{p}} S\right)=\frac{1}{2} \inf \left(\|z-v\|: v \in \overline{\operatorname{co}_{p}} S\right)
$$

Then since $\lambda \overline{\operatorname{co}_{p}} S \subset \overline{\operatorname{co}_{p}} S$ for $0 \leqslant \lambda \leqslant 1$, we have $z \notin \overline{\operatorname{co}_{p}}(S \cup \delta B)$.
However $S \cup \delta B \supset T_{\delta}$ and hence $z \notin \operatorname{co}_{p} T_{\delta}$, and we have a contradiction.
Corollary 5.7. X is p-trivial if and only if every closed bounded p-convex set has a strongly p-extreme point.

6. Remarks on super-properties

For the purposes of this section we shall restrict our comments to quasi-Banach spaces X which have a quasi-norm which is r-subadditive for some $r>0$. We say that a quasi-Banach Y is finitely representable in a quasi-Banach space X if given any
$\epsilon>0$ and any finite-dimensional subspace L of Y there is a subspace M of X with $\operatorname{dim} M=\operatorname{dim} L$ such that there is an isomorphism $T: L \rightarrow M$ with $\|T\|\left\|T^{-1}\right\|<1+\epsilon$.

If (P) is a property of quasi-Banach spaces, then we say that X has the property super- (P) if any space finitely representable in X has property (P).

Theorem 6.1. If $0<p<1$, the following conditions on X are equivalent:
(1) X is super-p-trivial.
(2) ℓ_{p} is not finitely representable in X.
(3) X is q-convex for some $q>p$.

Proof. (2) $\Leftrightarrow(3)$ is proved in (7). (3) \Rightarrow (1) is obvious. For (1) \Rightarrow (2) observe that if ℓ_{p} is finitely representable in X then so is L_{p}.

The interest in the above theorem is that the analogy with the Radon-Nikodym Property breaks down at this point. Pisier (11) has shown that X has the super-RadonNikodym property if and only if X is super-reflexive. An example of James (3) shows that this is not the same as " ℓ_{1} is not finitely representable in X " (i.e., X is B-convex).

The author is grateful to the referee for the following comments.
From our remarks in the introduction, the class of p-trivial spaces may also be regarded as a generalisation to quasi-Banach spaces of the class of Banach spaces X such that every $T \in \mathscr{L}\left(L_{1}, X\right)$ has the Dunford-Pettis property. This class is strictly larger than the class of spaces with the Radon-Nikodym Property.

The referee also calls our attention to a paper of W. Fischer and U. Scholer (13) who study a (different) generalisation of the Radon-Nikodym Property in quasiBanach spaces. It is not clear at present how their work relates to the content of this paper.

REFERENCES

(1) J. Diestel, Geometry of Banach spaces - selected topics (Springer Lecture Notes No. 485, Berlin, 1975).
(2) G. A. Edgar, A non-compact Choquet theorem, Proc. Amer. Math. Soc. 49 (1975), 354-358.
(3) R. C. James, A nonreflexive space which is uniformly nonoctrahedral, Israel J. Math. 18 (1974), 145-155.
(4) N. J. Kalton, Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977), 126-136.
(5) N. J. KAlTON, Compact p-convex sets, Quarterly J. Math. (Oxford). 28 (1977), 301-308.
(6) N. J. KALTON, The endomorphisms of $L_{p}, 0 \leqslant p \leqslant 1$, Indiana Univ. Math J. 27 (1978), 353-381.
(7) N. J. KALTON, The convexity type of a quasi-Banach space, to appear.
(8) N. J. KAlton and N. T. Peck, Quotients of $L_{p}(0,1), 0 \leqslant p<1$, Studia Math. to арреаг.
(9) R. R. Phelps, Dentability and extreme points in Banach spaces, J. Functional Analysis 17 (1974), 78-90.
(10) G. PISIER, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 325-350.
(11) S. Rolewicz, Metric Linear Spaces (Warsaw, 1972).
(12) J. J. UhL, Completely continuous operators on L_{1} and Liapounoff's theorem (Altgeld Book, 1976).
(13) W. Fischer and U. Scholer. On the derivatives of vector measures into $I_{p}(x)$, $0<p<1$, Comm. Math. 20 (1977) 53-56.

Department of Pure Mathematics	Department of Mathematics
University College of Swansea	Michigan State University
Singleton Park	East Lansing
Swansea SA2 8PP	Michigan 48824
	U.S.A.

