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Abstract

The plane wave diffraction by a planar junction consisting of a thick metallic sheet and a lossy
double-negative metamaterial slab is studied by using the Uniform Asymptotic Physical
Optics approach. This approach assumes the radiation integral as a starting point and uses
the physical optics surface currents as sources to be integrated. The integral is manipulated
by taking advantage of useful approximations and evaluations, and re-formulated in order
to apply an asymptotic procedure able to generate a closed-form approximate solution in
the framework of the Uniform Geometrical Theory of Diffraction. Accordingly, advantages
and drawbacks result from the application of the proposed solution. The jumps of the geomet-
rical optics field are compensated. Implementation and handling of the computer code are
facilitated by the evaluation of well-known functions and parameters. No differential/integral
equations or special functions must be computed.

Introduction

Artificial engineered materials exhibiting extraordinary and unconventional electromagnetic
properties at microwave and optical frequencies are more and more involved in research activ-
ities as well as in application scenarios. These materials allow one to attain unusual perform-
ance not available in nature, thus overcoming some limitations due to the use of natural
materials and designing an amazing artificial world from the electromagnetic point of view.
Metamaterials (MTMs) denote a very attractive class of artificial materials that can be obtained
by embedding small inclusions in host media or by connecting inhomogeneities to host sur-
faces. Definitions, properties, and applications as well as useful references can be found in [1].
The most known MTM sub-class contains materials possessing negative real parts of permit-
tivity and permeability, and therefore they are referred to as double-negative metamaterials
(DNG MTMs). Accordingly, the solution of diffraction problems involving them is very
appealing from theoretical and application viewpoints.

The Uniform Asymptotic Physical Optics (UAPO) approach has recently emerged as a useful,
reliable, and alternative high-frequency analytical method to obtain approximate uniform
solutions to plane wave diffraction problems involving penetrable and impenetrable structures
[2–19]. The UAPO solutions can be used in the framework of the Uniform Geometrical
Theory of Diffraction (UTD) [20] and are expressed in a closed form containing only standard
functions and parameters as the trigonometric functions, the UTD transition function, and
the geometrical optics (GO) response of the structure in terms of reflection and transmission
coefficients.

The UAPO approach was previously applied to a lossy DNG MTM slab [10] to obtain total
field values by adding GO and UAPO field data. Numerical tests confirmed the ability of the
UAPO diffracted field to compensate the jumps of the GO field at the shadow boundaries and
to produce a total field in good agreement with the output of a well-known commercial solver.
Such results suggest the utilization of the UAPO approach in order to solve the plane wave
diffraction problem involving a planar junction formed by a lossy DNG MTM slab and a
thick flat metal. A key point of the analytical evaluation process is related to the linearity of
the radiation integral. This allows one to obtain the UAPO solution relevant to the planar
structure by combining the UAPO contributions of the two slabs.

The diffraction problem involving a junction between two half-planes with different
boundary conditions has been tackled and solved in literature by means of many techniques
(see [3, 21–29] for a short and non-exhaustive list of reference). A DNG MTM sheet together
with a metallic one forms a very interesting structure for the design of innovative antenna sys-
tems as well as for the control and manipulation of the propagation of electromagnetic, optical,
and acoustic waves in advanced devices.

The manuscript is organized as follows. Section “The UAPO diffracted field” contains the
application of the UAPO approach to the evaluation of the diffracted field by the considered
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structure when a plane wave impinges at skew incidence with
respect to the rectilinear discontinuity of the junction (see
Fig. 1). The resulting formula is UTD-like and its efficiency is
tested in section “Numerical tests” by means of numerical simu-
lations. Highlights and comments are collected in section
“Conclusions”.

The UAPO diffracted field

The geometry of the diffraction problem is shown in Fig. 1,
where the z-axis of the co-ordinate reference system is chosen
to be coincident with the rectilinear discontinuity of the junction,
which is surrounded by the free space. The flat metal changes in
a perfect electrically conducting (PEC) half-plane and the
DNG MTM slab is modeled by a penetrable half-plane, which
is characterized by the thickness d, the relative electric permittiv-
ity 1r = −1′ − j1", and the relative magnetic permeability
mr = −m′ − jm".

In the UTD framework, the diffracted electric field Ed in the ray-
fixed reference system b̂, f̂ is associated with the incident field Ei in
the ray-fixed reference system b̂′, f̂′ by the well-known formula:

Ed = Ed
b

Ed
f

( )
= D

e−jk0s�
s

√ Ei
b′

Ei
f′

( )
= D

e−jk0s�
s

√ Ei, (1)

where D is the diffraction matrix, s is the distance from the diffrac-
tion point to the observation point P, and k0 is the free-space propa-
gation constant. This section is devoted to the UAPO formulation of
D for the considered junction.

The application of the UAPO approach to penetrable half-planes
is based on PO equivalent sources that match the half-plane surface
and radiate in the free space. Consequently, the scattered field Es

due to the considered PO sources can be so expressed:

Es �− jk0

∫
SDNG

[(I − R̂R̂)(z0 J
DNG
s )+ J DNGms ^ R̂]

e−jk0|r−r′ |

4p|r − r′| dSDNG

− jk0

∫
SPEC

(I − R̂R̂)z0 J
PEC
s

e−jk0|r−r′ |

4p|r − r′| dSPEC,

(2)

where ζ0 is the free-space impedance, r is the position vector of P,
r′ = x′x̂ + z′ẑ denotes the source points on the surfaces SDNG
and SPEC, R̂ = (r − r′)/|r − r′|, the symbol “^” indicates the
cross product, and I is the 3 × 3 identity matrix. The sources
J DNGs and J DNGms are the electric and magnetic PO equivalent surface
currents associated with the DNG MTM half-plane. If
ŝ′ = − sinb′ cosf′x̂ − sinb′ sinf′ŷ + cosb′ẑ is the unit vector
of the incidence direction (see Fig. 1), ê⊥ is the unit vector perpen-
dicular to the incidence plane and qi is the standard incidence
angle, it results:

z0J
DNG
s = [(1− G⊥ − t⊥)Ei

⊥ cosqi ê⊥

+ (1+ G‖−t‖)Ei
‖(ŷ ^ ê⊥)]e jk0(x

′ sinb′ cosf′−z′ cosb′)

= z0J
DNG
s |w=0e

jw(r′)

(3)

JDNGms = [(1− G‖−t‖)Ei
‖ cosq

iê⊥

− (1+ G⊥ − t⊥)Ei
⊥(ŷ ^ ê⊥)]e jk0(x

′ sinb′ cosf′−z′ cosb′)

= JDNGms |w=0e
jw(r′),

(4)

where the reflection (Γ) and transmission (τ) coefficients for parallel
( ‖ ) and perpendicular (⊥) polarizations are determined according
to [10]. The PO surface current J PECs on the lit face of the PEC half-
plane is given by:

z0J
PEC
s = 2[Ei

⊥ cosqi ê⊥ + Ei
‖(ŷ ^ ê⊥)]e jw(r

′)

= z0J
PEC
s |w=0e

jw(r′). (5)

The next approximation in the UAPO approach is
R̂ � ŝ = sinb cosf x̂ + sinb sinf ŷ + cosb ẑ (ŝ denotes the dif-
fraction direction on the Keller’s cone with β = β

′
). This allows

one to rewrite the formula (2) as:

Es �− jk0[(I − ŝŝ)z0J
DNG
s |

w=0
+ JDNGms |

w=0
^ ŝ]∫

SDNG

e jw(r
′) e

−jk0|r−r′ |

4p|r − r′| dx
′dz′

− jk0[(I − ŝŝ)z0J
PEC
s |

w=0
]

∫
SPEC

e jw(r
′) e−jk0|r−r′ |

4p|r − r′| dx
′dz′

= [(I − ŝŝ)z0J
DNG
s |

w=0
+ JDNGms |

w=0
^ ŝ] IDNG

+ [(I − ŝŝ)z0J
PEC
s |

w=0
]IPEC.

(6)

The above expression can be now arranged in matrix form to evalu-
ate the components Es

b and Es
f in terms of Ei

b′ and Ei
f′ according to

(1):

Es = Es
b

Es
f

( )
� [MIDNG + NIPEC]

Ei
b′

Ei
f′

( )
, (7)

where

M = M
1
[M

2
M

4
M

5
+M

3
M

4
M

6
]M

7
(8)

N = M
1
[N

2
N

4
N

5
]M

7
. (9)

The matrices in (8) and (9) are reported in Appendix.
The integrals IDNG and IPEC can be analytically manipulated to

obtain the UAPO diffraction matrix. The corresponding steps fol-
low. With reference to IDNG, it is expressed by:

IDNG = − jk0
4p

∫+1

0

e jk0x
′ sinb′ cosf′

∫+1

−1
e−jk0z′ cosb′ e−jk0

�������������
|r−r′ |2+(z−z′)2

√
����������������������
|r− r′|2 + (z − z′)2

√ dz′dx′,

(10)
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wherein |r− r′|2 = (x − x′)2 + y2. The z
′
integration furnishes:

IDNG = − jk0
4p

(−jp)e−jk0z cosb′

∫+1

0

H(2)
0 (k0|r− r′| sinb′)e jk0x

′ sinb′ cosf′
dx′.

(11)

A useful integral representation of the zeroth-order Hankel func-
tion of second kind H(2)

0 (·) and the application of the
Sommerfeld–Maliuzhinets inversion formula provide:

IDNG = e−jk0z cosb′

2 sinb′
1
j2p

∫
C

e−jk0r sinb′ cos (a+f)

cosa+ cosf′ da, (12)

where C is a proper integration path in the complex α− plane.
The integral in formula (12) can be evaluated by means of the
steepest descent method accounting for the Cauchy residue the-
orem and the integral along the steepest descent path. The appli-
cation of the multiplicative method and the successive asymptotic
evaluation of the resulting integral permit to determine the

diffraction term IdDNG:

IdDNG = e−jp/4

2
������
2pk0

√ Ft(2k0ssin2b′cos2((f+ f′)/2))
sin2b′( cosf+ cosf′)

e−jk0s�
s

√

= (IdDNG)0
e−jk0s�

s
√ , (13)

where Ft( ⋅ ) denotes the UTD transition function [20]. The sign +
(−) applies when 0 <f < π(π <f < 2π).

The diffraction term IdPEC is obtained from IPEC according to
the above analytical process:

IdPEC = e−jp/4

2
������
2pk0

√
Ft 2k0ssin2b′cos2

(p− f)+ (p− f′)
2

( )( )
sin2b′[ cos (p− f)+ cos (p− f′)]

e−jk0s�
s

√

= (IdPEC)0
e−jk0s�

s
√ .

(14)

Fig. 1. The diffraction problem.

Fig. 2. The GO and UAPO diffracted fields when (β
′
= 45°, f

′
= 60°).

Fig. 3. The total field when (β
′
= 45°, f

′
= 60°).

Fig. 4. The GO and UAPO diffracted fields when (β
′
= 60°, f

′
= 125°).
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At the end of the procedure, the UAPO diffracted field can be so
expressed:

Ed
b

Ed
f

( )
= [MIdDNG + NIdPEC]

Ei
b′

Ei
f′

( )
(15)

and the UAPO formulation of D is then determined by compar-
ing (1) and (15), i.e.

D = M(IdDNG)0 + N(IdPEC)0. (16)

Numerical tests

This section concerns the validation of the UAPO solution for the
plane wave diffraction by the considered junction. At first, the
ability to compensate the GO discontinuities has been tested
and then the RF module of COMSOL MULTIPHYSICS® has
been used to investigate the accuracy of the total field levels. All
the reported results refer to the same structure that is

characterized by d = 0.25λ0 if λ0 is the free-space wavelength, εr
=−2− j0.7 and μr =−1− j0.5. Moreover, the incident electric
field is assumed to have only the β

′
−component and the obser-

vation domain is a circular path with radius ρ = λ0.
The β− component amplitudes of the GO and UAPO dif-

fracted fields when (β
′
= 45°, f

′
= 60°) are displayed in Fig. 2. As

expected, the GO field jumps at the reflection (f = 120°) and
transmission shadow boundaries (f = 240°). The UAPO diffracted
field possesses two peaks corresponding to such directions and
provides the continuity of the total field across them (see
Fig. 3). This ability is also confirmed by the results in Figs 4
and 5. They are relevant to (β

′
= 60°, f

′
= 125°) and assess the

effectiveness of the UAPO solution in the UTD framework.
The accuracy of the UAPO solution in the case of an isolated

DNG MTM half-plane has been proved in [10] by means of the
RF module of COMSOL MULTIPHYSICS®. What happens with
the presence of the PEC half-plane in the junction? The last set
of figures (Figs 6–9) is reported to answer this question. The inci-
dence direction is assumed orthogonal to the discontinuity as in
[10] and the results are shown for increasing values of f

′
.

Figure 6 refers to f
′
= 30° and a very good agreement is obtained

Fig. 5. The total field when (β
′
= 60°, f

′
= 125°).

Fig. 6. The β− component of the total field when (β
′
= 90°, f

′
= 30°).

Fig. 7. The β− component of the total field when (β
′
= 90°, f

′
= 60°).

Fig. 8. The β− component of the total field when (β
′
= 90°, f

′
= 110°).
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by comparing the COMSOL MULTIPHYSICS® data and the
UAPO-based results in the range 0 <f < 180°. A good agreement
is again evident when the observation point moves in the bottom
half-space. This behavior is also manifest when f

′
= 60° (see

Fig. 7). The successive figures are relevant to f
′
> 90°. The com-

parisons in Fig. 8 (f
′
= 110°) and Fig. 9 (f

′
= 130°) show again

a very good agreement in the upper half-space and in the angular
region from the DNG MTM half-plane to the transmission
boundary, but the performance changes when approaching the
PEC half-plane. As it can be seen, the UAPO solution underesti-
mates the field values in the shadow region of the GO field below
the PEC half-plane. This result is expected according to the PO
approximation for the PEC structure and highlights a limitation
of the proposed solution that is efficient and manageable, but it
is still an approximate solution.

Conclusions

The plane wave diffraction by a metallic–DNG MTM planar junc-
tion has been considered in this paper and a UAPO solution has
been proposed in the UTD framework. The UAPO formulation of
the diffraction matrix is the result of an analytical procedure,
which does not require the evaluation of differential/integral
equations or special functions, and provides a closed-form and
easy to handle solution. The corresponding diffracted field is
able to guarantee the continuity of the total field across the sha-
dow boundaries of the GO field. Moreover, comparisons with
the COMSOL MULTIPHYSICS® data confirm the effectiveness
of the UAPO solution with respect to the accuracy. However,
the end user must always take into account that the solution is
based on the PO approximation and its limitations.
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Appendix

The matrices that are involved in (8) and (9) to obtain M and N are reported
as follows:

M
1
= cosb′ cosf cosb′ sinf − sinb′

− sinf cosf 0

( )
(A.1)

M
2
=

1− sin2b′cos2f − cosb′ sinb′ cosf
−sin2b′ sinf cosf − cosb′ sinb′ sinf
− cosb′ sinb′ cosf sin2b′

⎛
⎝

⎞
⎠ (A.2)

M
3
=

0 − sinb′ sinf
− cosb′ sinb′ cosf
sinb′ sinf 0

⎛
⎝

⎞
⎠ (A.3)

M
4
= 1������������������

1− sin2b′sin2f′√ − cosb′ − sinb′ cosf′

− sinb′ cosf′ cosb′

( )
(A.4)

M
5
= 0 (1− G⊥ − t⊥) sinb′ sinf′

1+ G‖−t‖ 0

( )
(A.5)

M
6
= (1− G‖−t‖) sinb′ sinf′ 0

0 −1− G⊥ + t⊥

( )
(A.6)

M
7
= 1������������������

1− sin2b′sin2f′√ cosb′ sinf′ cosf′

− cosf′ cosb′ sinf′

( )
(A.7)

N
2
=

1− sin2b′cos2f −sin2b′ sinf cosf − cosb′ sinb′ cosf
−sin2b′ sinf cosf 1− sin2b′sin2f − cosb′ sinb′ sinf
− cosb′ sinb′ cosf − cosb′ sinb′ sinf sin2b′

⎛
⎝

⎞
⎠

(A.8)

N
4
= 1������������������

1− sin2b′sin2f′√ − cosb′ − sinb′ cosf′

0 0
− sinb′ cosf′ cosb′

⎛
⎝

⎞
⎠ (A.9)

N
5
= 0 2 sinb′ sinf′

2 0

( )
(A.10)

Note that M
5
and N

5
account for the expressions of J DNGs and J PECs , whereas

J DNGms is included in M
6
.
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