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1. Introduction

Let (G, = )̂ be an /-group having a compatible tight Riesz order ^ with
open-interval topology U, and H a normal subgroup. The first part of the paper
concerns the question: Under what conditions on H is the structure of (G, ^ , A,
V, ^ , V) carried over satisfactorily to G'B = GjH by the canonical homomorphism;
and its answer (Theorem 8°): H should be an /-ideal of (G, =̂ ) closed and not
open in (G, U). Such a normal subgroup is here called a tangent. An essential
step is to show that <[' is the associated order of ^ ' .

If if is a maximal tangent then G'H is fully ordered. The second part of the
paper shows that there is a natural realization p of G as a subdirect product of
the groups G'H which is an order isomorphism for ^ as well as = ,̂ if for example
(G, =0 is lattice-complete and gj is non-androgynous, and all maximal tangents
are replete. The lattice-completeness requirement can be relaxed to weak projec-
tability. But if ^ is androgynous then p fails to be one-one. Extra conditions
ensure that p is also a topological embedding of G in A =Y[HG'H

 aQd that p is
concordant. The topology used on A is the open-interval topology. The main
results are Theorems 15° and 18°.

A realization theory for androgynous groups — those for which not every
element a > 0 is a weak unit of (G, = )̂ — remains an open question. We postpone
to a later paper the use of the present realization to construct a Gelfand theory
by topologizing the set of maximal tangents.

Thanks are due to Andrew Wirth, Neil Cameron, Gary Davis, Colin Fox,
and Brian Sherman, for comments which led to improvements in this paper.
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[2] Tight Riesz groups 417

2. Preliminaries

A poset (X, g ) is said to have the tight Riesz (m, n) property (to be TR(w, n),
for short) when

a,<bj i = l,2,---,m, j = l,2,---,n

for elements au—,am, bu---,bn implies the existence of an element x such that
at < x < bj.

The loose Riesz (m, n) property (= LR(m, n)) is defined by replacing < by
g, at all occurrences. It is easily shown that TR(2,2)o TR(m,n), and LR(2,2)
oLR(m,n) for all m ^ 2, n ^ 2 ; and TR(1,2)*> TR(2,2)=> LR(2,2). Also
[TR(1,2) and TR(2,1) and LR(2,2)]oTR(2,2).TR(l,2) implies order-denseness.
For some properties of these interpolation axioms on posets see Cameron and
Miller [1]. A poset (X, ^ ) is said to be an antilattice if only the trivial meets and
joins exist.

A tight Riesz (1,2) group (=TR(1,2) group) is a directed partially ordered
group (G, ^ ) with the TR(1,2) (equivalently, with the TR(2,1)) property. (In [4],
[5] and [6] it was assumed that G is commutative. Here we do not insist on
commutativity.) The open-interval topology U *s the topology on G having as
subbase (in fact, as base) the set of all open intervals (a ,b), a < b. For any x e G,
the sets (x - a, x + a), a > 0, form a base for U at x. For the positive cone and
srtict positive cone write

P = {xeG:x^0}, P* = P\{0};

these are normal subsets of the group. The topological boundary dP of P with
respect to U consists of 0 together with the pseudopositives of (G, ^ ) , i.e. the
elements p ̂  0 such that x>0=>x + p>0, or equivalently, such that x > 0 =>
p + x > 0. The elements of dP n ( - dP) = P n ( - F) are 0 together with the
pseudozeros. The set F = P UdP is the positive wedge of the associated pre-
ordering on G, written =^:

P = {x e G: x > 0} = {0} U P* U {pseudopositives}.

Note that

(2.1) *>0-*>~0;

x<y<z=>x<z; x<.y < z => x < z.

The topological lemma Section 2, 6° of Loy and Miller [4] is valid for ail not-
necessarily-commutative TR(1,2) groups. The associated preordering for a poset
is discussed in Cameron and Miller [1].

1° THEOREM. Let (G, g ) be a 77? (1,2) group. Then with the above notation
(i) (G, V) is a topological group, and V is not discrete;
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418 John Boris Miller [3]

(ii) (G, g ) is an order-dense antilattice;
(iii) U is Hausdorjf o (G, ^ ) has no pseudozeros o ^. is a partial order.
(iv) / / U is Hausdorff, then (G, =̂  ) is a partially ordered group.

PROOF, see Fuchs [3], p 20, and Loy and Miller [4].
We are concerned chiefly with the case where (G, =̂ ) is an /-group; then A, V

denote the lattice operations with respect to = .̂ Given a priori a partially ordered
group (G, <) , any TR(1,2) partial order ^ on G having < as its associated order
(and therefore having no pseudozeros) will be called a compatible tight Riesz
order for (G, < ) (CTRO, for short). Tight Riesz groups looked at in this light
have been discussed by Wirth [11] and Reilly [7].

2°. Let (G, = )̂ be an l-group with compatible tight Riesz order ^ . Then
(i) (G,<) is LR(2,2) and (G, g ) is TR{2,2)\
(ii) (G, A» V,U) is a topological lattice;
(iii) =̂  and ^ are both isolated orders (i.e. nx >~Qfor some positive integer

n implies x >»0; and similarly for > ).

PROOF, (i) Cameron and Miller [1], p. 10; (ii) [4], p. 236; (iii) [4], p. 236,
Reilly [7], p. 11.

We are interested in carriers and /-ideals. Let (G, =̂ ) be an /-group. An
l-ideal of G is a convex directed normal subgroup; it is necessarily also a sublattice.
Given a subset Q £ G, lid(g) denotes the /-ideal generated by Q, i.e. the intersection
of all /-ideals containing Q. An o-ideal of a partially ordered group is a convex
directed normal subgroup.

Again, write

g J - = {xeG: \x\ A\q\ = 0 for all qeQ},

and abbreviate {a}1' to a±. Q± is a convex subgroup and a sublattice; however,
Q-1 is an /-ideal for every Q £ G if and only if all carriers of G are invariant (Fuchs
[2], p. 82). Always Q £ Qx±.

The relation ax = b1' is an equivalence relation on G; the intersections of
its classes with the positive cone are called the carriers of G; for a ̂  0 the carrier
of a is

a = {fc> 0: a A x = 0 if and only if b A x = 0}.

The partial order =̂  induces on (£, the set of all carriers, a partial order

(2.2) a < h if and only if &Ax = 0=>aAx = 0;

(d, =O is a distributive lattice.

By a wea/c unit of G we mean a weak unit of the /-group (G, ̂ ) i.e. an element
w > 0 such that vvA ĉ = 0=>x = 0. Let to denote the set of weak units; it may be
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empty, but if not empty then it is a carrier of G, to wit, the greatest carrier. In
fact (£, =̂ ) has a greatest element, m, if and only if m # 0.

Now suppose that ^ is a compatible tight Riesz order of the /-group (G, =4),
and consider the following property involving ^ and ^ :

(A) For all x, yeG,
x>x Ay => x> y,

and its dual formulation
(A') For all x, yeG,

x <x\/y => x <y.
Each implies the other. If (A) (equivalently, (A')) fails to hold in G, we call (G, :g)
(or perhaps ^ ) androgynous, otherwise it is called non-androgynous. For an
example of an androgynous group one can take G = U x U, with (,xl,x2'> > 0
if and only if Xj > 0, x2 ^ 0; here ( x ^ x ^ ^ O if and only if x; ^ 0, x2 ^ 0.
There are a number of equivalent formulations of property (A).

3°. Let (G, ^ ) be an l-group with compatible tight Riesz order ^ . Each of
the following properties is separately equivalent to (A): for all x,y:

(i) If x Ay is neither x nor y, then both x,y belong to x Ay + 3P.
(ii) If x V y is neither x nor y, then x \J y belongs to both x + BP and

y + dP.
(iii) x>0, y>0 => x Ay>0.
(iv) P*£to.

PROOF. The pairwise equivalence of (A), (A'), (i), (ii) and (ii.) is easily checked.
Consider (A)-e>(iv). Assume (A) and let a > 0. Then xAa = 0=>a>xAa:>
x=x A a =>x=0, so a em. Thus P* s m . Conversely assume (iv). Let x > x A y,
the element z = x — x Ay = 0 \/(x — y) being in P* is a weak unit. Let a =
y — x Ay, we have

zAa = [0 V(*-jO] A[0 VCy-*)]

= 0 V [ ( * - J ' ) A 0 ' - * ) ] = 0

so a = 0. Thus (A) ho.ds.

Thus when G is non-androgynous it has weak units. If G is androgynous it
may still happen that rx> ^ 0 , but then necessarily P* $ m. An /-group (G, =<) can
possess both androgynous and non-androgynous compatible tight Riesz orders.

4°. Let the G in 3° be non-androgynous. A necessary and sufficient condition
for P* = ro is: for every xedP there exists y edP, y ^ 0, with x A y = 0.

More generally, for x^0 we have

(2.3) xeP\m o x x ^ (0) «•

PROOF. (2.3) is easily verified, and implies the first statement.
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3. Quotient groups

Throughout this section let (G, ^ ) be a nontrivial TR(l,2) group without
pseudozeros, with open-interval topology U and associated ordering ^.; let H be
a normal subgroup, H # (0), G'=G/H, and let 6:G^>G', a t-»a' = a + H,
denote the canonical homomorphism.

To ensure that a reasonable sufficiency of the structure of (G, <|, ̂ , U) (and
A, V when they exist) can be carried over to G', some restrictions need to be
placed on H. This section is devoted to finding suitable circumstances. First,
for the quotient orders <;', < ' to exist we need H to be ^-convex and <-convex.
Since ^-convexity implies g -convexity, both orders exist if H is =<-convex,
and then

a' >' 0' o a + h>0for some heH,a$H

(3.1) o a-P* meets H,a$H,

a '> '0 ' <s> a + / i>0 for some heH

^ o a-PmeetsH;

and 6 is order-preserving, i.e. a>0=>a '^ '0 ' and a>0=>a '> '0 ' . Hence
(G', ^ ') and (G',=^') are partially ordered groups.

5°. Under the assumptions of the first paragraph:

(i) G' is directed with respect to ^ ' and =^'.

(ii) H is ^-directed if and only if every coset a + H is ^-directed, and
ikewise for = .̂

(iii) If H is ^-directed then H meets P*. If H is ̂ .-directed then H meets
P\{0}.

(iv) If H is ^-convex then H is open in (G,U) if and only if H meets P*.
So if H is ^-directed and ^-convex then H is open.

Suppose H is ^-convex. Then:

(v) IfH is not open then (G', g ' ) is a TR(l,2) group.

(vi) / / (G, g ) is LR(2,2) and H is ̂ -directed then (G', ^ ' ) is LR(2,2).

(vii)//(G, g ) is TR(2,2), and H is closed not open and ^.-directed, then

(G',^ ') is a TR{2,2) group.

(viii) 7/(G,=<) is LR(2,2) and H is ̂ -directed and ^-convex (i.e. H is an

o-ideal), then ( G ' . O is LR(2,2).

PROOF, (i)-(iv) are straightforward, (v) Let a' <'b'u b'2 in G'. Then a < blu

b21 for some blx e b[, b21 e b'2; since (G, <;) is TR(1,2) there exists c such that

a<c < blu b21.
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Because H does not meet P*, x > 0 implies x '> '0 ' .
Thus

Thus (G',^') is TR(1,2) and being ^'-directed is a TR(1,2) group.

(vi) The proof of Fuchs [3], p. 14 can be adapted to this case,
(vii) The conditions and (v), (vi) ensure that (G', ^ ' ) is TR(1,2) and LR(2,2)

and these together imply TR(2,2).
(viii) This is the result of Fuchs referred to in the proof of (vi).

EXAMPLE. Let G = U x Z, with <x,m> > 0 if and only if x >0, m ̂  0.
(G, <;) is a TR(2,2) group without pseudozeros. Tf H = U x (0) then H is < -
convex, a^-directed, closed and open; but G' ̂  I is not TR(1,2).

Proposition 5° and the preceding remarks show that for a desirable theory
we should require at least that H be # (0), ^-convex, so ^-convex, closed and
not open, and =<-directed. (Since H does not meet P*, it cannot be ^-directed,
and ^-convexity is satisfied vacuously.) In other words, when (G, =0 is an l-
group, H should be a closed /-ideal not meeting P*. Since it must meet dP\(0),
we call such an if a tangent.

Topological as well as interpolation considerations require that H be closed
not open. For let Q denote Ihe quotient topology on G', i.e. the strongest topology
making 6: (G, U) -* G' continuous; a subset Q ̂  G' belongs to Q if and only if
Q = 9(U) for some U eU, and here one can take in particular U = 0~1(Q); 6 is
an open mapping. It is known that (C, (?) is a topological group, is Hausdorff if
and only if H is closed in (G, V), and is discrete if and only if H is open. If V
denotes the open-interval topology of (G', ^ ')> and this is a TR group, then V is
not discrete, so certainly V # Q if H is open.

Again, V # Q if (G', ^ ' ) has pseudozeros while if is closed. Suppose it is
known that (G\ g ' ) has no pseudozeros: then there is on G' the associated order
-^ of ^ ' , as well as =^', the quotient order of =̂ [; and in general it is not clear that
=< and =<[' coincide, as one might hope.

We proceed to show that these troubles do not arise, and there are other
benefits, when (G, =̂ ) is an /-group and if is a tangent. The main result is Theorem
8°, which we reach by two lemmas.

6°. If H is ^-convex and closed not open, then the map 6: (G, U) -*• (G', 17')
is continuous, so V ^Q; and V =Q if and only if this map is also open.

PROOF. By 5° (iv), H does not meet P*, so

(3.3) x>0=>x'>'0'.

Consider a base open set V = (a',b% a' <'b', of V, and xoe6~l(V). There
exist /ij, h2eH such that a + hx < x0 < b + h2; then U = (a +hv b + h2) is
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open in G, contains x0, and 17 E O'^iV) because of (3.3). So Q~l{V) is open, 6 is
continuous, V £ Q.

If 17' = Q then 17 e 17 => 9(U) eQ => 0(17) e 17' so 0 is open. Conversely if 0 is
open and VeQ, then V = 9(W) for some We 17, and so Fe £7'.

7°. If H is ^-convex and closed not open, then the property

. Yx < y; there exist ht> h2eHi {there exists h3eH ]
[such that x < ht and h2 <y\ ^ [such that x < h3<y\

implies

(3.5) 6(a, b) = (a', &') /or a// a < b,

and hence V = Q.

PROOF. Let a <b. Since a < x < b => a' <'x' <' b', necessarily 6[a, b)
£ (a',b'). Let Ze(a',b'), say £ = x'; there exist ftl5 / i 2

6 # s u c r i that a - x < h^
and h2 < b — x, also a — x < fc — x, so by (3.4) there exists h3eH for which
a < x + h3 < b, and here x + h3 e £. Therefore ^ e 0(a, ft). This proves (3.5)
which in turn implies that 6 is open, so V = Q.

8°. THEOREM. Let (G, =O fee a« 1-group with a compatible tight Riesz order
g ; let H be a tangent, and G' = G [H. lhen(G',^') is an l-group with compatible
tight Riesz order ^ ' ;

is a continuous open map as well as a group and lattice homomorphism; and
U'=Q is Hai.sdorff.

PROOF. Since (G, =<) is a lattice, it is LR(2,2). We verify (3.4) of 7°. Let
x < y, x < hi and h2< y with hu h2eH. L ht A h2 = hx yh2 then /ij = h2 and
(3.4) is verified trivially. Assume ht Ah2<hx yh2. By the tight Riesz property
of (G, ^ ) there exists xt such that x < xt < y, ht and then also yt such that
X!,/i2 <>"i <y . The LR(2,2) property for (G, =<) then implies the existence of
k such tha

xl5 ht Ah2^.k=4h1 \/h2, yv

Snce KH, *Q is an /-ideal, keH; and x < fc < y. This proves (3.4).

By 7°, I ' ' = Q; since H is closed, this topology is Hausdorff, so (G', g ') has
no pseudozeros. Since H is an /-ideal, (G\ ^ ' ) is an /-group and 0 is a lattice
homomorphism. By 5° (vii,, (G', ^ ' ) is a TR(2,2) group.

It remains to prove that =^' coincides with =<;, the associated order of g ' .
The cones of :g', =^' and =-< are respectively 6(P), 9(P) and 6(P); since 6 is con-
tinuous, 6{P) Z~dJP), so
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(3.6) a '>'0'=>a>'0'=>a'^0' .

Next, note that

(3.7) a'<b'<'c' =>a'<'c',

and

(3.8) i f a ' > ' 0 ' = > a ' + x > ' 0 ' , then x' >-.O'.

Here (3.7) follows immedately from (3.6) and the fact that =<: is the associated
order of S'- Assume the premise of (3.8), and a' >'O'. Since (C, ̂  ') is TR,
there exists b' such that a'>'b'>'0'; then a' + x' >'b' + x' > '0 ' so (3.7)
gives a' + x'>'0'. This proves x' >r0'.

Let a', b'eG'. By (3.6), a' A b'^.'a', b' gives

V Ab'=<a',b'.

Suppose x'^a', b'. Then «'>'0' implies x'<'a' + «', and X'< '&' + H', so

x'<'(a' + «')A(fe' + «') = a' Ab' + u'.

Thus B;>'0 '*«' + fl'Ai'-J[>'0, so (3.8) gives

Therefore a' A V is also the infimum of a', b' with respect to ^ ; and similarly
for a'Mb'. Take a'^ib', to get a' = a' A b'^'b'. Recalling (3.6) we deduce
that =<!' coincides with -<.

The coincidence of these two orders implies for G a separation property of
some independent interest, namely

9°. Under the conditions of 8°, if x+ P does not meet H then there exists
y < x such that y + P does not meet H.

PROOF. If x + P does not meet H then not x' =<'0', i.e. not x' =<0', so there
exists a > 0, a'—x'^-'O', i.e. x—a + P* does not meet H. Take x — a< y <x.

For a ^-convex normal subgroup H of G not meeting P*, the two orders
have the following descriptions:

x' > ' 0 ' if and only if (3h e H)Q/aeG, (a> 0=>x+ h + a > 0),

x' >z 0' if and only if (Va e G) (3ft eJf) (a > 0 => x + h + a > 0).

For a study of those convex /-subgroups of (G,=Q which do meet P*, see
Reilly [7], sections 3 and 4.
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4. Realization of G using maximal tangents

Theorem 8° of the previous rect*on clears the way for the use of maximal
tangents to represent G. We proceed to do this, for somewhat special circumstances;
namely when (G, ^[) is weakly projectable (and so commutative), and ^ is non-
androgynous. The main results are Theorem 15°, 18°. Throughout this section it is
assumed that (G, ̂ ) is a nontrivial l-group with compatible tight Riesz order g ;
U is the open-interval topology of ^ and ~ denotes closure with respect to U
(except where it refers to filets). Here 'non-trivial' means that G + (0) and (G, =Q
is not trivially or fully ordered.

10°. IfH is an l-ideal oj (G, <) , then so is H.

PROOF, ft is a normal subgroup of G; it is also a sublattice since (2°) the
lattice operations on G are continuous.

It remains to prove that H is =<-convex. Let u -<x -< v with w, veil. For
a > 0, there exist ht e (u — a, u + a) n H and h2 e (v — a, v + a) n H, and here

hx\J h2e(v- a, v + a)r\H,

*lA»2<*I V»2,

so without loss of generality we can assume /ij -<h2.
Let (x — b, x + b) be any base neighbourhood of x; take any a such that'

0 < a < b, and construct hu h2 for this a as above. Write

k = h1 V ( * - « ) .

We have k e(x - b, x + b), and ft, =< k =< h2 so keH. Thus xeff.

Let Ho be any /-ideal not meeting P*. By Zorn's lemma there exists a maximal
element in the class, ordered by £ , of all /-ideals containing Ho and not meeting
P*. By 10°, such a maximal element is closed. Thus

11°. Every l-ideal maximal with respect to not meeting P* is a maximal
tangent, and conversely. Every l-ideal not meeting P* is contained in a maximal
tangent.

Let $ denote the set of maximal tangents.

12°. IfH is a maximal tangent and G is commutative then for G' = GjH,
^ ' coincides with ^ ' , these being order-dense full orders.

PROOF. First we show that every non-trivial /-ideal W of the /-group (G', =<'
meets Q* = 0(P)\{O}, the strict cone of g ' . Write

M = {x:x'eW};
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M is a = -̂convex normal subgroup of G, and since 9 is a lattice homomorphism,
M is also a sublattice, and therefore an /-ideal. Moreover H c M. If M meets P*
in x, then x' e W C\ Q*. Suppose W does not meet Q*; then M is a tangent, so
H = M and hence W = (0), contradiction.

Now let a' >-' 0' in G'. Then

lid(a') = {x': 0 =<' | x' | = '̂ na' for some positive integer n}

being a non-trivial /-ideal, meets Q*; i.e. there exists x' e G', 0 <'x' ^.'na'. By 2°
(iii) and 8°, a' > '0 ' . Thus j£' and = '̂ coincide. Since ^ ' is an antilattice order
(5° (vi)) and = '̂ is a lattice order, the common order must be full. Since ^ ' is TR,
it is order-dense.

We shall need to use replete maximal tangents. In any /-group (G, O write

a = {xeG: | x | e | a | ~ }

and call the sets a the filets of G. Clearly for a > 0, a = a (~\P. (For any subset A, A
continues to mean the closure of A.) The filets form a lattice isomorphic with
(ll, =0 when ordered by

bo| a p < | b f oaL 2 bx.

For some standard properties of filets in commutative /-groups see Ribenboim
[8], pp 31-38. A subgroup K of G will be called replete if it is a union of filets,
i.e. x 6 K => x e K.

For the groups G at present under consideration, the maximal tangents may
not be replete. For example, if G = C[0,1] (the continuous functions on [0,1])
with / > 0 if and only if/(*) > 0 for 0 ^ t ^ 1, then / > 0 if and only if/(() ^ 0
forO ^ t ^ 1 (i.e. ^ and ^ are the tight and loose pointwise orderings respectively),
and (G, =O is an /-group with non-androgynous CTRO ^ , and U is the metric
topology of the sup norm. The filets/can be identified with the closed supports
supp(/) (Ribenboim [8], pp 42, 43), and the maximal tangents are the maximal
/-ideals

It is easily seen that they are not replete. In fact, if g(t0) = 0 and g(t) > 0 for
t ^t0, there exists no replete tangent containing g.

On the other hand B[0,1] (the bounded functions on [0,1]) with the same
orders is again an /-group with non-androgynous CTRO, but now the filets / can
be identified with the zero sets

Z(/) ={*:/« = 0},
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while the maximal tangents are precisely the subsets of the form {/ :Z( / )e /}
where / is a maximal filter of subsets of [0,1]; so the maximal tangents are all
replete.

13°. If (G, ^ ) is a non-trivial commutative l-group with non-androgynous
compatible tight Riesz order ^ , then § is not empty.

PROOF. The equationm = P\{0} would imply that x>- 0, j>>»0 =>x A y > 0,
hence that (G, =̂ ) is an antilattice as well as a lattice, and iO fully ordered, contrary
to assumption. Hence there exists c >- 0, c $ to. Write

K is an /-ideal; and K cannot meet P* since distinct carriers are disjoint subsets,
c -<to and P* c m (by 3°). By 11°, K is contained in some maximal tangent.

In the extreme case P* =vo of 13°, the maximal tangents are all replete. For
let H e § and write

L = LH= \J{d: a =4 h for some h eH}.

L is an Z-ideal. If L meets P*, in p say, we have p ^ h for some h >- 0, h e H, so
P* = m = p = h, whenceheH nP*,contradiction. SinceH s LandH is maximal
we have H = L, so H is replete. B[0,1] is a case where P* =to.

Generally, note that a maximal tangent H is replete if and only if LH = # .
We proceed to discuss the realization of G, assumed commutative. For an

arbitrary choice o f f f e § write (when emphasis or clarity requires it) G« = G / H,
X'H> U'H, ••• for the corresponding entities, and form the full direct product

A = n G«-
Let pH denote the projection £, \-* E,H, A -* G# onto the Hth factor. We make A
partially ordered group in two ways, writing

£, > 0 if and only if £H > ' 0' for all He§>,

£ > 0 if and only if i;H ^ ' 0 ' for all He§>

(recall 12°). It is easily verified that

14°. (A, < ) is an l-group with (£ A »7)H= ZH A >/«, (£ V n)H = £H V nH, so that
each pH is a lattice homomorphism; :g is a compatible tight Riesz order for ^

Let N denote the open-interval topology of (A, ^ ) , and write

so that Q = Q* = {i € A: <!;> 0}. For a subset F £ ^ let iVF denote N relativized
to F.
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Write p for the natural group homomorphism of G into A, and for x e G
write x = (xH)H e S for the element £eA for which pH(£.) = x'H, so that p: x H-X.
Clearly p preserves order: x > 0 => p(x) > 0, and x]>0 =>p(x)]>=0. Also
pH[p(G)] = G'H. We look for conditions on G making p one-one and also making
p~l order-preserving. (If p " 1 exists and p and p~l are both order-preserving we
call p isotone, for the order in question.) If p has these properties, it is a realization
of G, in the sense of Ribenboim [8], p. 61.

We can note straight away that, without further conditions on (G, =^), if p is
one-one then in fact it is isotone for both orderings. For let p be one-one, and
suppose xeG, p(x)]>0. Then for every He*5 we have x H '> '0 ' , and since the
canonical homomorphism 0H is a lattice homomorphism, also 0=^'(x A ( % ^ ' 0 .
Therefore p(x A 0) = 0, x ^ x A 0 = 0. Thus p is ^ -isotone. Now suppose
yeG, p(y) > 0. By what has just been proved, y >- 0. If y > 0 then lid(y) is an
1-ideal not meeting P* (by 2° (iii)), so there exists K e § , yelid(>>) £ K; whence
y'K= 0' whereas in fact y'H > ' 0' for all H e Y). Thus y > 0; p is ^-isotone.

An /-group (G, = )̂ is ca.led Stone if for every a e G

(4.2) G = flieaii.

Every lattice-complete /-group is a Stone /-group, and commutative (cf. Fuchs [2]
Theorems 16, 18, p. 91).

Strzelecki has introduced the concept of weak projectability: a commutative
/-group ( G , ^ ) is called weakly projectable if for every a, beG there exists
zea± such that fte(|aj + |zj)"LJ"- Every commutative Stone /-group is weakly
projectable. On the other hand, C[0,1] with the loose pointwise ordering is weakly
projectable but not Stone (Spirason and Strzelecki [10], Speed and Strzelecki [9]).

15°. THEOREM. If (G, = )̂ is a weakly projectable l-group with a non-andro-
gynous compatible tight Riesz order ^ , whose maximal tangents are all replete,
then p is isotone for ^ and = ,̂ and is thus a realization of (G, ^ , = 0 as a
subdirect product of fully ordered groups.

PROOF. By 13°, § is nonempty (we assume that =̂  is not a full order). By
previous remarks it suffices to show that

(4.3) ker(p) = D H = (0).

We prove that if b > 0 in G then there exists Hb e § with b £ Hh. Then given any
c # 0 w e have | c J >- 0 and so c $ n H.

So let b > 0. Now b "̂ is an /-ideal; since (G, ^ ) is non-androgynous fcx does
not meet P*, for otherwise there would exist x > 0, x A b = 0, contradicting
3°(iii). By 11° there exists Hbe§>, Hb 2 b-1. Suppose that beHb: then we prove
Hb = G as follows. Let aeG; by weak projectability there exists z e 6 x such
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that ae{b + | z | ) x x . In any commutative /-group, y x x is the smallest replete
/-ideal containing y. Since b + | z | e Hb and Hb is replete, a e (b + \z | ) x x c Hb.
Thus Hb = G, contradiction; so b$HB, as required.

If (G, :£) is androgynous then p cannot be one-one. For suppose (G, ^ ) is
androgynous; by 3°(iii) there exist x > 0, y >- 0 with x A y = 0. If ff e .V) then H
is a prime /-ideal by 12°, so either xeH or yeH, i.e. ye/f since HC\P* = 0 .
Therefore O ^ j i e f ) , , ^ ! / , so p is not one-one. (This argument is due to Davis.)

Topologically the situation for p is somewhat less satisfactory. As well as the
open-interval topology iV on A, there is the product topology T, which in this
context is less relevant that N. We shall also need to consider the penetration
of A by the image under p: the following possibilities suggest themselves.

(a) p(P*) is dense in (Q*, N): given 0 5£ n < £, in A there exists a > 0 in G
such that t] < p(a) < £.

(/?) 0 ep(P*): given £ > 0 in A there exists a > 0 in G such that 0<p(a) < £.
(?) p(G) is dense in (/4,iV): given r\ < £ in A there exists xeG such that

ri < p(x) < £,.

It is clear that (a) => (/?); it is less obvious, but true, that (a) => (7). Sherman
has shown, by using a result of Reilly's, that (7) => (a) (personal communication).
However, (/?) appears to be a weaker condition. For example, let G be C[0,1],
ordered as before; $ can be identified with [0,1], as we saw, and each / under p
with itself. It follows easily that (/?) does not hold.

16°. Let (G, ̂ ) be an l-group with a compatible tight Riesz order ^ . Then

(i) T£ N,so that TP(G) s JVP(G).
/ / £ is infinite then TpiG) # Np(a).

(ii) If p is one-one, then for all a < b in G,

p(a, b) = p(G) n n (a'H, b'H) = p(G) n (a,b),
fleg

so p : (G, I/) -»• (p(G), Np(C)) is an open map.

(iii) The map p:(G,U)-y(A, T) is continuous. If p is one-one and (/?
holds then

p:(G,lP)^(A,N)
is continuous.

The proof of 16° is straightforward.

17° COROLLARY. Let (G, =̂ ) be a commutative l-group with compatible tight
Riesz order ^, and let p be one-one. If (P)holds, then p is a topological embedd-
ing of (G, U) in (A, N). If (y) holds, then p is a concordant realization, i.e.
p:(G,=^) -*{A,^) is a lattice isomorphism into.
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PROOF. By 16° (ii) and (iii), p:(G,U)->^(p(G),Nl,(G)) is a homeomorphism,
so p embeds G.

To prove p concordant, note that p(x A y)K p(x) A p(y) since p preserves = ,̂
and let £, =< p(x), p(y) in A. Let n > 0 in A; then £, — n < p(x), p(y), and by as-
sumption (y) there exists zeG with £ — r\ < p(z) < p(x), p(y), whence z < x A y,

£ <p(z) + n < p(x A y) + n, so £ < p(x A y). Thus p{x A y) = p(x) A p(y), and
similarly for V-

Putting 15° and 17° together we obtain

18° THEOREM. Let (G, =̂ ) be a commutative l-group with a non-androgynous
compatible tight Riesz order :$, whose maximal ideals are all replete. lf{G, *Q
is weakly projectable and (/?) holds then p is a topological embedding of {G, U)
in (A,N) as well as a realization of (G, ^,*4) in A. If also (y) holds, then p is
concordant for ^ .

Theorem 15° applies only for non-androgynous CTRO's; for these we know
that P* s to , so that to is the maximal non-androgynous CTRO, provided it is a
CTRO. The final lemma deals with this point. Let (G, ^ ) be any /-group whose
set of weak units m is not empty, and write Q for the positive cone of ^ . Since m is
a subsemigroup and m £ g*, to is the strict cone of a partial ordering on G, call
it ^ , making (G, ^ ) a partially ordered group. Let ^ denote the associated
preorder of ^ . It is easily proved that x >- 0 => x > 0. Let comparison of orders
refer to comparison (with respect to £ ) of their positive cones. We have

19°. Let (G,̂ -<) be an l-group with m # 0. If ^ , the order having m as
strict positive cone, is TR(1,2) without pseudozeros, then it is the largest non-
androgynous compatible tight Riesz order for =<.

PROOF. We have only to show that ^ is a CTRO for =<. Now

a>0 => a ^ O =>

and here ^ is order-dense, =<is a lattice order, and ^ is the associated order of ^ .
This is the basis on which the argument following (3.6) depends; that argument
shows here that =-< and ^ coincide. Therefore ^ is compatible for ^<.

In general to does not give the largest CTRO: Wirth [11] has shown that for
an abelian divisible /-group (G, =O, there is a largest CTRO if and only if (G, ^ )
is fully ordered.

At the other extreme, let
(7 = {s: for each x >- 0, there exists a positive integer n such that x -< ns}

denote the set of strong units of (G, ̂ ) . Wirth has shown that for an abelian
divisible para-archimedean /-group (G, <[), there is a smallest CTRO if and only if
a # 0 , and then a is the strict positive cone of that CTRO.
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In the circumstances of Theorem 15°, the carrier lattice (£ has greatest element
rn. So if c is covered in (£ by to, then it determines by

an element of $>. If G has only finitely many carriers, so that (£ is a Boolean attice
(Fuchs [2], p. 82), every (replete) maximal tangent is of this form, and .V) is in
one-one correspondence with the set of atoms of £.

A final incidental remark: the maximal tangents H need not be lattice-closed,
in the sensz

\JX exists in (G,<)

For a counter-example take G = B(0,1) with ^ and =< the tight and loose point-
wise ordering respectively; (G, =^)is lattice-complete and ^ is a non-androgynous
CTRO. Any maximal tangent containing

gr{/> 0: /(x) = 0 for 0 < x < ar, for some af e (0,1)}

is not lattice-closed.
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