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BIFURCATIONS OF SECOND ORDER PROBLEMS WITH
JUMPING NONLINEARITIES

PAVEL DRABEK AND MILAN KUCERA

In this paper we deal with nonlinear second order boundary value problems for ordinary
differential equations including the case of jumping noiUinearities. The set of generalised
eigenvalues in the case of nonconstant coefficients is described. It is proved that these gen-
eralised eigenvalues are simultaneously bifurcation points of the problem with coefficients
also depending on the solution u = u(x).

In this paper, we study the global structure of the set A_i{r) of all pairs (/x, v) £ R2

for which the nonlinear boundary value problem

(1) — (a(x,u)u) — fi.c(x,u)u+ + vc{x,ii)u~ = 0 on [0,7r],

(2) u(0) = U(TT) = 0

has a solution ||u||ci = r (for a given r > 0). First, we shall give a characterisation of
this set A_i for the problem

(3) -(a(x)u')' - fic(x)u+ + i/c(x)u~ = 0 on [O,TT]

with the boundary conditions (2). (In this case A_i does not depend on r > 0 ). Note
that in the case of constant coefficients, the set A-\ of generalised eigenvalues can be
descrived explicitly (see Fuak) [4], Dancer [2,3]). Further, by using the characterisation
of A_i for (3), (2) with a(x), c(x) replaced by a(x,w(x)), c(x,w(x)) and applying
a fixed point method we shall obtain information about the character of A-i(r) for
any r > 0. Particularly, A_i(r) tends to Ai(0) (the set A-i corresponding to (3),
(2) with o(x) = a(x,0), c(x) = c(x,0) ) in a certain sense. Any {/x, u) £ A_1(0) is a
bifurcation point of (1), (2) (with respect to the line of trivial solutions). Note that the
idea concerning using the fixed point method for finding eigenvalues and eigenfunctions
of nonlinear problems is the same as in Boccardo [1], where a different problem is
studied.
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180 P. Drabek and M. Kucera [2]

1 GENERALISED EIGENVALUES IN THE CASE OF NONCONSTANT COEFFICIENTS

In this section we shall consider the boundary value problem (3), (2). We suppose

that a £ Cfl([0,7r]), c £ C([0,TT]) , C(X) > 0, m < a(x) ^ M for any x £ [O,TT], where

0 < m < M. For any k = 1,2, . . . , write

Zk — {u £ C^fO,^]); u has precisely k — 1 simple zeros in (O,TT)},

Z+ = {u E Zk; u'(0) > 0}, Zt- = {u £ Zfc; «'(0) < 0}.

(By a simple zero, we mean x such that u{x) = 0, u'(x) ^ 0 . )

R e m a r k 1. Let us consider the eigenvalue problem

(4) -(a(x)u')' - Xc{x)u = 0 on [0, n],

(2) w(0) = u(ir) = 0.

Recall that all the eigenvalues of (4), (2) are simple and form a sequence {A,,}^!^ ,

0 < Aj < A2, . . . , lim \ n = 00. Further, vn £ Zn for the eigenvalues vn corresponding
n—>oo

to An . Hence the eigenfuiictions corresponding to the first eigenvalue Ai do not change

sign on (O,TT); for n = 2k, the eigenfunction vn corresponding to An consists of k

positive and k negative semi-waves; for n = 2k + 1, there is an eigenfunction vn £ Z£

consisting of k + 1 positive and k negative semi-waves.

Remark 2. Consider the initial-value problem

(5) — (a(x)u') — /J,C(X)U+ + i/c(x)u~ = 0 on [0,oo),

(6) u(0) = 0, u'(0) = 1.

If a , (3 are two successive zeros of a solution of (5), (6) then on, [a,/?], (5) reads either

as

(7) -(a(x)u')'- nc(x)u+ = 0,

or as

(8) -(a(x)u')' + uc(x)u~ = 0,

where u+ = u or u~ = —it, respectively. The following assertions give information

about how the distance between zeros of the solution of (5), (6) depend on n, v.
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LEMMA l . For /x > 0, v > 0 set

= sup{|a — J3\\ a, j3 are successive zeros ofu, u satisfies (7) on [a,f3]},

d~(u) = sup{\a — f3\; a, (3 are successive zeros ofu, u satisfies (8) on [a,/?]}.

Then d+(n) —> 0 or d~(u) —> 0 if and only if fj, —> +oo or u —> +oo , respectively.

R e m a r k 3. Let us write dfc(fi.) instead of d^^) in Lemma 1 in order to emphasise

the dependence on the coefficients in (7) or (8). Then the convergence d£c([i.) —> 0

for f.i —* oo and d~c(u) —> 0 for v —-> +oo is uniform with respect to a, c satisfying

m ^ a(x) ^ M, c(x) ^ Co (with some 0 < m < M, c o > O fixed).

LEMMA 2. (1) Let us suppose that u* satisfy

(9) -MzKj'-MiC^t^O,

Ui(x) > 0 on (a,/?) C (O,TT), i = 1,2, u ^ a ) = Ul{(3) = 0, u 2 ( a ) + u 2 ( ^ ) > 0. Then

p,2 < Mi •

(2) Let U{ satisfy

(10) - ( « ( z K ) ' + ^c(x)«r = 0,

m{x) < 0 on (a,/3) C (0,7r), i = 1,2, U l ( a ) = U l ( ^ ) = 0, w2(a) +

u2((3) < 0. Then i/2 < I/J.

The proofs of Lemmas 1,2 and Remark 3 follow directly from the Sturm comparison

Theorem (see Kamke [5]).

LEMMA 3. Let us suppose that

(11) - ( o ( i K ) 1 - mc{x)ut + viC{x)ur = 0 on [0,ir],

(12) ui(0)=«i(ir) = 0,

i = 1,2. If signu'j(O) = signu'2{0) (^ 0) and \i\ < /x2 , ^i ^ t/2 , with at least one
strict inequality sign then u^ and w2 cannot have the same nonzero number of zeros
in (O,TT).

PROOF: Let us suppose that wi , u2 € Z% for some n — 2 , 3 , . . . and (ii ^ fi2 ,
i/] ^ v2 with at least one strict inequality sign. Elementary considerations give the
existence on an interval (a,/?) C (O,TT) such that « i (a ) = «i(/J) — 0, |u2(«)|+|w2(/?)l >
0 and W](a;) • w2(z) > 0 on (a , /?) . But this contradicts Lemma 2. |
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LEMMA 4. Let u £ Zn be the solution of (3), (2).

(i) If n = 2k , k = 1, 2 , . . . , then fj, > Xk , u > uk ;

(ii) if n = 2k + 1, k — 1,2,. . . , then either /i > X^+i , v > A*, (in the case

w'(0) > 0 ) or (i > Xk , v > Afc+i fin the case of u'(0) < 0) .

PROOF: Let n = 2k + 1, w'(0) > 0. Elementary considerations, together

with Remark 1, imply that there exist intervals (aj.,/3fc), (afc+1,/?t.+i) and eigen-

functions Vk, Vfc+i of (4), (2) corresponding to Xk, Xk+1 respectively, such that

u(ak) = u(/3k) = 0, vk(ak) + vk{(3k) < 0, u(x) < 0, vk{x) < 0 for x £ (ak,(3k),

and u(aife+i) = w(/9fc+i) = 0, vfc+1(afc+1) + vfc+1(/3fc+1) > 0, u(z) > 0, vk+1(x) > 0 for

x € (afc+i,/3fc+i). The assertion follows from Lemma 2. The other cases can be treated

similarly. I

Introduce the sets

A_\ = {(n,v) g R2; (3), (2) has a nontrivial solution},

Ati = {(M,^) 6 R2; (3), (2) has a solution in Z+},

AZi = {(fJ-,v) e R2; (3), (2) has a solution in Z~}, n - 1,2,. . . .

T H E O R E M 1.

oo

A_,= \J[A+UA-],
n=l

A t = { ( M , ^ ) G R 2 ; fi= Xlt V is arbitrary},

where fn are coiitiuuous decreasing functions such that:

(i) if n = 2k, k = 1,2,. . . , tJien / n is defined on (Afc,oo), lim fn{v) =

+oo, lim /n(/u) = At and fn(Xn) = An ;

(ii) if n = 2fc + 1, A; = 1,2,... tiien /„ is defined on (A/t+i,+oo),
lim / ^ ( M ) = +oo, lim fn(n) = Xk and / n (An) = An .

PROOF: The first equality follows from the fact that any nontrivial solution of (3),

(2) has a finite number of simple zeros, by the uniqueness of solutions to the initial value

problem for ODE's. The second equality is clear because u is a positive or negative

solution of (3), (2) if and only if it is the eigenfunction of (4), (2) corresponding to the

first eigenvalue. Further let n = 2k + 1 for some k — 1,2,... . Let /j, £ (Afc+j, oo) be

arbitrary but fixed. Denote by u^^ the solution of the initial value problem (5), (6)
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and by x{J'l/ the n-th zero of u^^ in (0,oo). Lemmas 1, 2, together with Remark 1,
imply that x^'" < w if v is large enough. On the other hand, z£'" > TT for u small by
the Strum comparison Theorem (see [5]). Hence, there exists at least one v > 0 such
that x£'v = -K according to the continuous dependence of u^^ on the parameters /x,
v. For this v, u^jV is the solution of the boundary value problem (3), (2), u^<v £ Z* .

Lemma 4 (ii) implies that v £ (\k,oo) and Lemma 3 ensures the uniqueness of u.

Hence, for any \i £ (Afc+i,oo) we can set /n(/-0 = v where v is such that (3), (2) has a
solution Uf,,,, £ Z* • In the same way as above, we can prove that for any v £ (Ajt,oo)
there exists exactly one \i £ (Afc+i,oo) such that (3), (2) has a nontrivial solution
Wji.i/ € Z* . Hence, / „ maps (Afc+i,oo) onto (Afc,oo) and it is decreasing by Lemma
3. It follows that fn is also continuous and lim /TI(M) = + ° ° , lim fn(fi>) = f̂c •

Since (3), (2) has no solution u £ Z* if fj, ^ ^k+i according to Lemma 2, the assertion
concerning A* , with n = 2k+ 1 is proved. Analogously for A~ . The proof for n = 2k ,

k = 1,2,... , can be performed in a similar way. |

2 GENERAL CASE, BIFURCATIONS

Let us suppose that a(x,s) £ C1([0,TT] X R), c(x,s) £ C([O,TT] X R), m ^ a(x,s) ^

M, c(x,s) > 0 for all x, s £ [0,w] x R with some M > m > 0. Set C1 = C^QO,^]),

C'Q = {« £ C2([0,TT]); U(0) = w(7r) = 0} and denote by || • \\i the usual norm in

C'QOjTr]). If io £ C1 then aw(x) := a(a;,io(x)), cw{x) := c(x,w(x)) satisfy all the

assumptions imposed on a and c at the begining of Section 1. Further cw(x) ^ y(r)

for any x £ [O,TT] and w £ C1, ||w||i ^ r with some 7(7-) > 0 depending only on r.

Remark 4. Let us denote by \n(w) the n-th eigenvalue of (4), (2) where a and c

are replaced by aw and cw. Set

Af (r) = inf{An(W); ||H|i ^ r} , A™(r) - sup{An(W); | |w | | , < r},

It follows from the continuous dependence of the eigenvalues of (4), (2) on the coefficients

that lim A^(r) = lim A£*(r) = An(0). The variational characterisation of \n(w)
1—>0-f 1—»0 +

ensures that A^ ^ A^( r ) , A^1 < \™(r) for all r > 0 with some A™ > A^ > 0.

Remark 5. Let A*(w), n = 1,2,... , be sets from Theorem 1 for (3), (2) with a^ ,
cw instead of a, c. If n = 2k, w £ C1 , \\w\\i ^ r and fi £ (A^(r), +00) Then
there is precisely one 1/+ and i/_ such that (jx, i/+) £ Aj(w) and (^x.,i/_) £ A~(w). If
n = 2fc + l , w £ C 1 , ||w||i ^ r and M € ( ^ r ( r ) ) + ° ° ) or ^ £ (A^+1(r),+00) then there
is precisely one u+ or i/_ such that (/J., u+) £ A+(w) or (Mi^-) £ ^iT(w), respectively
(see Theorem 1). In any case, the set

{u £ R; (fj.,u) £ A+(w) for some w £ C1, \\w\\i. ̂  r }
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is b o u n d e d for any r > 0 and fi fixed from the corresponding interval just described.

Analogously for A~(w). The last assertion follows from Lemma 1 and Remark 3.

LEMMA 5. Let zn G C$ satisfy

-(a(x,wn)z'n)' = / „ ,

and z G CQ be the solution of

-(a(x,w)z')' - f.

Suppose that wn —> w in Cy and fn—+f in C([0,TT]) . Then zn —* z in C\ .

PROOF: Put

Ln(v) = -(a(x,wn)v')', L(v) — -(a,(x,w)v')'.

Since wn —» w in C 1 ([0 ,TT]) we have Ln(v) —> L(v) in C([0,7r]), for any v £ Cg .

Hence

\\zn-z\\2 = \\L?(fn)-V{f)h
< \\L~\fn) - L~\f)\\2 + \\L-\Ln - L)L~

with c > 0 independently of n. (The boundedness of Ll
n follows by elementary con-

siderations.) |

THEOREM 2. Let r > 0 be arbitrary but fixed

(i) If n = 2k, k = 1,2,. . . , then for any \i G (A£*(r),oo) we can find

v G (A£*(r), oo) such that (1), (2) has a solution u G Z+ , \\u\\i = r . The

same holds for Z~ .

(ii) If n = 2k + 1, k = 1, 2 , . . . then for any fj. G (A^!)_1(T-), OO) we can find

i/(Aj^f(r), oo) such that (1), (2) has a solution u G Z+ , ||?i||i = r and for

any fi £ (A£l(r),oo) we can find v G (A]^_j(r), oo) such that (1), (2) has

a solution u G Z~ , ||«||i = r.

(iii) If n = 1 then there exists nr G [Af*(r), A™(r)] such that there is w G Z*

satisfying (1), (2) with /J. = jir and any v, \\u\\i = r, and there exists

"r S [Aff(7-),A7l(r)] such that there is u G Zf satisfying f l j , (2) with

any fi and v = vr, ||u||i = r .

PROOF: Suppose t ha t n = 2k for some k = 1 ,2 , . . . , and tha t /z G ( A ^ ( r ) , oo) .

For some w G C 1 , | |w||i ^ r , there is a unique uw G (A n ( r ) ,oo) such t h a t (/i, vw) G
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A^(TD) (see Theorem 1). Denote by Br the closed ball in C1 with the radius r centred

at the origin. Define the mapping 5 : Br —-> Br which associates with any fixed w € Br

the function v satisfying

(14) — (a(x,w)v')' — nc(x,w)v+ + vwc(x,w)v~ = 0 on [0,TT],

(15) v ( 0 ) = V{TT) = 0 , v t Z + , \\v\U=r.

Theorem 1, positive homogeneity of (14) (with respect t o n ) and the uniqueness theorem

for second order ODE's imply that S is well-defined. Let us prove that 5 is a continuous

mapping from C1 into C\ . Suppose that wm —> w in C1 and set vm = S(wm),

v = S(w), vm = vWrn . The Arsela-Ascoli theorem and Remark 5 imply that there are

subsequences (denoted again by {vn}, {vn} ) such that vn —> v in C([0,TT]) , vn —» P 6

[A£*(r), oo) . Hence

/xc(x,wn)v+ - unc(x,wn)v~ -> nc(x,w)v+ - vc(x,w)v~ in C([0,TT]).

It follows from Lemma 5 that vn —> v in C2 , that is, v satisfies (14). Further,

v £ Z£ because vn £ Z£ . (In the opposite case v would have a double zero which

is impossible with respect to the uniqueness of solutions to the initial value problem

for ODE's.) Theorem 1 ensures that there are unique t/w and v satisfying (14), (15).

This implies i/ = £>, vn —> v = v for the whole sequence {vn} and the continuity of

5 : Br —> C'Q is proved. Now, we can apply the Schauder fixed point theorem in Br •

Hence, for any n € (A£1(T-), oo) we get v € (Af (r),oo) , u E Z+ satisfying (1), (2) and

W,=r.
The proof of (ii) can be performed in the same way. If n = 1 then for r > 0

fixed we define the mapping 5 : Br —> Br which associates with any fixed w £ H the

solution of

(16) -(a(x,w)v')' - Xi(w)c(x,w)v = 0 on[0,ir],

(17) v(0) = v{n) = 0, V > 0 i n ( 0 , 7 r ) , \\v\\i = r.

In the same way as above we prove the continuity of S from C1 into CQ . The fixed
point u of 5 is the positive solution of (1), (2) with /j. = Ai(-u) satisfying ||u||j = r. If
we replace /x by u and v > 0 by v < 0 we get the second part of assertion (iii). |

THEOREM 3. Let (MO,^O) G ^.n(0) be fixed. Then for any r > 0 sufficiently

small, there exist ur, ur such that ur is the solution of (1), (2) with fi = fi0 , v = i/r,

ur £ Z+ , | |ur | |i = r . Moreover, vr -+ i/0 , T.—j. • u (if r -+ 0+ ) where u g Z+ is a
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solution to (3), (2) with a(x) = a(x,O), c(x) = c(x,O), fj, = fj.o , v = i/0 , and \\u\\i = 1.
The same assertion holds for A~(0) (with Z+ replaced by Z~ ) .

PROOF: If r > 0 is sufficiently small, then /j,0 > A™,2(r) (see Theorem 1 and

Remark 4). Theorem 2 ensures the existance of ur, ur with the presented properties.

Put vr — - — ^ - . Since ||vr| |i = 1 there is some sequence {rk}, rk -+ 0+ such that
IK||i

vr]t —» v in C([0,TT]) for some v and we can suppose i/rfc —+ v for some v £ R by
Remark 5. We pass to the limit as k —» oo in

,Urh)vth+Vrkc(x,Urh)v-h = 0 .

The last equation and Lemma 5 imply that vrk —> v in C\ and we obtain

(18) -(a(x,0)v')' - /J.QC(X,0)V+ + vc(x,0)v~ = 0 on [O,TT],

(19) v(0) = v(n) = 0, v£Z+, |M|i=l.

Since v and v satisfying (18), (19) (with fiQ given) are determined uniquely, we obtain

vr —> v in C'Q , ur —> v ~ UQ (see Theorem 1). |

R e m a r k 6. Theorem 3 (together with Theorem 1) ensures that any (HQ,UQ) G A-\(Q)

is a bifurcation point of (1), (2). Note that the following more detailed assertion can
be proved analoguously to Theorem 3:

THEOREM 4. Let (MOJ^O) G ^-n(0)> ^ T be a curve in R2 containing (fj,o,^o)

and transversal to A+(0). Then for any r > 0 small enough there exist (fj.r,vr) G T

and a solution ur G Z* of (1), (2) with ft = fir, v = vr, | |ur | |i = r. Moreover,

(fj,r,i/r) —» (fiQ,uo), -—7p —* u for r —> 0+ vciiere u G Z+ is a solution to (3), (2)
I K Hi

with a(x) = a(x,0), c(x) = c(x,0), n — / i 0 , v — vO and ||u||i = 1. Analogously for

R e m a r k 7. Our result contained in Theorem 2 (Hi) concerning strictly positive solu-

tions of (1), (2) is a special case of the result of Boccardo [1].
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