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Interpretable deep learning for prediction of
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We propose an interpretable deep learning (DL) model that extracts physical features from
turbulence data. Based on a conditional generative adversarial network combined with a
new decomposition algorithm for the Prandtl number effect, we developed a DL model that
is capable of predicting the local surface heat flux very accurately using only the wall-shear
stress information and Prandtl number as inputs in channel turbulence. The considered
range of Prandtl number is Pr = 0.001 ∼ 7, with a focus on the subrange of Pr = 0.1 ∼ 7.
Through an investigation of the gradient maps of the trained prediction model, we were
able to identify the nonlinear physical relationship between the wall-shear stresses and
heat flux, which is quite diverse depending on the Prandtl number. Furthermore, the
decomposition algorithm, which is used to separate the Prandtl number dependent field
from the common field of the surface heat flux, helps not only in learning for good
prediction of an arbitrary Prandtl number but also in analysing the effect of the Prandtl
number on the determination of the heat flux for the given turbulent flow fields. We
demonstrate that a physical interpretation of a trained network is possible.

Key words: machine learning, turbulence simulation

1. Introduction

Turbulent heat transfer is an important physical process frequently observed in nature
and in industrial applications such as atmospheric convection, heat exchangers and gas
turbines. In particular, accurate estimation of the heat flux at the solid boundary is
essential for better design of heat-exchanging devices. The close analogy between heat and
momentum, known as the Reynolds analogy, suggests a strong similarity between heat flux
and shear stress at the wall. For the given shear stress field, however, the distribution of heat
flux highly depends on Prandtl numbers (Pr = ν/α; ν and α are the kinematic viscosity
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and thermal diffusivity, respectively), indicating that the relationship between the shear
stress and heat flux is not simple. This complicated relationship makes it more difficult to
predict heat transfer than shear stress. However, the detailed effect of the Prandtl number
on heat transfer has not been well investigated. In practice, the prediction of turbulent
heat transfer is usually performed using turbulence models such as the Reynolds-averaged
Navier–Stokes (RANS) model, but its accuracy is still not satisfactory compared with the
relatively well-predicted skin friction (Hoda & Acharya 1999; Coletti et al. 2013).

Several attempts have been made to investigate turbulent heat transfer using direct
numerical simulations (DNS). For example, Antonia, Krishnamoorthy & Fulachier (1988),
Kim & Moin (1989), Kasagi, Tomita & Kuroda (1992) studied the temperature fields with
Pr in turbulent channel flow and reported a strong correlation between the streamwise
velocity and temperature fluctuations near the wall. Similarly, Abe & Antonia (2009)
found that near the wall, the correlation between the velocity and scalar fluctuations
peaks when the pressure fluctuation effect is small. Abe, Kawamura & Matsuo (2004)
showed close similarity between the streamwise wall-shear stress and wall-normal heat
flux fluctuations. They also observed the space–time correlation of the surface heat flux
and found that the correlation for Pr = 0.025 has a larger value than that for Pr = 0.71 at
large separations, indicating the effect of large-scale structures. Kasagi & Ohtsubo (1993)
presented that thermal streaks for low Prandtl numbers have larger spacing than those for
high Prandtl numbers in the spanwise direction. Kawamura et al. (1998) and Kawamura,
Abe & Matsuo (1999) examined statistically the effect of the Prandtl number, showing
that the peak of the temperature variance is observed closer to the wall with increasing
Pr. Na & Hanratty (2000) investigated the limiting behaviour of the passive scalar with
higher Pr near the wall. They reported that the contribution of high wavenumbers increases
in the energy spectra of temperature fluctuations with increasing Pr. As such, the effect
of the Prandtl number has been investigated, but the observation of local heat flux with
the Prandtl number has not been sufficiently performed because it is mostly limited to
the conventional statistical approach. The turbulent transport mechanism of heat and
momentum near the wall occurs locally and intermittently owing to the presence of
near-wall vortical structures. The dissimilarity between the heat flux and streamwise shear
stress was evident in some regions, although there was a high correlation between them.
Therefore, we focus on revealing the complicated relationship between the local heat flux
and wall-shear stresses by considering the Prandtl number effect. For this purpose, we
employ deep learning (DL) to find a nonlinear mapping function between instantaneous
fields with high prediction accuracy. We analyse the trained model embedding the Prandtl
number to identify the underlying physics.

The applicability of a neural network (NN) to learn the nonlinear relationship between
turbulent variables has been attempted previously. In a pioneering study, Lee et al.
(1997) applied a shallow NN for the prediction and control of near-wall turbulence using
wall-shear stress information, although it was confined to finding a simple relationship
owing to the limitations of the computational resources of the time. Recently, with
the development of computing hardware, data-driven algorithms and their open-source
libraries, the learning of highly complex phenomena using deep neural networks (DNN)
has become feasible. For the purpose of prediction and control, there have been studies that
trained the nonlinearity between the near-wall variables. Güemes, Discetti & Ianiro (2019)
and Güastoni et al. (2021) used a convolutional neural network (CNN)-based model to
predict flow fields from wall-shear stresses, and showed that the model can learn nonlinear
effects of the near-wall mechanism. Han & Huang (2020) and Park & Choi (2020)
proposed a controller based on CNN that predicts the wall-normal velocity using wall
signals for skin-friction drag reduction. For high-resolution reconstruction, studies have
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addressed the relationship between large-scale and small-scale fields. Fukami, Fukagata
& Taira (2019) showed that high-resolution data can be reconstructed from filtered DNS
data of homogeneous isotropic turbulence using CNN. Kim et al. (2021) demonstrated
the usefulness of generative adversarial networks (GANs)-based unsupervised DL by
applying it to the problem of reconstructing DNS-quality data from large-eddy simulation
(LES) data in turbulent channel flow. Similarly, Güemes et al. (2021) demonstrated the
possibility of generating wall-parallel flow fields from coarse wall information using
GANs. For LES modelling, there are studies that have learned the relationship between
resolved scale and sub-grid scale (SGS) fields. Maulik et al. (2019) developed a DNN
model that predicts the SGS stress based on local resolved velocity gradient information
in two-dimensional turbulence. Similarly, DL models for SGS have been applied to various
canonical flows (Gamahara & Hattori 2017; Wang et al. 2018; Xie et al. 2019; Portwood
et al. 2020; Kim et al. 2022). In addition, many studies have been conducted in fields
such as RANS modelling (Ling, Kurzawski & Templeton 2016; Parish & Duraisamy 2016;
Wang, Wu & Xiao 2017) and dynamic prediction (Srinivasan et al. 2019; Kim & Lee
2020a; Raissi, Yazdani & Karniadakis 2020; Lee & You 2021), among others (see details
in review papers Kutz 2017; Brenner, Eldredge & Freund 2019; Duraisamy, Iaccarino &
Xiao 2019; Brunton, Noack & Koumoutsakos 2020). As explained, DL performed well
in discovering the interrelationship between the input and output in various turbulence
problems, but there are still unresolved fundamental issues such as understanding how DL
learns turbulence, what characteristics of turbulence DL learns, and which information is
essential for prediction. In most applications, owing to complicated network structures, the
interpretability of the trained network is limited.

Recently, a few attempts have been made to investigate the interpretability of DL
with embedded turbulence features. Jagodinski, Zhu & Verma (2020) reported that a
three-dimensional CNN is able to predict the intensity of ejection events in wall-bounded
turbulence, and the model was able to discover critical regions for dynamics prediction.
Lu, Kim & Soljačić (2020) applied a variational autoencoder to spatiotemporal systems
governed by partial differential equations. They demonstrated that the model can extract
interpretable physical parameters from the data of the dynamical system as a latent vector.
In our previous work (Kim & Lee 2020b), we demonstrated that a CNN can predict the
local surface heat flux at Pr = 0.71 from the wall-shear stresses and pressure in a turbulent
channel flow. We observed the gradient maps obtained through the trained CNN, and
found essential parts of the input information for the prediction of the local heat flux.
The interpretable DL model can help provide a framework that can discover unknown
physical phenomena from data. In addition, an interpretation of DL would play a very
important role in improving the learning performance and in providing guidance for DL
construction, such as hyperparameter optimization.

In this study we applied a conditional generative adversarial network (cGAN) (Mirza &
Osindero 2014) combined with a decomposition algorithm to predict the surface heat flux
for various Pr values from the wall-shear stresses in turbulent channel flow. In addition,
we analysed the effect of the Prandtl number using the gradient map between the local
heat flux and shear stresses through the interpretation of the trained model. In §§ 2.1
and 2.2, the numerical procedures for turbulence heat transfer and methodology for the
decomposition of the physical parameter effect are presented. In § 3.1 we present the
performance of the cGAN with a decomposition algorithm for predicting the surface heat
flux for various Pr values. In § 3.2 we analyse the physical nonlinear correlation between
the wall-shear stresses and local heat flux for Pr using a gradient map obtained from the
trained model for the interpretation of DL. In § 3.3 we present the decomposed surface heat
flux, Pr-dependence and Pr-independent features, using the decomposition algorithm and
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observe the decomposed surface heat flux to identify the effect of Pr. Finally, in § 4 the
interpretability of DL for the effects of physical parameters is discussed, with concluding
remarks.

2. Methodology

2.1. Data generation for training
To collect datasets for training the DL model, DNS of turbulent channel flow with passive
temperature were performed for various values of Pr. The mean flow in the streamwise
direction is driven by a constant pressure gradient. Constant temperature and no-slip
conditions were imposed on both walls, and periodic boundary conditions were used
in the horizontal directions. The governing equations are the continuity, incompressible
Navier–Stokes and energy equations, i.e.

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Reτ

∂2ui

∂xj∂xj
, (2.2)

∂T
∂t

+ uj
∂T
∂xj

= 1
PrReτ

∂2T
∂xj∂xj

, (2.3)

where the equations are non-dimensionalized by the channel half-width δ, friction velocity
uτ and temperature difference �T between the top and bottom walls. Here x1(x), x2( y)
and x3(z) denote the streamwise, wall-normal and spanwise directions, respectively;
u1(u), u2(v) and u3(w) denote the corresponding velocity components. The dimensionless
parameters are the Prandtl number and the friction Reynolds number (Reτ = uτ δ/ν),
which was fixed at 180.

A pseudo-spectral method using Fourier expansion in the horizontal direction and a
central difference scheme in the wall-normal direction were used for spatial discretization.
The second-order Adams–Bashforth and Crank–Nicolson schemes were applied for
the temporal integration of the nonlinear and viscous terms, respectively. Simulation
parameters, such as the domain size (Lx × Ly × Lz) and the number of grid points
(Nx × Ny × Nz) after dealising are summarized in table 1. The resolution effect in the
horizontal and wall-normal directions was verified through a test for the highest Pr(= 7),
with a focus only on the wall quantities. When we tested two horizontal resolutions,
(�x+,�z+) = (11.78, 5.89), which was used for high Prandtl numbers in our paper,
and (�x+,�z+) = (8.83, 4.42), there was no meaningful difference in time-averaged
statistics such as Nu, root mean square (r.m.s.), skewness and flatness of the surface heat
flux. Furthermore, through tests with two wall-normal grids, Ny = 129 and 257, in the
Chebyshev expansion, we found that the energy spectrum of the surface heat flux is almost
identical for the two cases. It indicates that present grid resolutions are fine enough for the
wall information we are interested in.

Direct numerical simulation data are divided into training, validation and testing data.
The testing data are sufficiently decorrelated from the training data. We collected the
streamwise wall-shear stress ∂u/∂y|y=0 (= τw,x) and spanwise wall-shear stress ∂w/∂y|y=0
(= τw,z) as input data for DL. The surface heat flux ∂T/∂y|y=0 (= qw) for various Pr were
used as target outputs. To use the same amount of information for all Pr in the training
process of DL, spectral interpolation was applied to the DNS data for Pr = 2 − 7. For all
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Case Pr Reτ Lx × Ly × Lz Nx × Ny × Nz

Group 1 0.001, 0.005, 0.01, 0.025, 0.05 180 4πδ × 2δ × 2πδ 128 × 129 × 128
Group 2 0.1, 0.2, 0.4, 0.71, 1 180 4πδ × 2δ × 2πδ 128 × 129 × 128

2, 3, 5, 7 180 4πδ × 2δ × 2πδ 192 × 129 × 192

Table 1. Simulation parameters for DNS.

Pr, the number of grids of the preprocessed data are 128 × 128 in x, z directions, and the
spatial resolution (�x+,�z+) = (17.67, 8.84).

2.2. Deep learning model
In this study we use a cGAN with a novel algorithm that can decompose the effect of the
Prandtl number for the prediction and interpretation of the surface heat flux. A cGAN is a
modified model of GAN proposed by Goodfellow et al. (2014), which imposes constraints
on the discriminator by applying auxiliary information as a condition. The cGAN consists
of two networks, a generator (G) and a discriminator (D), and it is trained by making
the two networks compete against each other. In image-to-image generation problems, the
generator generates a fake image that is similar to the target image from the input image.
In our problem, the input data are the wall-shear stresses and Prandtl number, and the fake
image is the surface heat flux generated by the generator, and the target image is the surface
heat flux from DNS. The discriminator distinguishes between fake and real images and
returns the probability value between 0 and 1. The input data are used as additional input
to the discriminator for conditioning, and this constraint allows the generator to produce
an output image that is dependent on the input image. Finally, we obtain a generator that
yields a fake image similar to the real image while being dependent on the input data. This
process can be described as a min/max problem, and the loss function used for training is

min
G

max
D

LcGAN = Ey∼PY [log D( y|x)] + Ex∼PX [log(1 − D(G(x)|x))], (2.4)

where E denotes expectation, and Y is the real image set and y ∼ PY is y sampled from the
real image distribution; X is the input image set, and x ∼ PX is x sampled from the input
image distribution; x is the input data of the generator (G) and the additional input data to
impose constraints on the discriminator; G(x) is the fake image generated by the generator
and D(G(x)|x) is its probability; D( y|x) is the probability value for the real image, to which
the conditions are applied. During the cGAN training process, the generator (G) generates
fake images similar to the real image; thus, D(G(x)|x) is expected to return the largest
probability value possible. On the other hand, the discriminator (D) distinguishes even
minor differences between real and fake images, and thus, D(G(x)|x) is expected to return
as small a value as possible. As a result, the training parameters of the generator are learned
in the direction where log(1 − D(G(x)|x)) is minimized, and those of the discriminator
are trained in the direction that maximizes log D( y|x) and log(1 − D(G(x)|x)). In this
study cGAN was used as a model for predicting the turbulent heat flux for any Pr. In our
applications, x is the streamwise and spanwise wall-shear stresses and Prandtl number, and
y is the surface heat flux for the corresponding Pr.

To efficiently extract the Prandtl number effect, we combined cGAN with a
decomposition algorithm that decomposes turbulence data to separate the Prandtl
number effect feature from a common feature. As shown in figure 1(a), cGAN with
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a decomposition algorithm consists of a generator (G) and a discriminator (D). To
decompose the turbulence data, as shown in figure 1(b), the generator (G) is divided into
two parts: a parameter-independent generator (GC) and a parameter-effect generator (GP).
First, the parameter-independent generator (GC) extracts Pr-independent features that
contain common characteristics in turbulent data regardless of the physical parameters.
The parameter-effect generator (GP) extracts features that are characteristic of the physical
parameters. We applied this model to predict and interpret the surface heat flux using the
physical parameter Pr. During training, the parameter-independent generator (GC) uses
the wall-shear stresses as input data to generate a Pr-independent or common feature
(qC

w) of the surface heat flux observed for all Pr. The parameter-effect generator (GP)
predicts the Prandtl number effects (Pr-dependent) feature of the surface heat flux, qP

w,
using the wall-shear stresses, Pr-independent features and Pr as input data. The surface
heat flux (qw = qC

w + qP
w) is the sum of the Pr-independent and Pr-dependent features. The

Pr-independent feature obtained through this algorithm is valid for the range of Prandtl
numbers in the training data used in the learning process. The discriminator (D) uses the
surface heat flux, wall-shear stresses and Pr as input data, where the wall-shear stresses
and Pr are the constraints for the discriminator (D). In other words, the input data of
the discriminator (D) consists of four components: the surface heat flux, streamwise and
spanwise wall-shear stresses, and Pr. The loss function used for training was

Ltotal = LcGAN + λ1Lmse + λ2LPr, (2.5)

with

Lmse = E

[
1

Np
‖G(x,Pr)− y‖2

2

]
, (2.6)

LPr = E

[
1

Np
‖GP(x,GC(x),Pr)‖2

2

]
, (2.7)

where the total loss function consists of three losses in (2.5). Here λ1 and λ2 are fixed
at 200 and 10, respectively. The first and second terms on the right-hand side are the
cGAN loss and mean squared loss (MSE), respectively. The last term is the physical
parameter loss, which allows the surface heat flux to decompose the Pr-independent and
Pr-dependent features. Through the physical parameter loss, the common characteristics
of the surface heat flux were extracted to the maximum, and the features for the effect
of Pr were extracted to the minimum. In (2.6), Np is the number of grid points of
input and output; x and y are the wall-shear stress and the surface heat flux from DNS,
respectively, and G(x) denotes the surface heat flux predicted by the generator. In (2.7),
GP(x) is a Pr-dependent feature generated by the parameter-effect generator; GC(x) is
the Pr-independent feature generated by the parameter-independent generator. In (2.5)
the parameters of the generator (G), including GC and GP, are trained in the direction
of minimizing Ltotal, and the parameters of the discriminator (D) are trained in the
direction of maximizing LcGAN . Through training based on our designed loss function,
the decomposed features are almost deterministic regardless of the model structure, but
tuning of the weight coefficient of the loss is required. Thus, we present an alternative
two-step learning method that can eliminate the hyperparameter. In the first step, the
distance between the Pr-independent feature GC(x) obtained from input x and the target
y is minimized and the trainable parameters only in GC are trained here. In the second
step, the distance between the total heat flux G(x) and the target y is minimized and the
trainable parameters in G except for GC are trained. Through this process, the decomposed
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Condition

Generator

(G)

Generator (G)

Generator (GC) Generator (GP)

Discriminator

(D)

Real

Fake

[qw]DL

[qw]DL

[qw]DNS

qw
C qw

P

Pr Pr

Pr

PrPr

τw,x τw,z τw,x τw,z

τw,x τw,z

τw,x τw,zτw,x τw,z

(a)

(b)

Figure 1. Architecture of cGAN with a decomposition algorithm. (a) Overview of cGAN consisting of
generator (G) and discriminator (D). (b) Generator (G) including parameter-independent generator (GC) and
parameter-effect generator (GP).

features can be extracted without tuning of such a hyperparameter, although we prefer to
use non-separated one-step learning.

The cGAN loss function defined above has the problem of divergence because the
discriminator can distinguish between the fake image (generated image) and the real
image before the generator is sufficiently trained. In addition, after training, the generator
has a mode-collapse problem, in which the generator produces only limited images. For
stable training of cGAN, we used Wasserstein GAN (WGAN)-GP loss with an added
gradient penalty (Gulrajani et al. 2017). The WGAN-GP enables stable learning and
performance improvement by continuously generating a probabilistic divergence between
the distribution of the real image and that of the generated image with respect to the
parameters of the generator.

The generator (G) and discriminator (D) of cGAN employ a CNN, which consists
of convolution operations and a nonlinear function that can effectively extract spatial
patterns. Additionally, a skip connection is applied to the generator (G) to effectively
handle the information for large-scale structures and the trainable parameters. The
generator (G) makes use of downsampling and upsampling operations. Downsampling
was applied to the discriminator (D), however, its last two layers were fully connected.
The nonlinear function used in the network was a leaky rectified linear unit (leaky ReLU),
which is commonly applied to GAN-based models,

f (x) = max(αx, x), (2.8)

where α is fixed at 0.2. This function prevents the differential value from becoming 0
when x < 0 so that the weights can be updated stably. Appendix A provides a detailed
description of the network.
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To evaluate the prediction accuracy of cGAN, we additionally considered a
multiple-linear model, a shallow CNN and a CNN model as comparative models in
§ 3.1. The multiple-linear model and CNN have the same architecture as the generator
(G) of cGAN, and use the same input information size. The shallow CNN called
ShallowCNN consists of two convolution layers with the 16 hidden feature maps without
the decomposition algorithm, and uses less input information on a 5 × 5 stencil than other
models. The multiple-linear model used a linear function rather than a nonlinear function.
For training the comparative models, the loss function to minimize is defined as

L = λ1Lmse + λ2LPr + λ3
∑

i

1
2

w2
i , (2.9)

where the first and second terms on the right-hand side are the mean squared error
and the physical parameter loss, respectively. The last term implies an L2 regularization
to prevent overfitting and wi are the weights; λ1, λ2 and λ3 are 1, 0.05 and 0.0001,
respectively. The loss function of ShallowCNN consists only of the mean squared error
and L2 regularization, unlike those of the multiple-linear model and CNN. Appendix A
provides a detailed description of the architecture such as the number of layers and feature
maps for cGAN and comparative models, CNN and multiple-linear model.

3. Results and discussion

3.1. Prediction of surface turbulent heat flux
In this section we present the results of the cGAN with a decomposition algorithm for
predicting the surface heat flux qw from the streamwise and spanwise wall-shear stresses
τw,x and τw,z in a turbulent channel flow. Before training our model, we investigated
the fundamental behaviour of the surface heat flux and its relationship to the wall-shear
stresses for the range of Pr considered in this study using DNS data. Basic statistics such as
the Nusselt number (Nu = 2δh/k = 2〈qw〉; where h and k are the heat transfer coefficient
and thermal conductivity of fluid, respectively, and 〈〉 denotes an average operation), and
r.m.s. of fluctuations qw,rms are presented in figure 2. The Nusselt number shows two
distinct limiting behaviours, as shown in figure 2(a): it increases monotonically with Pr for
Pr ≥ 0.1, while it converges to 1 with decreasing Pr, indicating that the temperature field
approaches a linear profile, which is a signature of pure conduction heat transfer across
the channel. As Pr decreases, the r.m.s. value of the surface heat flux decreases, as shown
in figure 2(b), as qw,rms/〈qw〉 � 10.67Pr. The distribution becomes Gaussian, as shown in
figure 24 in Appendix C. However, the r.m.s. value remained at 40 % of the mean value as
Pr increased.

The correlation between the surface heat flux and wall-shear stress is presented in
figure 3 in terms of the correlation coefficient R(≡ 〈τ ′

wq′
w〉/(σ (τw)σ (qw))) and the scatter

plot. Here, τw =
√
τ 2

w,x + τ 2
w,z, and superscript ′ and σ denote the fluctuation and standard

deviation, respectively. The correlation coefficient shows a peak greater than 0.9 at Pr = 1,
and a strong correlation is seen in the scatter plot. These clearly support the Reynolds
analogy. For the range 0.1 ≤ Pr ≤ 10, a certain level of correlation is observable, whereas
for Pr < 0.1, the two quantities are hardly correlated, although the correlation coefficient
approaches the limiting value of 0.2, as Pr approaches zero. These observations indicate
that as Pr approaches 0, the surface heat flux is mostly determined by the conduction
process, and convection due to turbulence has little effect. Therefore, we focus on the
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Figure 2. Statistics obtained from DNS data. (a) Relation between Prandtl numbers and Nusselt numbers. (b)
Root mean square of surface heat flux with Pr.

range of Pr = 0.1–7 and present the results for this range in the main text. The training
and prediction results for Pr = 0.001–0.05 are presented in Appendix C.

The network was trained for Pr = 0.2, 0.71, 2 and 5, and the trained network was
tested for Pr = 0.1, 0.2, 0.4, 0.71, 1, 2, 3, 5 and 7. As shown in figure 2, for the range
of Pr considered here, the mean surface heat flux exhibits two slightly different scaling
behaviours in Pr depending on whether Pr is less than or greater than one, whereas
the r.m.s. value shows almost the same behaviour as the mean value. When the surface
heat flux fields for various Pr were used together as the output in training, the training
sometimes became unstable due to the different ranges of output fields. To alleviate this
problem, the surface heat flux fields were normalized using empirical scaling between
Nu and Pr. Ignoring the difference between the two scaling relations in figure 2(a), we
used the heat flux fields normalized by Pr1/2, the empirical correlation indicating that the
Nusselt number is a function of the Prandtl number, as the output. The wall-shear stresses
and input data were normalized to have mean = 0 and std = 1. The training and validation
data were 1000 and 100 in number, respectively, with�t+ = 9, which is an interval of data
fields, for trained Pr; and the number of testing data was 1000 with �t+ = 9 for all Pr.
The superscript (+) indicates that these parameters were normalized by uτ and ν and made
dimensionless. The testing data were sufficiently decorrelated from the training data. In
the training process, a randomly sampled subregion (64 × 64) in the x-z plane was used
for the input and output data. The subregion is of a sufficiently large size, over which
the correlation decays to almost zero in two-dimensional two-point correlation between
the wall-shear stresses and surface heat flux for all Pr. Furthermore, we double checked
through an analysis of the trained model that the input information in a much smaller
region than the subregion is mainly used for prediction. Before presenting the prediction
results, we want to emphasize that our model does not overfit the training data based on
the comparison of the training and validation errors of cGAN, presented in Appendix B.

To provide an idea of the structures in the surface heat flux for various Prandtl numbers,
the surface heat flux fields for Pr predicted for the same wall-shear stresses using cGAN
in a domain smaller than the full domain are shown in figure 4. The wall-shear stresses
and predicted qw values are presented in figures 4(a) and 4(b), respectively. The surface
heat flux field for Pr = 0.71 was very similar to the streamwise wall-shear stress, and a
high local heat flux was observed at the location where the wall-shear stress was strong.
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Figure 3. Relation between wall-shear stresses and surface heat flux for the Prandtl number obtained from
DNS data. (a) Correlation coefficient. (b) Scatter plots.

When Pr = 0.1, the surface heat flux distribution was smoother in the spanwise direction
and wavier in the streamwise direction than that for Pr = 0.71, whereas the thermal
structures for Pr = 2 were elongated in the streamwise direction and sharper in the

955 A14-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1069


Interpretable DL for turbulent heat transfer

2π

π

0

0

Pr = 2

4.5 9.0 13.5 18.0 0
Pr = 7

9 18 27 36

0

0

τw,x
100 200 300 400–100 0

τw,z

100 200–100–200

Pr = 0.1
1 2 3 4 0

Pr = 0.71
3 6 9 12

0

x 2π0 x

x x

z

2π

π

π

π

2π0

z

0

π

2π

π

2π0

z

(a)

(b)

Figure 4. Surface heat flux fields for various Pr obtained from same input data using cGAN. (a) Streamwise
and spanwise wall-shear stress used as input data. (b) Surface heat flux with Pr.

spanwise direction than in the case of Pr = 0.71. This trend strengthens as Pr increases.
Small-scale structures appeared in the predicted fields for Pr = 7. In other words, the
thermal structures tend to become streakier as Pr increases.

For the qualitative evaluation of the performance of the developed network,
instantaneous surface heat flux fields in the whole domain predicted by cGAN compared
with DNS data for trained Prandtl and untrained Prandtl numbers are shown in figures 5
and 6, respectively. As shown in figure 5, cGAN slightly underpredicted the local
maximum values of qw for Pr = 0.2 observed in DNS, whereas the predicted surface
heat flux shows an overall similar distribution to that of DNS by capturing small-scale
variations. In contrast, our model can generate streaky structures observed in qw for
Pr = 0.71 and 5. As shown in figure 6 for the untrained Prandtl numbers, our model
slightly overpredicts the surface heat flux field compared with DNS for Pr = 0.1. The
predicted surface heat flux fields for Pr = 1 and 7 were consistent with those of DNS.
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Figure 5. Instantaneous surface heat flux for trained Pr obtained from wall-shear stresses using cGAN.

Therefore, we confirmed that our model could generate surface heat fluxes similar to those
of DNS for untrained Pr and trained Pr.

To quantitatively assess the prediction accuracy of cGAN, we additionally considered
CNN, ShallowCNN and multiple-linear models as comparative models. In table 2 we
provide the correlation coefficient R between surface heat flux of DNS data and that
predicted by DL models, where R = 〈q′DNS

w q
′DL
w 〉/(σ (qDNS

w )σ (qDL
w )), demonstrating that

CNN has a higher correlation coefficient for all untrained Pr than those obtained from
the linear model and cGAN. The correlation coefficient R for cGAN is slightly lower
than that for CNN, whereas ShallowCNN and the linear model have a relatively low
correlation coefficient, particularly for Pr = 0.2 and 5. ShallowCNN predicts heat flux
better than linear models, but not as accurate as CNN with more layers. This indicates
that there is a complex nonlinear relation between the local heat flux and the wall-shear
stresses, suggesting that a sufficiently large number of layers should be used to develop an
integrated model for Pr. For the untrained Pr, the performance of all models is similar to
that of the trained Pr. Commonly, the performance of all models is best for Pr around 1,
and the performance deteriorates as Pr increases or decreases because the temperature is
not dominantly determined by the near-wall transport and the dissimilarity becomes very
strong. Furthermore, the slight inaccuracy might be caused by an improper normalization
technique, which is needed for learning data of highly different scales. However, the
prediction by CNN and cGAN is good for the tested range. Because CNN learns to
minimize the pointwise error between DNS data and generated data, the correlation
coefficient of CNN is naturally higher than that of cGAN. One might think that CNN
is better than the GAN-based model by comparing the point-by-point error, but CNN
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Figure 6. Instantaneous surface heat flux for untrained Pr obtained from wall-shear stresses using cGAN.

Model Trained Pr Untrained Pr

0.2 0.71 2 5 0.1 0.4 1 3 7

cGAN 0.890 0.968 0.975 0.922 0.802 0.918 0.967 0.945 0.876
CNN 0.909 0.973 0.979 0.931 0.822 0.937 0.977 0.958 0.897
ShallowCNN 0.800 0.946 0.950 0.828 0.665 0.892 0.959 0.902 0.735
Linear 0.673 0.922 0.935 0.774 0.521 0.828 0.953 0.876 0.699

Table 2. Correlation coefficient between target data (DNS data) and surface heat flux for trained and
untrained Pr predicted by various learning models.

is somewhat inaccurate in the prediction of statistics, as shown below. To improve the
prediction performance of the model, we considered a cGAN model using wall pressure
fluctuations and wall-shear stresses as input information. The predictive performance
of the model was improved when additional pressure fluctuations were used, but only
marginally, as shown in table 4 in Appendix D, where the performance of the model
with pressure data as input is provided in detail. The pressure information was found to
be auxiliary in the prediction of the surface heat flux. Consequently, only the wall-shear
stresses were considered as input information.

To investigate the performance of the models in more detail, we present the basic
statistics of the surface heat flux, such as the Nusselt number, r.m.s., skewness and flatness
in figure 7. Because the heat flux is normalized by Pr1/2 based on our observation, which
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Figure 7. Statistics of surface heat flux for trained Pr (0.2, 0.71, 2, 5) and untrained Pr (0.1, 0.4, 1, 3, 7)
obtained using DL models; (a) Nu, (b) r.m.s., (c) skewness, (d) flatness.

is not accurate, the predicted mean such as the Nusselt number needs to be checked.
As shown in figures 7(a) and 7(b), the Nusselt number and r.m.s. predicted by cGAN
and CNN are very accurate compared with those by DNS for both trained and untrained
Pr. On the other hand, the multiple-linear model predicts the Nusselt number relatively
well because of the use of empirical correlation but underpredicts the r.m.s. values. As
shown in figures 7(c) and 7(d), cGAN produces the smallest errors for all Pr, whereas the
CNN and multiple-linear models underpredict the skewness and flatness factors for all Pr.
These results confirm that the multiple-linear model is not suitable for prediction in the
considered range of Pr.

Figure 8 compares the probability distribution function (PDF) of the surface heat flux
predicted for the trained and untrained Pr with the DNS data. In this investigation only the
results of the cGAN and CNN are presented, except for the multiple-linear model, which
showed the lowest accuracy of the previous statistics. As shown in figure 8(a), both cGAN
and CNN produce a PDF for the trained Pr that is similar to that of DNS, but cGAN
outperforms CNN in capturing high values of the surface heat flux for the trained Pr. For
the untrained Pr, the prediction performance of the two models is comparable to that of
the trained Pr, as shown in figure 8(b); however, cGAN outperforms CNN. Given that this
type of statistical information is not used in training, our model captures the asymmetric
statistical nature remarkably well. As Pr decreases, the PDF tends to recover symmetry,
gradually becoming a Gaussian distribution, as shown in figure 24 in Appendix C.
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Figure 8. Probability density function (p.d.f.) of surface heat flux for (a) trained Pr (= 0.2, 0.71, 2, 5) and (b)
untrained Pr (= 0.1, 0.4, 1, 3, 7) obtained through DL models. Arrows indicate increasing Pr.

Additionally, we examined the energy spectrum of the surface heat flux for the
reproducibility of scale behaviour. The streamwise and spanwise energy spectra of qw
are defined as

E(κx) = 1
2π

∫ ∞

−∞
e−ipκxφ( p) dp, E(κz) = 1

2π

∫ ∞

−∞
e−iqκzψ(q) dq, (3.1a,b)

with

φ( p) = 〈q′
w(x, z)q′

w(x + p, z)〉, ψ(q) = 〈q′
w(x, z)q′

w(x, z + q)〉, (3.2a,b)

where φ( p) and ψ(q) are the two-point correlations of the surface heat flux in the x
and z directions, respectively. As shown in figures 9(a) and 9(b) for the trained Pr,
cGAN produces a spectrum that matches well with that obtained from DNS for all
ranges of both wavenumbers, whereas CNN underestimates the streamwise spectrum for
all wavenumbers and the spanwise spectrum for low wavenumbers. For the untrained
Pr, the performance of cGAN does not deteriorate in the prediction of the streamwise
spectrum, except for Pr = 0.1, whereas CNN tends to underestimate the spectrum except
for Pr = 0.1, which appears to be coincidental, as shown in figure 9(c). However, the
prediction of the spanwise spectrum by both cGAN and CNN worsens, especially for high
wavenumbers, as shown in figure 9(d). It is noteworthy that both cGAN and CNN do not
perform well for Pr = 0.1, because as Pr decreases, the surface heat flux becomes less
dependent on the wall-shear stresses, as discussed in Appendix C. Overall, cGAN shows
better performance in capturing statistical characteristics than CNN because statistical
consistency is considered in the training process of the cGAN through the discriminator
network, in addition to the local loss based on pointwise errors.

In order to provide a reliable interpretation of the trained model, which will be discussed
in §§ 3.2 and 3.3, we investigated whether the model well reflects the spatial correlation
between the wall-shear stresses and the surface heat flux. The two-dimensional two-point
correlation between the surface heat flux at a point (x, z) and the wall-shear stresses at a
point (x + rx, z + rz) is defined by

RV1V2(rx, rz) = 〈V ′
1(x, z)V ′

2(x + rx, z + rz)〉
σ(V1)σ (V2)

, (3.3)
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Figure 9. One-dimensional energy spectra of surface heat flux for various Pr obtained from wall-shear stresses
through DL models. Arrows indicate increasing Pr. (a) Streamwise and (b) spanwise energy spectrum of
surface heat flux with trained Pr(= 0.2, 0.71, 2, 5); (c) streamwise and (d) spanwise energy spectrum of surface
heat flux with untrained Pr(= 0.1, 0.4, 1, 3, 7).

where V1 and V2 represent q̃w and τ̃w, respectively. The two-point correlation between
the wall-shear stresses and surface heat flux predicted through cGAN and CNN for the
trained Pr is presented in figure 10. In Rqwτw,x(rx, 0), both cGAN and CNN well reflect
the spatial shifting phenomenon of the correlation peak location depending on the Prandtl
number, which is observed in DNS (figure 10a). However, for Pr = 0.2 and 5, CNN highly
overestimates the maximum values of DNS, whereas cGAN reproduces the correlation
more accurately than CNN. These results indicate that cGAN, unlike CNN, generates
a more input-dependent output by using input information as conditions in the learning
process. Figure 10(b) shows Rqwτw,z(rx,max, rz), where the streamwise location rx,max is the
maximum location of Rqwτw,z for each Pr. The cGAN and CNN follow DNS well overall,
while cGAN presents slightly better correlation for the lowest Pr. In addition, the models
reflected well the symmetric properties and the decorrelated tendency with an increase in
Pr. Although the models present a relatively inaccurate two-point correlation for untrained
Pr (not shown here), it is obvious that cGAN predicts the spatial correlation between input
and target better than CNN. Therefore, it seems reasonable to focus on the interpretation
of cGAN rather than CNN.
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Figure 10. Two-point correlations (a) Rqwτw,x (rx, 0) along the streamwise direction and (b) Rqwτw,z (rx,max, rz)

along the streamwise direction for trained Pr(= 0.2, 0.71, 2, 5).

From all the tests in this section, we confirm that cGAN is able to predict the surface
heat flux for various Pr values using only the wall-shear stress information. In addition to
the prediction of pointwise distribution of the surface heat flux, cGAN captures statistical
features very well compared with DNS for the trained Pr. Meanwhile, for the untrained
Pr, our model showed the highest accuracy among other models, including CNN and
multiple-linear models, exhibiting an accuracy comparable to that of the trained Pr. These
results indicate that our model can distinguish the effect of the Prandtl number well and
can express the relationship between the wall-shear stresses and the surface heat flux
depending on Pr. The performance of CNN and cGAN is not extremely different in
this application, but in a situation where the input information is insufficient, CNN can
generate an output with non-physical characteristics and highly underestimate the target
magnitude. On the other hand, a GAN-based network can generate an output that reflects
physical or statistical properties of turbulence, although the pointwise error is slightly
higher than CNN (Ledig et al. 2016; Deng et al. 2019; Lee & You 2019; Kim et al.
2021). It is highly probable that a GAN-based network tries to find a solution in the
space that satisfies physical and statistical properties of turbulence data. Therefore, GAN
is considered as a promising tool for the generation and modelling as well as prediction
of turbulence. In addition, although we tested the Prandtl number effect only, we expect
that our model could work well for a higher Reynolds number from previous studies (Kim
& Lee 2020b; Kim et al. 2021), where the DL model showed successful predictions for a
higher Reynolds number than the trained number under the condition that grid resolution
of input is the same as that of the trained one and input data are normalized by proper
length and velocity scales (e.g. the viscous length scale and friction velocity in wall
turbulence).

3.2. Interpretation of DL model
By observing the gradient maps obtained from the trained DL model, we attempt to analyse
the physical relationship between the input and output of our prediction network. For the
analysis, a cGAN was used, which is the most accurate model as discussed in § 3.1. We
only investigated the surface heat flux for the trained Pr. Because the mean surface heat
flux is very different for different Prandtl numbers, it is difficult to accurately analyse their
effect. For the reliability of the analysis, cGAN was trained using data preprocessed by
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Figure 11. Two-dimensional two-point correlation of (a) streamwise wall-shear stress (τ̃w,x) and (b) spanwise
wall-shear stress (τ̃w,z) with respect to surface heat flux (q̃w) for Pr obtained from DNS data.

different methods. The surface heat flux for each Pr was normalized so that its mean = 1,
and the normalized value is denoted by q̃w. The wall-shear stresses were normalized to
have mean = 0 and std = 1, and the normalized stress is denoted by τ̃w. Furthermore,
we performed data augmentation by applying spanwise symmetry and a phase shift,
considering the characteristics of the channel flow and boundary conditions.

Prior to interpreting the physical relationship between the surface heat flux and
wall-shear stresses based on the gradient maps, we observed two-dimensional two-point
correlation Rq̃wτ̃w for Pr = 0.2, 0.71 and 5 obtained from DNS data in figure 11, which
is calculated by (3.3). As shown in figure 11(a), the peak correlation of the streamwise
shear stress for Pr = 0.2 and 0.71 is observed in the upstream region at approximately
r+

x = −60, r+
z � 0 and r+

x = −10, r+
z � 0, respectively, whereas that for Pr = 5 is found

approximately at r+
x = 80, r+

z � 0. This shift in the location showing peak correlation can
be understood using the convection velocity of temperature near the wall; the convection
velocity of temperature for Pr < 1 is higher than that of the streamwise velocity and vice
versa for Pr > 1 (Kowalewski, Mosyak & Hetsroni 2003; Abe et al. 2004). Depending on
Pr, the dominance of thermal diffusion and momentum diffusion enhances the convection
velocity. Similar to the effect of the Prandtl number, it has been reported that the local
concentration field response to velocity fluctuations in turbulent mass transfer has a
significant time lag for high Schmidt numbers (Shaw & Hanratty 1977; Hasegawa &
Kasagi 2009), explaining the spatial shifting phenomenon of surface heat flux well. On the
other hand, for all Pr, the correlation between the surface heat flux and the spanwise shear
stress shown in figure 11(b) exhibits positive and negative correlations in the first quadrant
(r+

x > 0, r+
z > 0) and the fourth quadrant (r+

x > 0,r+
z < 0), respectively. As Pr increased,

the correlation peak gradually moved in the downstream direction. This is consistent with a
previous observation that the maximum correlation between the spanwise shear stress and
streamwise vortices near the wall occurs downstream (Kravchenko, Choi & Moin 1993).
In addition, as Pr increases, the correlation weakens, and its distribution is stretched in the
streamwise direction.

A two-point correlation between two variables indicates that there exists a relationship
between them, but it does not reveal any information about the cause-and-effect
relationship between them. To investigate the cause-and-effect relationship between the
wall-shear stresses and surface heat flux, we performed a sensitivity analysis between the
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Interpretable DL for turbulent heat transfer

input and output of the trained DL model. Sensitivity analysis has been applied to image
classification and regression problems, which enables the analysis of the relationship
between the input and output (Simonyan, Vedaldi & Zisserman 2013; Kim & Lee 2020b).
From a sensitivity analysis, we can determine the reasons for the inaccuracy of the DL
model, which can help improve its performance. In addition, in the case of a regression
problem, sensitivity analysis can provide a guide on the input size, by taking into account
the essential components required for efficient training of the DL. Sensitivity analysis was
performed using the gradient of the output with respect to the input as

Sk(i, j) = ∂N(I)
∂Ik(i, j)

, (3.4)

where Sk(i, j) is the gradient map of the input variables (k), such as the wall-shear
stresses at (x + rx, z + rz), with rx = i�x and rz = j�z. Here Ik(i, j) is an input variable
at (x + rx, z + rz) and N(I) is an output variable, such as the surface heat flux, obtained
from the output of DL at (x, z); i = −(mx − 1)/2 ∼ (mx − 1)/2 and j = −(mz − 1)/2 ∼
(mz − 1)/2, where mx × mz is the input kernel size. The gradient map indicates the
sensitivity of the change in the surface heat flux at a point with respect to the change
in the wall-shear stress around that point. Due to the nonlinearity of the trained model, the
gradient map typically varies with the spatial location of the predicted heat flux, unlike
a linear model that applies the same operation regardless of spatial location (Kim & Lee
2020b). Therefore, the significant difference between a DL model and a linear model could
be understood by the input-dependent nature observed in the gradient map.

Through an investigation of the gradient map, we were able to analyse how the
wall-shear stresses affected the surface heat flux. However, the recognition of meaningful
patterns in the gradient map is not straightforward because of the noise generated in
the complicated learning process of the non-unique relationship between the input and
output. Therefore, we first investigated an average gradient map S̄k (where ·̄ is the average
operation in space and time), which is an average of the instantaneous gradient maps of
input variables (k) obtained at various locations of output in space over a time span.

The average gradient maps S̄τ̃w,x and S̄τ̃w,z for the local heat flux q̃w with respect to the
streamwise wall-shear stress τ̃w,x and spanwise wall-shear stress τ̃w,z for various Pr are
presented in figures 12(a) and 12(b), respectively. As shown in figure 12(a), non-trivial
values of S̄τ̃w,x are observed in a local region of the input fields for all Pr, indicating that
DL primarily uses the local information of the input field τ̃w,x to predict the heat flux at
a point. The magnitude of the gradient is small for Pr = 0.2 compared with the cases for
Pr = 0.71 and 5, implying that the surface heat flux at Pr = 0.2 is relatively less sensitive
to the change in τ̃w,x than that at Pr = 0.71 and 5. An important characteristic observed
in S̄τ̃w,x is that a positive peak is found in the upstream region for Pr < 1, whereas in the
downstream region the peak is found for Pr > 1. The peaks for Pr = 0.2, 0.71 and 5 occur
at r+

x = −20, 0 and 30, respectively. Although the specific peak locations are different, this
behaviour is similar to that of the two-point correlation shown in figure 11(a). The shift of
a peak observed in the gradient maps presents an important observation that the DL model
predicts local heat flux by reflecting the physical features affected by large-scale motion
as the Prandtl number decreases. Also, the fact that the region showing high two-point
correlation for all Pr is much longer in the streamwise direction than the region with a
non-trivial gradient map indicates that the average gradient map pinpoints the region of
input that influences the output on average.
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Figure 12. Average gradient maps of surface heat flux (q̃w) with respect to (a) streamwise wall-shear stress
(τ̃w,x) and (b) spanwise wall-shear stress (τ̃w,z) for Pr obtained through cGAN. The average gradient maps were
obtained using a sufficiently large amount of instantaneous gradient maps, where the number of data are 81 920
(all points in five fields with Nx = Nz = 128 and �t+ = 9) for each Pr.

In figure 12(b) the average gradient map S̄τ̃w,z shows a skew-symmetric pattern in the
spanwise direction S̄τ̃w,z(i, j) = −S̄τ̃w,z(i,−j) for all Pr. For Pr = 0.2, the gradient map
was pronounced in the first and fourth quadrants, and a high sensitivity for Pr = 0.71 was
observed in all quadrants. The gradient map for Pr = 0.71 indicates that the local heat flux
can be enhanced when a pair of vortices is located downstream, or when a vortex crosses
diagonally at the centre point, even when the streamwise wall-shear stress is weak (Kim
& Lee 2020b). However, the gradient for Pr = 5 is relatively weak everywhere, implying
that the surface heat flux at Pr = 5 is hardly influenced by the spanwise wall-shear stress
compared with other Prandtl numbers. These patterns in the gradient maps, which were not
observed in the two-point correlation in figure 11(b), indicate that the model can capture
intermittent physical phenomena through a combination of multi-point streamwise and
spanwise wall-shear stresses. We also observed the average gradient map of the model
predicting the surface heat flux from the wall-shear stresses and pressure fluctuations; the
results are presented in detail in Appendix D.

Next, we investigate the instantaneous gradient map for specific flow situations to
discuss the cause-and-effect relationship between turbulent variables depending on the
Prandtl number in detail. As described above, noise removal in an instantaneous gradient
map is essential because noise makes it difficult to recognize and analyse meaningful
patterns. Smilkov et al. (2017) used Gaussian noise as a method to remove noise in the
salient map for classification problems. However, in our problem this method did not
show a remarkable effect in removing noise, and thus, we took advantage of symmetry
properties such as reflectional equivariance and invariance with respect to the phase
shift in the channel geometry. The reflectional equivariance property can be implemented
using mirror data in the spanwise direction. Therefore, a gradient map was obtained by
averaging the original gradient map and the mirrored gradient map of the mirrored data.
Additionally, phase shift invariance can be implemented by averaging the instantaneous
gradient maps of several data points with a phase shift of less than 0.2�x, under the
assumption that the turbulence structure does not significantly change over a small
distance. To illustrate the effect of noise removal, we present instantaneous gradient maps
(Sτ̃w,z) before and after noise removal in figure 13, which clearly demonstrate the effect
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Figure 13. Effect of the noise-removal method for the instantaneous gradient map (Sτ̃w,z ) at Pr = 0.71 obtained
through cGAN. (a) Original gradient map and (b) gradient map applying both reflectional equivariance and
phase shift method.

of noise removal. Compared with the original gradient map shown in figure 13(a), the
noise-removed gradient map in figure 13(b) exhibits a more pronounced pattern, similar
to the average gradient map. The gradient in the region far from the origin is very small.
The instantaneous gradient maps presented in this study were obtained by applying the
noise-removal method.

To investigate the detailed cause-and-effect mechanism based on the analysis of the
average gradient map, we chose two specific examples of the flow field: one showing
locally intense streamwise shear stress and the other exhibiting intense spanwise shear
stress. Figure 14(a) illustrates an example with intense streamwise shear stress located
at the origin. The nearby vortices are visualized using the λ2 method (Jeong & Hussain
1995). Figure 14(b) shows instantaneous gradient maps, relative to the peak location of
heat flux marked by the black dot in figure 14(c), which are similar to the average gradient
maps shown in figure 12. This instantaneous gradient map suggests that the peak heat flux
is caused by different parts of the nearby streamwise shear stress distribution depending on
Pr. The peak heat flux is observed at a slightly downstream location of the peak streamwise
shear stress for Pr = 0.2, while the peak heat flux is found at a slightly upstream location
of the peak stress for Pr = 5. Because this slight shift of peaks clearly indicates that the
gradient of input shear stress may play a key role in determining heat flux, we investigated
the spatial gradient of input to observe the Prandtl number effect, which is also connected
to sweep and ejection events by the Taylor expansion of the near-wall wall-normal velocity.
The streamwise gradient of the streamwise shear stress ∂τ̃w,x/∂x shown in coloured
contours in figure 14(c) clearly confirms that the negative peak of ∂τ̃w,x/∂x is observed
at almost the same location as the peak heat flux for Pr = 0.2, whereas the positive peak
∂τ̃w,x/∂x coincides with the peak heat flux location for Pr = 5. When Pr is approximately
1, the heat flux and shear stress exhibit peaks at the same location. The relatively weak
sensitivity shown in the gradient map for Pr = 0.2 in figure 14(b) is due to relatively weak
heat flux in this particular situation.

We now investigate the second example showing a strong spanwise shear stress around
the peak heat flux, as demonstrated in figure 15(a). The strongest local heat flux is observed
around the region with a strong positive spanwise shear stress for Pr = 0.2. Figure 15(b)
shows the instantaneous gradient map relative to the peak heat flux location marked by
the black dot in figure 15(c) for Pr = 0.2 and 0.71. For Pr = 5, because there is no strong
heat flux observed around the black dot, the same output location as that of Pr = 0.71
was selected in the calculation of the gradient map. The instantaneous gradient map is
similar to the average gradient map of figure 12, except that the peak streamwise location
of the instantaneous gradient map is almost the same as that of the heat flux, whereas the
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Figure 14. Representative example of the region where dissimilarity between τ̃w,x and q̃w is weak and q̃w is
high for Pr = 0.71. (a) The right panel is the top view of the left panel. The colours and lines represent τ̃w,x

and τ̃w,z, respectively, and λ+2 = −0.02. (b) The instantaneous gradient map of q̃w with respect to τ̃w,x for Pr
obtained through cGAN. (c) Instantaneous contours of ∂τ̃w,x/∂x (colour) and q̃w for Pr obtained using cGAN
(lines are from 2.0 to 4.0 with increments of 0.2).

peak of the average gradient map is located slightly downstream of the heat flux. This
suggests that for Pr = 0.2, the spanwise variation of the spanwise shear stress might
cause a strong local heat flux. It naturally leads to the investigation of the spanwise
gradient of the spanwise shear stress (coloured contours) with the corresponding heat
flux distributions (line contours) in figure 15(c). The positive spanwise gradient of the
spanwise shear stress ∂τ̃w,z/∂z clearly confirms a strong correlation with the peak heat
flux. On the other hand, when Pr = 5, the strong spanwise shear stress does not contribute
to the local heat flux. However, when Pr = 0.71, the instantaneous gradient map exhibits a
skew-symmetric pattern in both the streamwise and spanwise directions: Sτ̃w,z(x + rx, z +
rz) = −Sτ̃w,z(x + rx, z − rz) = −Sτ̃w,z(x − rx, z + rz). The only situation allowing the local
heat flux at (x, z) to be caused by the nearby spanwise shear stress through such a
skew-symmetric sensitivity map is that a streamwise vortex is slightly slanted from the
streamwise direction, as shown in figure 15(a). In the two-point correlation (figure 11) it
is difficult to identify which part is necessary for prediction because correlation exists in a
wide region, indicating the limitation of the conventional statistical analysis. On the other
hand, it should be noted that the gradient map for the high-performance DL model clearly
reveals which part is actually essential for the prediction and which operation acts on the
input.

We discovered a strong correlation between the heat flux and gradient of the wall-shear
stresses depending on Pr after a detailed investigation of the gradient map and its
relation to the gradient of the wall-shear stresses for two example fields demonstrated
in figures 14 and 15. For Pr = 0.2, a strong heat flux occurs in the region with a negative
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Figure 15. Representative example of the region where dissimilarity between τ̃w,x and q̃w occurs. (a) right
panel is top view of left panel. The colours and lines represent τ̃w,x and τ̃w,z, respectively, and λ+2 = −0.03. (b)
The instantaneous gradient map of q̃w with respect to τ̃w,z for Pr obtained through cGAN. (c) Instantaneous
contours of ∂τ̃w,z∂z (colour) and q̃w for Pr obtained using cGAN (lines are from 1.5 to 2.5 with increments of
0.1).

streamwise gradient of the streamwise wall-shear stress or a positive spanwise gradient of
the spanwise wall-shear stress. However, for Pr = 5, the region of high heat flux is highly
correlated with the region with a positive gradient of the streamwise wall-shear stress.
When Pr = 0.71, a strong heat flux was found in the region with a strong streamwise
wall-shear stress. The scatter plots between the normalized heat flux and the normalized
gradient of the wall-shear stresses obtained from DNS for Pr = 0.2, 1 and 5, shown in
figure 16, confirm this behaviour. The locally high heat flux (q̃′

w ≥ q̃w,rms), marked by
the black dot in figure 16(a), clearly indicates negative and positive correlations with the
streamwise gradient of the streamwise wall-shear stress for Pr = 0.2 and 5, respectively,
while showing almost no correlation for Pr = 1. A locally high heat flux, on the other
hand, shows an overall positive correlation with the spanwise gradient of the spanwise
wall-shear stress for Pr ≤ 1, as shown in figure 16(b); however, the smaller the value
of Pr, the stronger is the positive correlation. The correlation coefficients provided in
figure 16 quantitatively support this behaviour, but less conspicuously, because all data
points, including the data with negative fluctuations of heat flux, which do not have any
correlation with the gradient of wall-shear stresses, were considered in the calculation of
the correlation coefficient.

Recognizing that the gradient of the wall-shear stresses is associated with the near-wall
flow structures, we propose plausible pictures by which the region with locally high heat
flux is estimated from the flow behaviour, as presented in figure 17. A sweep and ejection
event commonly observed in near-wall turbulence causes streamwise wall-shear stress
distribution, as shown in figure 17(a). From our discussion of the correlation between
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Figure 16. Scatterplots between surface heat flux with Pr and gradient of (a) streamwise wall-shear stress
∂τ̃w,x/∂x and (b) spanwise wall-shear stress ∂τ̃w,z/∂z. High heat flux data (q̃′

w > q̃w,rms) are marked with darker
points to highlight the correlation.

the heat flux and streamwise wall-shear stress above, we can pinpoint the region of the
local hotspot where high heat flux occurs, depending on Pr, as shown in figure 17(a). This
indicates that sweeping flow causes a high heat flux for Pr > 1, whereas ejection flow
induces a high heat flux for Pr < 1. When Pr = 1, high heat flux and strong streamwise
shear tend to occur at the same location. A streamwise vortex also causes the spanwise
wall-shear stress distribution shown in figure 17(b), from which a local hotspot can be
identified from the correlation between the heat flux and the spanwise wall stress for
Pr < 1. However, when Pr > 1, a streamwise vortex does not contribute to a high heat
flux.

In summary, we demonstrated the interpretability of DL through an investigation of the
gradient map between the input wall-shear stresses and output heat flux. Depending on the
Prandtl number, the diverse physics of near-wall turbulent heat transfer can be identified.

3.3. Decomposition of Prandtl number effect
For efficient learning, we introduced decomposition of the surface heat flux (q̃w = q̃C

w +
q̃P

w) into Pr-independent features (q̃C
w) and Pr-dependent features (q̃P) in the network,

as discussed in § 2.2. In this section we investigate the behaviour of the features
obtained using the trained model in § 3.2. The Pr-independent features contain common
characteristics of the surface heat flux irrelevant to Pr, whereas the Pr-dependent features
reflect the characteristics of the surface heat flux dependent on Pr. These decomposed
features are automatically obtained through the training process by adopting GAN
explained in § 2.2 without additional knowledge regarding the criterion of the data.

955 A14-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1069


Interpretable DL for turbulent heat transfer

y

z

y

x
τ
′
w,x τw,z

Pr > 1 Pr ≈ 1 Pr < 1 Pr < 1

(a) (b)

Figure 17. Schematic for physical relationship between near-wall transport and heat transfer with the Prandtl
number.

Pr Variance R

q̃w q̃C
w q̃P

w (q̃w, q̃C
w) (q̃w, q̃P

w) (q̃C
w, q̃P

w)

0.2 0.149 0.120 0.079 0.707 0.500 −0.257
0.71 0.163 0.120 0.029 0.910 0.533 0.134
2 0.172 0.120 0.021 0.944 0.614 0.321
5 0.158 0.120 0.049 0.829 0.500 −0.070

Table 3. Variance and correlation coefficient of the Pr-independent feature, Pr-dependent feature and surface
heat flux with trained Pr.

Therefore, DL with a decomposition algorithm is a convenient and effective method for
extracting decomposed physical features. A detailed analysis of the noticeable physical
properties from the decomposed features aids in understanding the Pr effect in turbulent
heat transfer.

First, we investigate statistics such as the variance and correlation coefficient of the
decomposed fields of the surface heat flux (q̃C

w and q̃P
w), as listed in table 3. By definition,

the mean of q̃w is 1, whereas the mean of the Pr-independent feature 〈q̃C
w〉 is approximately

1, and that of Pr-dependent features 〈q̃P
w〉 for all Pr is negligibly small when the training

network is constructed. The variance of the Pr-dependent feature is relatively small
compared with that of the Pr-independent feature, which is comparable to the total heat
flux, suggesting that the Pr-independent feature captures the common behaviour of the
heat flux for all Pr. The high correlation coefficient between q̃w and q̃C

w for all Pr values
also supports this argument. On the other hand, q̃P

w is mildly correlated with q̃w but
hardly correlated with q̃C

w, indicating that the Pr-independent feature extracts common
characteristics regardless of Pr. Furthermore, the high correlation coefficients between
q̃w and q̃C

w, and q̃w and q̃P
w for Pr = 0.71 and 2, strongly suggest that the Pr-independent

feature is most pronounced in the heat flux field for Pr around 1.
Figure 18 shows example snapshots of q̃C

w, q̃P
w and q̃w for the same input field for various

values of Pr, with the contours of q̃C
w and q̃w displayed for values greater than 1. The strong

correlation between q̃C
w, q̃P

w and q̃w, shown in table 3, suggests that the similarity between
them is most pronounced for Pr = 0.71 or 2. The only difference is that q̃w has higher peak
values than q̃C

w, as evidenced by the q̃P
w distribution, which has a positive correlation with

q̃C
w. When Pr = 0.2 or 5, however, there are mismatches in the peak locations of q̃C

w and q̃w
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Figure 18. Example fields of the Pr-independent feature q̃C
w (line contours with levels from 1.0 to 3.0 with an

increment of 0.2 in the left panels), Pr-dependent feature (colour contours in the left panels) and the total heat
flux q̃w (line contours with levels from 1.0 to 3.0 with an increment of 0.2 in the right panels) for various Pr
decomposed through cGAN.

in the opposite sense, with q̃w peaks found slightly downstream and upstream of those of
q̃C

w for Pr = 0.2 and Pr = 5, respectively. The opposite behaviour of the q̃P
w distributions

for Pr = 0.2 and 5 clearly confirms this. Another difference is that the high heat flux
regions for Pr = 5 are significantly elongated in the streamwise direction compared with
those for Pr = 0.2. This kind of shift in the peak locations is obviously caused by the
different physical relationships between the surface heat flux and the flow field depending
on Pr, as described in figure 17. The decomposition algorithm captured this difference.

Figure 19 shows the two-point correlations along the streamwise direction Rq̃wq̃C
w
(rx)

and Rq̃wq̃P
w
(rx) for Pr = 0.2, 0.71, 2 and 5, for a quantitative investigation of the spatial
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Figure 19. Two-point correlations along the streamwise direction (a) Rq̃wq̃C
w
(rx) between surface heat flux q̃w

and the Pr-independent feature q̃C
w, and (b) Rq̃wq̃P

w
(rx) between surface heat flux q̃w and the Pr-dependent feature

q̃P
w).

relationship between the local heat flux, Pr-independent feature and Pr-dependent feature.
The surface heat flux for all Pr has a high correlation with the Pr-independent feature,
as confirmed by table 3, with peaks shifted at −50 < r+

x < 50. The correlation peaks for
Pr = 5 and 2 are observed at approximately r+

x = 35 and 20, respectively, while those for
Pr = 0.71 and 0.2 are found at r+

x = −10 and −35, indicating that the peak for Pr ≈ 1
is located in the centre, and shifts downward/upward as Pr increases/decreases. On the
other hand, the surface heat flux for all Pr shows a mild correlation with the Pr-dependent
feature, as shown in figure 19(b). As Pr varies, the correlation peaks shift in the opposite
direction to that of the correlation between the surface heat flux and the Pr-independent
feature shown in figure 19(a), but the amount of shift is smaller. Furthermore, the
correlation is asymmetric and even becomes negative for large rx for Pr > 1 and for large
−rx for Pr < 1. For a clear understanding of these correlations, we provide a schematic
describing the plausible streamwise distribution of the typical normalized surface heat
flux and the corresponding decomposed features for three ranges of Pr in figure 20. Three
distributions of locally high surface heat flux for each Pr regime for the same flow field
inferred from DNS data of the normalized surface heat flux shown in figure 18, which
is consistent with the schematic in figure 17, are plotted in the upper panel of figure 20
along with the corresponding Pr-independent feature. The corresponding Pr-dependent
features for each Pr regime are displayed in the lower panel. This clearly explains the high
correlation between the surface heat flux and the Pr-independent feature and the mild
and asymmetric correlation between the surface heat flux and Pr-dependent feature. The
shifts in the peak location of the two-point correlations shown in figure 19 are self-evident,
and the negative correlation between the surface heat flux and the Pr-dependent feature
for large distances can be explained by the schematic in figure 20. This also supports the
necessity of the decomposition algorithm, because a major common part clearly exists
among the locally high surface heat flux distribution, and the Pr-dependent components
are clearly distinct.

The Pr-independent feature tends to capture the spanwise variation that is most similar
to that for Pr = 0.71, as shown in figure 18. The spanwise one-dimensional energy
spectrum of the surface heat flux and the Pr-independent feature shown in figure 21(a)
quantitatively confirms that the energy spectra of the Pr-independent feature and the
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Pr > 1 Pr ≈ 1 Pr < 1

q̃w for Pr < 1
q̃w for Pr ≈ 1

q̃w for Pr > 1

x+
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q̃ P
w for Pr < 1

q̃ P
w for Pr ≈ 1

q̃ P
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Figure 20. Schematics describing typical distributions of q̃w, q̃C
w and q̃P

w for the same flow field for three
regimes of Pr. The vertical dashed lines indicate the different peak locations for q̃w and q̃P

w.

surface heat flux for Pr = 0.71 almost coincide in the high-wavenumber region, whereas
the spectra in the low-wavenumber region for Pr = 5 are similar. The Pr-dependent feature
clearly has a lower energy level in the low-wavenumber region than the Pr-independent
feature, except for Pr = 0.2, as shown in figure 21(b). It is noteworthy that the
Pr-independent feature shows a peak at κz = 7, indicating the capture of the average
spanwise spacing of the thermal streaks of 160 wall units for Pr = 0.71, 2 and 5, while the
spacing for Pr = 0.2 and 360 wall units is not reflected. Correspondingly, the spectra of the
Pr-dependent feature for Pr = 0.71, 2 and 5 monotonically decrease with the wavenumber,
whereas the spectrum for Pr = 0.2 shows a mild peak in the low-wavenumber range.

In this section we demonstrated how our algorithm decomposes the surface heat flux into
a Pr-independent feature and Pr-dependent features during the training process. For the
considered range of Pr, this decomposition clearly confirms that there exists a common
feature in the high heat flux events, but the Pr-dependent features are quite distinct. By
investigating the correlation between these features, we explored the effect of the Prandtl
number in determining their physical relationship with the surface heat flux.

4. Conclusion

We developed a NN combining cGAN with a decomposition algorithm to predict the
Prandtl number effect on the surface heat flux in a turbulent channel flow. The trained
model could accurately predict the local heat flux for any Prandtl number within the trained
range based only on the wall-shear stresses. The physical interpretation of the DL model
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Figure 21. One-dimensional energy spectra for decomposed fields with Pr. (a) Spanwise energy spectra of
the Pr-independent feature (q̃C

w) and surface heat flux (q̃w). (b) Spanwise energy spectra of the Pr-independent
feature (q̃C

w) and the Pr-dependent feature (q̃P
w).

using the gradient map allowed us to better understand the characteristics of the surface
heat flux depending on the Prandtl number than on the spatial correlation between the input
and output. Furthermore, we investigated the effect of the Prandtl number by observing the
decomposed features obtained using our model.

First, we evaluated the predictive performance of the developed cGAN compared with
that of the CNN and a multiple-linear model. The cGAN predicted the surface heat flux for
the untrained Pr with almost the same accuracy as for the trained Pr. Some statistics, such
as Nu and r.m.s. predicted by cGAN and CNN, almost matched those of DNS, whereas
the multiple-linear model showed large errors. In high-order statistics, such as skewness
and flatness, cGAN tends to underpredict slightly compared with low-order statistics, but
shows better performance than other models. For the PDF of the surface heat flux, our
model was able to predict locally high values of surface heat flux for both trained and
untrained Pr. On the other hand, the CNN showed a large error at high values of surface
heat flux. In the energy spectra of the surface heat flux for the trained Pr, cGAN slightly
underestimated the energy of DNS but performed better than the CNN. In the energy
spectra for the untrained Pr, our model was slightly inaccurate compared with those for
the trained Pr, but the model performed similarly or slightly better than the CNN.

Through gradient maps obtained using the trained model, we investigated the physical
relationship between the wall-shear stresses and surface heat flux. Because of the presence
of noise, the average gradient maps for various ranges of Pr were studied. We observed
that the positive peak of the average gradient map for the streamwise wall-shear stress
is located in the upstream region for Pr < 1 and in the downstream region for Pr > 1.
The average gradient map for the spanwise wall-shear stress was pronounced only for
Pr < 1 and showed positive peaks in the first and third quadrants and negative peaks
in the second and fourth quadrants. This pattern implies that the local heat flux can be
stronger when a pair of vortices exist downstream or when a vortex crosses diagonally.
In addition, for a more detailed analysis, we examined the instantaneous gradient map
with minimized noise using symmetry and homogeneity. From an investigation of two
sample fields showing strong heat flux, we discovered that the streamwise gradient of the
streamwise wall-shear stress was selectively strongly correlated with the surface heat flux.
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Furthermore, the spanwise gradient of the spanwise wall-shear stress is correlated with the
surface heat flux only when Pr < 1. These observations strongly suggest that the hotspot,
that is, the locally high heat flux region, is mostly found in the sweeping region for Pr > 1
and in the ejection region for Pr < 1. The hotspot can also be found in the down-flow
region near a streamwise vortex for Pr < 1. From a detailed analysis of the gradient map
obtained from the trained model, we clearly showed that a physical interpretation of the
DL model is indeed possible.

Finally, we analysed the effect of the Prandtl number by observing the decomposed
fields of the surface heat flux and the Pr-independent and Pr-dependent features obtained
from cGAN. Although the surface heat flux exhibits a peak at different locations
depending on the Prandtl number, a common characteristic is clearly captured by
the Pr-independent feature. The Pr-dependent features for different Prandtl numbers
exhibit distinct distributions. The two-point correlation between the surface heat flux,
the Pr-independent feature and the Pr-dependent feature indicates that the shifts of
peaks in the two-point correlation between them can be explained by the high heat flux
region for the sweep and ejection events found in the analysis of the gradient map. The
effectiveness of the decomposition algorithm adopted in our study for training and in-depth
interpretation was demonstrated.

The limitations of the current approach are also discussed. The decomposition algorithm
separating the parameter-dependent component from the common component works well
only when the common part clearly exists in the non-negligible portion of the data
within the considered range. Otherwise, the learning process could be unstable and the
performance could be poor. Another factor that might be critical for successful learning is
the scaling property of the turbulence data, particularly the output of the DL algorithm.
Fortunately, the surface heat flux has a good scaling property for the considered range of
parameters; both the mean and r.m.s. values scale ∼ Pr1/2 (see figure 2). This property
was exploited in the normalization of the output of the learning network, which helped
in stable learning and proper performance of the decomposition algorithm. However, in
situations where such a nice scaling property is unavailable, successful learning cannot be
guaranteed. The gradient map, which was used in the interpretation of the trained network,
is known for its noisy nature because the network is strongly nonlinear and the learning
is based on statistical data. Averaging over various data can eliminate noise, but there is
loss of detailed information. In our analysis, we suppressed the noise in the instantaneous
gradient map using symmetry or homogeneity. However, these properties may not be
applicable in other problems. In this study we focused on the effect of the Prandtl number
in the predictability and analysis of the DL models. The effect of the Reynolds number
would be an interesting topic for extension of the current approach, particularly given that
deviations from the Reynolds analogy are another meaningful and worthwhile issue for
investigation.

In this study we clearly demonstrated that unified DL combining cGAN and the
decomposition algorithm can predict the surface heat flux for various Prandtl numbers
based on the wall-shear information and provided a physical interpretation of the trained
network using the gradient map, which can identify the Prandtl number effect in turbulent
heat transfer. The developed decomposition algorithm can be extended to the analysis of
the effects of other physical parameters such as the Reynolds number. Through a careful
investigation of the trained network, we provide evidence that the physical interpretation
of DL is indeed possible.

Funding. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by
the Korean Government MSIT (2022R1A2C2005538).
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Figure 22. Network architectures for cGAN. (a) Parameter-independent generator (GC) and (b)
parameter-effect generator (GP) in generator (G). (c) Discriminator (D).
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Appendix A. Architecture of conditional generate adversarial networks

The network architecture of cGAN with a decomposition algorithm is presented in
figure 22. Our model consists of a generator and discriminator, and the generator is divided
into two parts: a parameter-independent and parameter-effect generator. Figures 22(a) and
22(b) show the parameter-independent generator (GC) and the parameter-effect generator
(GP) in the generator (G), respectively, and figure 22(c) shows the discriminator. Here
GC takes as inputs the wall-shear stresses, streamwise and spanwise shear stresses, and
generates Pr-independent features as outputs; GP predicts the Pr-dependent features using
Pr-independent features, wall-shear stresses and the Prandtl number. Finally, the surface
heat flux for Pr can be obtained by adding Pr-independent and Pr-dependent features. For
GC and GP, skip connections with n × n downsampling are applied for efficient learning of
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Figure 23. Training and validation errors of surface heat flux q̃w for trained Pr(= 0.2, 0.71, 2, 5).
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Figure 24. Probability density function (p.d.f.) of surface heat flux for low Pr obtained using DNS.

large-scale structures, and the number of layers and feature maps are the same. The size of
the discrete convolution (Conv. in figure 22) is 3 × 3, and the sizes of both upsampling and
downsampling are 2 × 2. For the discriminator, the input data are the wall-shear stresses,
surface heat flux and the Prandtl number, and the sizes of convolution and downsampling
are 3 × 3 and 2 × 2, respectively. The last two layers are fully connected (FC in figure 22c).
The batch size and the total number of iterations were 16 and 500 000, respectively, and the
learning rate was fixed at 0.0001. The Adam optimizer suggested by Kingma & Ba (2014)
was applied to update the weights, and the initialization suggested by He et al. (2015) was
used for the initial weights. For comparative models in § 3.1, the architecture of the CNN
and multiple-linear models is only the generator (G), including GC and GP, of the cGAN,
and the shallow CNN consists of two convolution layers with the 16 hidden feature maps
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Figure 25. Instantaneous surface heat flux for low Pr obtained from wall-shear stresses using cGAN.

and the leaky ReLU function. The multiple-linear models adopted a linear function instead
of the leaky ReLU function.

Appendix B. Training process of conditional generative adversarial networks

In order to confirm the training convergence of cGAN, the training and validation errors
of the normalized surface heat flux q̃w for trained Pr are presented in figure 23. The
training and validation data are 1000 and 100 fields with �t+ = 9, respectively, where
the validation data are sufficiently decorrelated with the training data. Mean squared loss
is obtained using subregions (64 × 64) for all training and validation datasets every 1000
iterations, and the total number of iterations is 500 000. In the training process cGAN
showed the lowest error for Pr = 0.71 and 2, but a relatively larger error is observed for
Pr = 5 than other Prandtl numbers. However, for all Prandtl numbers, the training and
validation errors are almost similar, indicating that our network model does not overfit the
training data.
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Figure 26. Statistics of surface heat flux (qw) for trained Pr (= 0.005, 0.01, 0.025) and untrained Pr
(= 0.001, 0.05) predicted through cGAN; (a) Nu and r.m.s., (b) skewness and flatness.

Appendix C. Prediction of surface heat flux at low Prandtl numbers

In this section we describe the performance of the cGAN in predicting the surface heat
flux at low Prandtl numbers from the wall-shear stresses. The trained Pr values are 0.005,
0.01 and 0.025, and the untrained Pr values are 0.001 and 0.05. We collected from DNS
the wall-shear stresses and surface heat flux fields at every �t+ = 9. The numbers of
training and validation data fields for trained Pr are 1000 and 100, respectively. The
number of testing data fields for all Pr is 1000. The untrained data were collected far
from the training data. To train the DL, the surface heat flux for Pr and the wall-shear
stresses were normalized by their own mean and standard deviation, respectively. In the
training process the input and output data in the subregion (64 × 64) in the x–z plane
were randomly sampled. Before presenting the prediction performance, we investigate the
probability density function of the heat flux for low Pr using the DNS data in figure 24.
As Pr decreased, the surface heat flux approached a Gaussian distribution. In addition, the
fluctuations became very small, and a strong local heat flux was rarely observed. As shown
in figure 2(a), the Nusselt number is close to 1, which is the Nusselt number for the pure
conduction state for the considered range of Pr, suggesting that the role of turbulence in
enhancing the heat transfer is minimal.

In figure 25 the surface heat flux fields for the trained and untrained Pr predicted using
the trained cGAN are showed and compared with DNS data. The predicted local heat
flux at Pr = 0.01 is slightly underpredicted compared with DNS, but the overall predicted
heat flux field shows a distribution similar to that of DNS. For untrained Pr, our model
somewhat underpredicted the local heat flux compared with that of DNS, but the generated
field was qualitatively similar to that of DNS.

The basic statistics of the predicted surface heat flux, such as the mean, r.m.s., skewness
and flatness for both the trained and untrained Pr, are presented in figure 26. As shown
in figure 26(a), the behaviour of Nu approaching 1 with decreasing Pr is accurately
predicted for both trained and untrained Pr. Our model predicts r.m.s. with some error,
even for the trained Pr, but the decreasing trend with Prandtl number is well captured.
As shown in figure 26(b), the skewness of the surface heat flux monotonically decreased
with decreasing Pr, whereas the flatness approached 3, indicating that the surface heat
flux approached a Gaussian distribution. These behaviours were well predicted by cGAN
although, for Pr = 0.001, a small value of skewness was overpredicted.
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Figure 27. One-dimensional energy spectra of surface heat flux (qw) for trained Pr (= 0.005, 0.01, 0.025)
and untrained Pr (= 0.001, 0.05) predicted through cGAN. (a) Streamwise and (b) spanwise energy spectra.
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fluctuation p̃, and (b) between the spanwise wall-shear stress τ̃w,z and the gradient of pressure fluctuation ∂ p̃/∂z.
(c) Schematic for physical relationship between spanwise wall-shear stress and pressure fluctuations.

Finally in figure 27, we show the energy spectrum of the surface heat flux for trained
Pr. In both the streamwise and spanwise energy spectra, cGAN underpredicts DNS data at
low wavenumbers and shows a noisy kink near the highest wavenumber. The streamwise
and spanwise spectra appear similar for the smallest Pr(= 0.001) considered, in the sense
that E(κx) � E(κz = κx/2), implying extended isotropy, though this trend becomes less
pronounced as Pr increases. No such trend was observed in the behaviour of the surface
heat flux for high values, i.e. when Pr > 0.1 (see figure 9).

Appendix D. Pressure effect for prediction of surface heat flux

In this section we investigate the role of wall pressure in the prediction of the surface heat
flux when it is considered as extra input information. In this test the prediction model of
the surface heat flux, training process and the number of paired data were kept the same as
those described in § 3.1. The correlation coefficient between the target DNS data and the
predicted surface heat flux obtained using pressure as an extra input, as listed in table 4,
shows a slight improvement compared with the cases without pressure for both the trained
and untrained Pr. Although not presented here, there was no significant improvement in

955 A14-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1069


H. Kim, J. Kim and C. Lee

Model Trained Pr Untrained Pr

0.2 0.71 2 5 0.1 0.4 1 3 7

cGAN without pressure 0.890 0.968 0.975 0.922 0.802 0.918 0.967 0.945 0.876
cGAN with pressure 0.902 0.971 0.979 0.929 0.819 0.927 0.974 0.954 0.890

Table 4. Correlation coefficient between target data (DNS data) and surface heat flux with Pr predicted by
cGAN with/without pressure information.
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Figure 29. Average gradient maps of surface heat flux q̃w with respect to (a) streamwise wall-shear stress
τ̃w,x, (b) spanwise wall-shear stress τ̃w,z and (c) pressure fluctuations p̃ for Pr obtained through cGAN.

the accuracy of higher-order statistics such as the energy spectrum and PDF of the surface
heat flux.

The marginal improvement using the pressure information suggests that the wall
pressure information is redundant in the prediction of the surface heat flux. It is known that
the spanwise gradient of wall pressure fluctuations is strongly correlated with the spanwise
wall-shear stress (Kim 1989). As shown in figures 28(a) and 28(b), the wall pressure
fluctuations exhibit a positive correlation with the spanwise gradient of the spanwise
wall-shear stress, and the gradient of the pressure fluctuations is strongly correlated
with the spanwise wall-shear stress. This correlation can be understood by the schematic
presented in figure 28(c), in which both the high- and low-pressure regions on the surface
and the spanwise wall-shear stress can be caused by fluid motion associated with a
streamwise vortex. Therefore, the addition of pressure to the input did not significantly
affect the prediction of the surface heat flux.

Finally, we investigated whether the interpretability of the trained cGAN is influenced
by adding pressure fluctuations to the input through the average gradient map, which
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was obtained with pressure input in the same way as described in § 3.2. The average
gradient maps of the streamwise wall-shear stress, spanwise wall-shear stress and pressure
fluctuations are shown in figures 4(a), 4(b) and 4(c), respectively. The gradient maps of
the wall-shear stresses are almost similar to those of the trained cGAN without pressure
(see figure 12) for most values of Pr, except for the gradient map of the spanwise
wall-shear stress for Pr = 0.2, which shows a slight shift in the peaks in the upstream
direction compared with the case without pressure. The gradient map of the pressure for
Pr = 0.2 shows a strong negative peak at the centre, as shown in figure 29(c). Given
the correlation between the pressure and spanwise gradient of the spanwise shear stress
shown in figure 28(a), the role of pressure is to mitigate the effect of the spanwise shear
stress in determining the surface heat flux. Therefore, the wall pressure information did
not substantially contribute to an improvement in the prediction accuracy of the surface
heat flux.
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