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Martina SCHÄFER, Emmanuel LE MEUR
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ABSTRACT. A number of improvements have been made to an existing two-dimensional ice-flow model
applied to an alpine glacier. Analysis of the results of the existing model revealed several shortcomings.
The first concerns the lack of mass conservation of the applied alternating-direction-implicit (ADI)
scheme. A semi-implicit (SI) scheme is therefore proposed and the effects on mass conservation assessed
by a comparison with the ADI scheme. The comparison is first carried out with a simple theoretical
glacier for which the improvement is significant. Concerning the real case of Glacier de Saint-Sorlin,
France, the initial deviation in mass conservation was much less pronounced such that the new scheme,
although improving mass conservation, does not significantly change the modelled dynamics. However,
other shortcomings that have a more profound impact on the modelling of glacier behaviour have been
identified. The ice thickness may become negative over some gridpoints, leading to an inconsistency.
The problem is partly resolved by incorporating extra checks on critical gridpoints at the glacier border.
Finally, with the help of ice particle tracking, unrealistic ice settlement above the bergschrund has been
identified as the main reason for spurious dynamic effects and has been corrected.

1. INTRODUCTION

Owing to their characteristic geometry, correct modelling of
alpine-type glaciers usually requires three-dimensional (3-D)
models in order to capture the specific features of their com-
plex dynamics. However, for some glaciers, a relatively low
aspect ratio (vertical to horizontal characteristic dimensions)
allows the use of the shallow ice approximation (SIA) in
two-dimensional (2-D) ice-flow models, provided the em-
phasis is on large-scale dynamic results as demonstrated by
Le Meur and Vincent (2003) and Le Meur and others (2004).
For instance, with such a 2-D SIA model, the dynamics of
Glacier de Saint-Sorlin, France, have been modelled and
successively compared to measurement data, making it pos-
sible to tune a number of key parameters (Le Meur and Vin-
cent , 2003). Regarding the numerical scheme, this model
was based on a finite-difference approach making use of
the alternating-direction-implicit (ADI) method (Huybrechts,
1992).
A more recent appraisal of the model results, especially

when conducted with synthetic, simple-shaped glaciers,
showed that our implementation of this numerical scheme
did not ensure correct mass conservation. This led us to pro-
pose a different numerical scheme (Hindmarsh and Payne,
1996) that includes more implicitness than the ADI scheme
and solves the mass conservation problem. Although mass
conservation is important from a theoretical point of view,
the real question is how much non-conservation will affect
model behaviour, especially for real cases. Although the sen-
sitivity to mass conservation differs greatly depending on
the type of glacier modelled, it appears that in most cases
the changes in dynamics between the two schemes remain
limited. Note that checking for mass conservation with a
real case such as Glacier de Saint-Sorlin is difficult to carry
out. It was therefore decided to compare the two numerical

schemes in terms of final steady-state surfaces. Despite minor
differences in these surfaces, which tend to indicate that old
results from the ADI scheme are still significant, it was de-
cided to adopt the new scheme because of its relative ease
of implementation and the limited extra computer resources
it requires.
Whatever scheme is adopted, the way the ice flow is com-

puted from one gridpoint to a neighbouring point sometimes
leads to a physical inconsistency in the model, leading to
negative ice thicknesses at some points. Simply setting these
values to zero, as was initially done, is the simplest way
of dealing with the problem but inevitably alters the total
mass count. Some spurious dynamic effects could also be
expected. A solution that incorporates systematic checks on
the capability of peripheral points to provide ice to their
neighbouring points partly solves this problem and also con-
tributes to better mass conservation. Another inconsistency
inherent in the old algorithm is the colonization of ice in the
upper part of the glacier above the bergschrund, resulting
in an overestimation of the local mass balance which also
affects the ice dynamics. A solution in the form of a very
simple additional check is proposed and offers a satisfactory
remedy to the problem.
The paper is organized as follows: after identifying the

mass conservation problem, the main equations of the SIA
model are presented and used to introduce the new semi-
implicit (SI) scheme (section 2). This is compared to the ADI
scheme in section 3 for the simple case of a theoretical gla-
cier (mass conservation) and for Glacier de Saint-Sorlin (mass
conservation and steady-state geometries). Section 4 deals
both with the problems of negative ice thicknesses and the
upward extension of the glacier, and presents the proposed
solutions. This helped in learning more about the dynamics
of the glacier from the tracking of ice particles along their
flow through the glacier.
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Fig. 1. Staggered grid used for spatial discretization of the model.
The area extent requires Nx by Ny gridpoints, but, for calculation
purposes, indices are extended from 0 to Nx + 1 and Ny + 1 for x
and y directions respectively. Grid spacing Δ is the same in both
directions.

2. ADI AND SI SCHEMES
2.1. Main equations of the model within the
shallow ice approximation
The main equation of the 2-D SIA model is derived from
the continuity equation and gives the ice-thickness rate of
change as a function of the local surface mass-balance value
and the divergence of the flow:

∂H
∂t

= a −∇�q, (1)

where H is the ice thickness, �q the horizontal ice flux and a
the surface mass balance. Under the SIA (Hutter, 1983) with
a non-linear rheology for ice, namely the Glen’s flow power
law with exponent n = 3 (Glen, 1955), Equation (1) can be
written as the diffusion equation
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where S is the surface elevation and D the diffusivity. The
latter reads
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with flow law rate factorA (1.3×10−24Pa−3 s−1(m6N−3 s−1);
see, e.g., Vincent and others, 2000), ice density ρ (8.8 ×
102 kgm−3) and gravitational acceleration g (9.81m s−2).
∂H/∂t equals ∂S/∂t since ∂B/∂t = 0 (isostasy neglected).
Sliding is accounted for in the form of a Weertman-type slid-
ing law (Weertman, 1964) with a related sliding coefficient
As = 5.0× 10−14 m8 N−3 a−1 (for more details see, e.g., Le
Meur and Vincent , 2003). These equations are then approx-
imated using finite differences.

2.2. Finite-difference discretization schemes
A SI scheme providing more implicitness is introduced as
an alternative to the ADI scheme. A similar comparison of
various schemes with different degrees of implicitness has
been proposed by Greve and Calov (2002) and further details
can be found in Hindmarsh (2001).
For both the ADI and SI schemes, spatial discretization of

the transport equation is carried out by computing the diffu-
sion coefficients at ‘intermediate’ points on a staggered grid
(Fig. 1) that are offset from the main points (where thickness
and surface elevation are computed) by half a grid spacing
(Δ/2). This spatial scheme is fully described in Hindmarsh
and Payne (1996, method 1). Although shifted in the x and y
directions by Δ/2, indices for D are designated as integers
for clarity such that Di,j is computed from ice-thickness and
elevation values at the four neighbouring points with indices
(i, j), (i, j + 1), (i + 1, j) and (i + 1, j + 1).
Equation (2) is discretized by applying the finite-difference

method after integration between t0 and t0 + Δt (for details
see Appendix A). Depending on the chosen scheme (ADI or
SI) certain surface terms are evaluated explicitly or implicitly
in this discretized equation. The obtained matrix equations
are then solved for the new surface elevation Si,j at every
gridpoint of the domain.

2.2.1. ADI scheme
With the ADI scheme, forward integration from t0 to t0+Δt is
carried out in two half-steps (Δt/2) during which an implicit
direction x or y is chosen. At each half-step, the central point
and the two neighbouring points along the implicit direc-
tion are considered implicit, whereas remaining neighbour-
ing surface points along the other direction are kept explicit.
This leads to several tridiagonal matrices at each half-step
(see Appendix B for details).

2.2.2. SI scheme
The SI scheme improves the degree of implicitness by con-
sidering all neighbouring points implicitly. This leads to one
pentadiagonal matrix. Details of the terms of the SI matrix
can be found in Appendix C. Inversion of this matrix is car-
ried out using the LAPACK software package (Anderson and
others, 1999).
The main consequence in terms of CPU time is that the

SI scheme allows a larger time-step. The more implicit a
scheme, the larger the time-step it can adopt without be-
coming unstable. On the other hand, the new SI matrix is so
much larger that its single inversion is more time-consuming
than the previous ADImultiple inversions (see computational
efficiency below).

2.2.3. Time-step
Several runs have been carried out in order to optimize the
time-step in agreement with the grid spacing Δ = 50m. For
comparison of the two methods, a time-step of 0.05years
initially optimized for the ADI scheme will be used. Because
of a higher degree of implicitness for the SI scheme, the as-
sociated optimal time-step can be increased up to 0.3years.
However, to avoid any spurious effect from too large a time-
step, a value of 0.1years will be used hereafter for simula-
tions only requiring the SI method.
To compare the efficiency of the two schemes, a 100 year

benchmark simulation with zero mass balance for a synthetic
glacier (described in section 3.1) was run with time-steps of
0.05 and 0.3 years for the ADI and SI schemes, respectively.
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Fig. 2. Time-dependent total mass of the circularly symmetric
synthetic glacier when modelled with the ADI and SI numerical
schemes. The results have already been corrected for negative ice
thicknesses as described in section 4.1. The inset shows the cross-
section of the synthetic glacier resting on an inclined plane.

With the ADI scheme, this simulation requires 19 s of CPU
time, whereas 74 s are needed for the SI scheme. Even with
fewer matrix inversions and a longer time-step compared to
the ADI scheme, the SI scheme still needs more CPU time.
Nevertheless, with grid sizes such as those used here, this
increase of the order of a factor of 3–4 remains acceptable
given the gain in accuracy expected.

3. COMPARISON OF THE DIFFERENT NUMERICAL
SCHEMES IN TERMS OF MASS CONSERVATION
3.1. Mass non-conservation in the ADI case
The ADI scheme was identified as the cause of the mass con-
servation problem during simulations on a theoretical simply
shaped glacier carried out to provide a better understanding
of dynamic effects. The glacier was circularly symmetric with
the shape of a flattened hemisphere and rested on an inclined
plane with a uniform slope of 0.3, as can be seen in the
inset of Figure 2. This simple geometry avoids dynamic ef-
fects driven by topographic irregularities and resulting com-
plexities in the flow pattern. The experimental set-up con-
sisted of an initially circular glacier of 700m radius with a
given maximal thickness of 140m and a zero mass balance
over the entire area. The model was run forward in time for
100years with parameters similar to those used by Le Meur
and Vincent (2003), that is a grid spacing of 50m, a time-
step of 0.05years and with sliding incorporated. As can be
seen from Figure 2 (curve labelled ADI), the total mass of
the glacier is not constant and a gain in mass of about 5%
can be detected after about 10 years of simulation. Despite
a much less pronounced mismatch for the real case of Gla-
cier de Saint-Sorlin (see section 3.3), this led us to question
the ADI scheme or at least the way it is implemented in the
model.

3.2. Mass conservation with the synthetic glacier in
the SI case
The same experiment as in section 3.1 was performed with
the new SI scheme, and the corresponding mass of the
synthetic glacier during the 100 year simulation is depicted
in Figure 2 (curve labelled SI). As can be seen from the
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Fig. 3. Time-dependent total mass of Glacier de Saint-Sorlin for the
two numerical schemes with zero mass balance. The same correc-
tion with regard to negative ice thicknesses as in Figure 2 has been
applied.

figure, no mass change is detectable, which shows the
efficiency of the new scheme with regard to mass conser-
vation.

3.3. Evolution of Glacier de Saint-Sorlin
A similar comparison was then carried out for the more real-
istic case of Glacier de Saint-Sorlin. Again, themodel was run
forward in time for 100 years starting from the 1998 surface
of the glacier (see, e.g., Le Meur and Vincent , 2003) and with
a prescribed zero mass balance throughout, which made it
possible to focus on the ability of the numerical scheme to
conserve mass. As Figure 3 shows, the SI scheme strictly
conserves mass similarly to the previous case, whereas a
mass loss is observed with the ADI scheme. However, note
that the Saint-Sorlin case is much less sensitive to mass non-
conservation than the theoretical glacier. The mass loss after
100 years of simulation is less than 0.2%.
The same experiment with a natural mass-balance field

made it possible to assess more realistically the impact of
the numerical scheme on the ice dynamics. The same com-
parison experiment (apart from the duration, which is now
300 years to ensure a steady state for the non-zero mass
balance) was considered with both schemes, forced by the
1957–1997measured average mass-balance field for the gla-
cier (see section 4.2 and Fig. 4). Mass conservation is more
difficult to assess here because the total ice mass count is
modified by the prescribed surface mass balance and the
fact that the glacier extent varies during the simulation. How-
ever, the SI scheme still proves more efficient (not shown).
The focus is now on the comparison of final steady-state sur-
faces for both cases. As depicted in Figure 5, some changes
can be detected, but they remain minor and are essentially
concentrated at the glacier snout. Because of this limited
sensitivity of Glacier de Saint-Sorlin to the numerical scheme
with regard to mass conservation and ice dynamics, previous
results such as those of Le Meur and Vincent (2003) can still
be considered as significant for the overall glacier dynamics.
However, as demonstrated above, some theoretical glacier
configurations are definitely more sensitive, and we believe
that switching to the SI method constitutes a real improve-
ment in the correct representation of ice dynamics of several
real-case glaciers.
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Fig. 4. Average measured mass balance for Glacier de Saint-Sorlin
for 1957–99 (adapted from Le Meur and Vincent , 2003).

3.4. Explanation for the mass-conservation
properties of the ADI and SI schemes
With a zero surface mass balance, Equation (1) can be written

∂H
∂t

= −∂qx
∂x

− ∂qy
∂y

. (3)

For mass to be conserved, spatial integration of the discret-
ized flux divergence (∂qx/∂x + ∂qy/∂y ) should equal zero.
Integration of ∂qx/∂x in the x direction can be written

such that all terms except those at the border of the grid can-
cel each other. The remaining border terms, which are pro-
portional to the corresponding diffusion coefficients, finally

reduce to zero since the domain is chosen such that its outer
fringe remains ice-free, leading to zero diffusion coefficients
there (for details see Appendix D1).
By contrast, spatial integration at the same half time-step

of the term ∂qy/∂y in the y direction is not equal to zero
(see Appendix D1) because of remaining terms of the form

Dl,k
[(
St0l,k+1 − S

t0+Δt
2

l,k+1

)
+

(
St0l,k − S

t0+Δt
2

l,k

)]
, (4)

l = i, i + 1, k = 1, . . . ,Ny − 1.

The same calculation for the second half time-step leads to
a similar result, which does not cancel out that of the first
half time-step. Our implementation of the ADI scheme is
therefore inherently non-mass conserving. It is possible to
imagine another form of the ADI scheme (Appendix D2) that
would be inherently mass conserving, but this alternative
shows problems regarding numerical stability.
It can easily be shown that the SI scheme conserves mass,

since ∂qx/∂x and ∂qy/∂y both have the same expression as
∂qx/∂x computed in the ADI scheme (by replacing t0+Δt/2
with t0 + Δt ), which equals zero after spatial integration.
A closer look at the remaining terms in Equation (4) shows

that with the ADI scheme the non-conservation of mass
should be more pronounced where the glacier undergoes
the largest thickness changes. This was confirmed by running
the model forward in time for 5 years with the SI scheme and
the same glacier as above. From there, one more time-step
was integrated with either the SI or the ADI scheme, and the
differences in the final thicknesses were assessed.
Since the SI method conserves mass, points where there

are differences with the ADI method are most likely those
where errors on mass conservation originate. As can be seen
in Figure 6, these areas correspond to those where the gla-
cier surface evolved most over the last time-step, which con-
firms the link between mass non-conservation and the ice-
thickness rate of change. It is therefore not surprising to
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near the snout where the glacier undergoes the largest ice thick-
ness changes.

observe that the glacier area near the snout is mainly con-
served, since the initial glacier configuration is far from steady
state (an extremely thin and extended glacier), leading the
glacier to spread rapidly downstream. In this process of con-
verging towards steady state, driving slopes and thicknesses
rapidly reduce, thereby reducing the ice flow in such a
way that the total mass eventually stabilizes (with the ADI
scheme).
The fact that Glacier de Saint-Sorlin is much less sensitive

to the mass conservation problem (see section 3.3) now be-
comes clearer. The explanation probably resides in low dy-
namics for the glacier. Indeed, starting from the 1998 surface
under a zero mass-balance field, forthcoming ice-thickness
changes will only result from ice flow in a glacier with small
driving slopes (at least compared to those of the beginning
of the synthetic glacier).
Inspection of Equation (4) also suggests a possible effect of

the time-step on the mass error term. This expression can in
fact be summarized asD × ∂S/∂t ×Δt . If the diffusion coef-
ficient were time-step-independent, a time-step-independent
total mass error could be expected, as the cumulative mass
error should become something like D (Sfinal − S initial). How-
ever, because D changes from one time-step to another, the
error term grows with the chosen time-step, and in the par-
ticular case of the synthetic glacier we even observed strictly
linear growth.

4. FURTHER IMPROVEMENTS TO THE MODEL
4.1. Handling of negative ice thicknesses
Implementation of an ice-flow scheme requires careful at-
tention as some gridpoints may undergo negative ice thick-
nesses, especially in the vicinity of the border of the glacier.
In order to avoid the ensuing model crash, these negative ice
thicknesses were first unsatisfactorily reset to zero, leading
to a degradation in mass conservation and possible impacts
on the ice flow. For instance, resetting the negative ice thick-
nesses to zero in a 100 year simulation of Glacier de Saint-

Fig. 7. The two conditions of negative ice thickness resulting from
an erroneous ice-flow computation by the model.

Sorlin under zero mass balance led to an error of 20% on
the final mass (when using the SI scheme).
When considering Equation (1) in its discrete form, given

the new ice thickness at t0 + Δt ,

Ht0+Δt = Ht0 + Δt · (a −∇�q), (5)

it is clear that negative ice thicknesses can be a consequence
of a negative mass balance and/or of ice flow divergence
exceeding the available amount of ice.
The problem of mass errors resulting purely from surface

mass balance, especially with negative values downstream of
the ice margin, has been treated by Van den Berg and others
(2006). In the present case, such negative ice thicknesses
are simply set to zero. Methods to deal with negative ice
thicknesses resulting from ice flow divergence are described
in sections 4.1.1 and 4.1.2. Note that the results of Figures 3
and 5 have already been corrected using these methods.

4.1.1. Ice-free points at the border of the glacier
Because of the staggered grid and the way the diffusion co-
efficient is computed from neighbouring points, some ice
can theoretically flow from an ice-free point towards one
of its adjacent icy points, as shown in Figure 7a. In such a
case, corresponding coefficients in the matrix are set such
that outflow from this point as well as the relevant inflows
towards the neighbouring points are zero. If such an ice-free
point undergoes positive mass balance, the outflow remains
zero as described above and the final thickness is set to this
mass-balance value, which leads to a small error.
The ice-free gridpoints seem to account for most of the

mass error, given that the error in the run cited above
(100years, no mass balance, Glacier de Saint-Sorlin) is re-
duced from 20% to only 0.1%.

4.1.2. Lightly ice-covered points
This problem essentially concerns border points for which
the theoretical ice outflow exceeds the available ice, as
shown in Figure 7b. This is possible because this outflow de-
pends on the four neighbouring diffusion coefficients, which
are themselves computed from averaged neighbouring thick-
nesses and slopes. In fact, points where an excess of ice
outflow can potentially occur are almost systematically bor-
der points with less than 10 cm of ice and at least one of
the neighbouring points with more than 1m of ice, lead-
ing to an overestimation of the diffusion coefficient. This
error is therefore due to a geometrical problem, confirmed
by the fact that varying the time-step brought no notice-
able changes. We suspect a strong sensitivity to grid spacing
instead.
In this case the ice thickness is only set to zero, as in the

initial case. Mass conservation would require restricting the
outflow to the available amount of ice. This is not easy as
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Fig. 8. Steady-state ice-thickness distribution (a) and time-dependent total mass (b) for Glacier de Saint-Sorlin when ice is allowed to settle
above the bergschrund.

the outflow is split between the four neighbouring points.
Note that this error remains small compared to the error in
section 4.1.1.

4.2. Preventing spurious dynamics from ice above
the bergschrund
4.2.1. Unrealistic ice settlement
The upper part of the glacier is outlined by a bergschrund
above which no significant ice thickness can develop as
slopes are too pronounced. Snow may temporarily accu-
mulate there, but eventually avalanches or is blown away,
ending up on the glacier downstream where it contributes
to the mass balance. The mass-balance field depicted in Fig-
ure 4 already takes this extra snow into account as it is mea-
sured from stakes. Therefore, measurements should not be
extrapolated to the region above the bergschrund, as this
would be equivalent to counting the same snow twice in the
glacier budget.
In other cases, for instance, if the mass-balance field comes

from a mass-balance model (generally fed by climate model

outputs), this snow redistribution must be accounted for
explicitly. In any case, to prevent unrealistic ice development
over the upper part of the glacier, ice is not allowed to settle
over points satisfying the following three conditions: (1) the
point lies in the region above the bergschrund, (2) it was ini-
tially not glaciated (for Saint-Sorlin the 1998 surface is taken
as reference) and (3) the slope at that point is steeper than a
certain threshold. Note that this test still allows the glacier to
progress on flatter areas if allowed by the mass balance. This
check was already used by Le Meur and Vincent (2003) but
was not discussed explicitly.

4.2.2. Effects on modelled dynamics
The impacts on the glacier dynamics resulting from letting
the ice settle, or preventing it from settling, above the berg-
schrund have been assessed by simulating the glacier starting
from its 1998 surface under the 1957–99 average mass-
balance field with and without applying this check.
The SI-simulated steady-state surface of the glacier as well

as the time-dependent evolution of the total mass of the
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Fig. 9. As for Figure 8, but ice is prevented from settling above the bergschrund (with a slope threshold of 0.7).
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Fig. 10. Difference (m) between steady-state glacier surfaces with
and without ice-settling restriction (absolute values).

glacier when computed without this check is depicted in
Figure 8. Observing the figure, the most striking result is the
fact that, despite a negative specific mass balance of around
−0.25mw.e. a−1 (see Le Meur and Vincent , 2003 concern-
ing a similar experiment), the glacier gains mass. Moreover,
steady state is achieved only after 500 years of simulation
time, which contradicts previous results with a similar ex-
periment (Le Meur and Vincent , 2003).
The same experiment was performed with the ice pre-

vented from colonizing areas above the bergschrund, and
the corresponding results are depicted in Figure 9. The slope
threshold was set to 0.7 corresponding to a slope of 35◦. Re-
sults are quite different in terms of total ice mass evolution,
since the glacier now loses mass, consistent with a negative
specific mass balance, until achieving steady state. Further-
more, the time required to reach steady state and the final
surface are now more compatible with results of Le Meur
and Vincent (2003).
The final surface also differs significantly. The difference

between the two steady-state surfaces as depicted in Fig-
ure 10 is essentially concentrated over the glacier snout area
and to a lesser degree over the area above the bergschrund.
This suggests that over-thickening and over-expansion on the
lower part of the glacier is a direct consequence of the unre-
alistic ice settlement above the bergschrund. To confirm this,
the trajectories of particles deposited above the bergschrund
are computed according to the previous steady-state surface
of the glacier.

Tracking of ice particles
Ice tracking consists of following ice particles during their
travel inside the glacier from their sinking after deposition in
the accumulation zone until their re-emergence at the sur-
face in the ablation zone. Calculation of the trajectories is
done iteratively; at each time-step, the three components of
the steady-state velocity vector (u, v ,w ) are computed to ob-
tain the new position of each particle at the next time-step
(xn+1, yn+1, zn+1). The relationship between the new and the
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Fig. 11. Trajectories followed by ice particles deposited in the ‘for-
bidden zone’ (stars). The darker the featured trajectories, the longer
the corresponding times between deposition and re-emergence. The
two glacier extents with (full curve) and without (dotted curve) the
ice-settling restriction are also shown as well as the equilibrium line
(dashed curve indicating zero mass balance).

previous position (xn , yn , zn ) is simply

xn+1 = xn +Δt u,

yn+1 = yn +Δt v , (6)

zn+1 = zn +Δt w .

The starting point x0, y0 can be chosen freely and z0 is then
the surface elevation at this point. The iteration is stopped
when the ice particle reaches the surface. Δt has been set at
0.05years. Figure 11 shows the trajectories of selected par-
ticles deposited on the ‘forbidden settling zone’ (above the
bergschrund). Also depicted are the two steady-state extents
of the glacier when ice freely expands in the upper part (dot-
ted curve) and when it is restricted according to our criterion
(solid curve).
As expected, the figure confirms that particles deposited

in the region above the bergschrund re-emerge in the over-
expansion and over-thickening region in the lower part of
the glacier.
This result is consistent with allowing ice to settle above

the actual upper limit of the glacier when it has already been
included in the mass balance further down the glacier, hence
leading to an overestimation of the total glacier mass budget.
This causes the glacier to grow whereas it should shrink un-
der the 1957–99 average mass-balance field. The singularity
in the time-dependent mass evolution shown in Figure 8 can
now also be explained. Under a negative specific balance of
−0.25mw.e. a−1, the glacier starts shrinking but later grows
to an erroneous steady-state configuration due to the spuri-
ous ice settling over the bergschrund.

5. CONCLUSIONS
Several shortcomings of a 2-D SIA ice-flow model applied
to an alpine glacier have been identified and corresponding
solutions proposed. First, the initial ADI numerical scheme
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used so far proved deficient with regard to mass conserva-
tion, although the consequences on the actual dynamics of
Glacier de Saint-Sorlin remain limited. Because some other
types of glaciers might be more sensitive to mass conserva-
tion, an SI scheme is proposed as an alternative due to its
ability to conserve mass and for its low costs (easy imple-
mentation and limited CPU time).
Two other problems concerning the flow of ice and the

way it is accounted for in the model appear to alter the total
mass count with potential effects on ice dynamics. The first
illustrates the inability of the model to distribute ice in a
consistent manner between certain points, mainly on the gla-
cier periphery. Appropriate methods are proposed that solve
most of the errors. Lastly, with the help of particle tracking,
a tendency of the modelled glacier to extend above its up-
per bergschrund has been identified as the main cause of an
overestimation of the glacier mass balance with noticeable
changes on the glacier behaviour. A very simple solution
to this problem based on the slope of the bedrock is de-
scribed and demonstrates the importance of understanding
the real physics of glaciers rather than solely relying onmodel
equations.
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APPENDIX A. DISCRETIZATION OF THE
ICE-THICKNESS EQUATION
Discretization of the ice-thickness Equation (2) requires the
calculation of several derivatives according to

(
∂H
∂t

)
i,j
=
Ht0+Δti,j −Ht0i,j

Δt
, (A1)(

∂S
∂x

)
i+ 1

2 ,j
=
Si+1,j − Si,j

Δ
, (A2)

(
∂S
∂y

)
i,j+ 1

2

=
Si,j+1 − Si,j

Δ
. (A3)

Therefore,

|�∇S|2i+1
2 ,j+

1
2
=

( (Si+1,j−Si,j)
Δ +(Si+1,j+1−Si,j+1)Δ

2

)2

+

( (Si,j+1−Si,j)
Δ + (Si+1,j+1−Si+1,j)Δ

2

)2

(A4)

and

∂

∂x

(
D

∂S
∂x

)
i,j
=
1
Δ

(
Di,j+Di,j−1

2
· Si+1,j−Si,j

Δ

− Di−1,j+Di−1,j−1
2

· Si,j−Si−1,j
Δ

)
, (A5)

∂

∂y

(
D

∂S
∂y

)
i,j
=
1
Δ

(
Di,j+Di−1,j

2
· Si,j+1−Si,j

Δ

− Di,j−1+Di−1,j−1
2

· Si,j−Si,j−1
Δ

)
. (A6)

The diffusivity D splits into a deformation component Ddef
and a sliding component Dslid according to

D = AH5|�∇S|2︸ ︷︷ ︸
Ddef

+
5As
2
H3|�∇S|2︸ ︷︷ ︸
Dslid

(A7)
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and their discretizations lead to

Di,j,def = A
[
1
4

(
Hi,j+Hi+1,j+Hi,j+1+Hi+1,j+1

)]5

×
((
Si+1,j − Si,j

)
+

(
Si+1,j+1 − Si,j+1

)
2Δ

)2

, (A8)

Di,j,slid =
5
2
As

[
1
4

(
Hi,j+Hi+1,j+Hi,j+1+Hi+1,j+1

)]3

×
((
Si+1,j − Si,j

)
+

(
Si+1,j+1 − Si,j+1

)
2Δ

)2

. (A9)

Finally, the discretized version of the ice-thickness Equa-
tion (2) can be written

St1i,j ·
(
1 + 2k

(
Di,j +Di,j−1 +Di−1,j +Di−1,j−1

))
−St2i+1,j k ·

(
Di,j +Di,j−1

)
−St2i−1,j k ·

(
Di−1,j +Di−1,j−1

)
−St3i,j+1k ·

(
Di,j +Di−1,j

)
−St3i,j−1k ·

(
Di,j−1 +Di−1,j−1

)
= St0i,j + ai,jΔt , ∀i, j ,

(A10)

where k = (ρg3/5) × (Δt/Δ2).
In the last equation, the lower indices for the surface S refer

to the gridpoints. Depending on the position indices, S on
the lefthand side is evaluated either at t1, t2 or t3. Respective
values for these times depend upon the selected scheme and
reflect its degree of implicitness, as detailed in Appendices B
and C. The terms on the righthand side and the diffusitivityD
are always evaluated explicitly, that is, at time t0.

APPENDIX B. ADI SCHEME
Forward integration of Equation (2) is carried out in two
half-steps during which an implicit direction is chosen. For
instance, during the first half-step, the system is solved
according to the lines x, y where the x, y directions are de-
noted by the indices i, j. This implies that the system vari-
ables can be reduced to the central point (i, j) and the two
neighbouring points along the implicit direction with indexes
(i−1, j) and (i+1, j). Therefore, upper surface points St0+Δt/2i,j ,

St0+Δt/2i−1,j , St0+Δt/2i+1,j are considered implicit (evaluated at t0 +
Δt/2), whereas remaining neighbouring surface points along
the y direction (St0i,j−1, S

t0
i,j+1) remain explicit (i.e. evaluated

at t0). That means t1 = t2 = t0 + Δt/2 and t3 = t0.
For each of the lines (terms of constant index j), this leads

to a system of Ny equations with three unknowns (Ny being
the number of rows) written in a matrix form implying a tri-
diagonal matrix. After inverting all of the Nx resulting
matrices (Nx being the number of lines), an intermediate
surface at t0 + Δt/2 is obtained, and from this surface, the
second step of the forward integration is now performed
according to the rows (y direction) in order to provide the
final surface at t0 + Δt . This procedure is exactly the same
as above but with inversion of indices i and j. It then leads
to t1 = t3 = t0 + Δt , t2 = t0 + Δt/2.

APPENDIX C. SI SCHEME
In this scheme, all neighbouring points are considered im-
plicitly, that is, directly at t0 + Δt , leading to t1 = t2 = t3 =
t0 + Δt . The area needs to be swept only once, leading to
a system that can now be expressed with a pentadiagonal
NxNy × NxNy matrix resulting from NxNy equations with
five unknowns (central and all neighbouring points evaluated
at t0 + Δt ),

A�St0+Δt = �Bt0 , (C1)

where �St0+Δt is the vector of all implicit surface elevations
St0+Δti,j , A is a pentadiagonal matrix and �Bt0 is a vector of all
explicit terms, including the previous step surface and mass
balance at all NxNy gridpoints (i, j) of the domain.
Reshuffling Equation (A10) gives the entries of theAmatrix

of Equation (C1). A is a Nx · Ny × Nx · Ny matrix, indexed
by ind = (j − 1) ·Nx + i.
With c1 = 0.5× Δt/Δ2, the entries of the five diagonals

of A can be written

Aind,ind−Nx = −c1 (Dt0i,j−1 +Dt0i−1,j−1), (C2)

Aind,ind−1 = −c1 (Dt0i−1,j +Dt0i−1,j−1), (C3)

Aind,ind = 1.0 + 2c1 (D
t0
i,j + D

t0
i−1,j−1 + D

t0
i−1,j +D

t0
i,j−1),

(C4)

Aind,ind+1 = −c1 (Dt0i,j +Dt0i,j−1), (C5)

Aind,ind+Nx = −c1 (Dt0i,j +Dt0i−1,j ). (C6)

The remaining terms are equal to zero. The values of the
vector �B are given by

Bt0ind = aindΔt + S
t0
ind. (C7)

APPENDIX D. MASS CONSERVATION
D1. ADI case
Once integrated over the first half time-step with the ADI
scheme, the x and y derivatives of the flux along the x and
y directions can be expressed as

∂qx
∂x

=

c
2Δ2

[
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2
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S
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2
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2
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(
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2
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2
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(D1)

and

∂qy
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=

c
2Δ2

[
Di,j

(
St0i,j+1 − S

t0+Δt
2

i,j

)
−Di,j−1
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2
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)
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(
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(D2)
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where c = 2(ρg)3/5. Spatial integration of ∂qx/∂x gives the
following equations for all values of j:

Δ ·
Nx∑
i=1

∂qx
∂x

=

c
2Δ
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2
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and finally goes to zero since the domain is chosen such
that its outer fringe remains ice-free, leading to zero diffusion
coefficients at points (0, j), (0, j − 1), (Nx , j) and (Nx , j − 1).
Spatial integration at the same half time-step of the term

∂qy/∂y in the y direction gives
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for all i. Because of remaining terms of the form

Dl,k
[(
St0l,k+1 − S

t0+Δt
2

l,k+1

)
+

(
St0l,k − S

t0+Δt
2

l,k

)]
, (D6)

l = i, i + 1, k = 1, . . . ,Ny − 1,
spatial integration of ∂qy/∂y (and therefore that of ∂qx/∂x+
∂qy/∂y ) over the first half-step is not equal to zero.

D2. An alternative form of the ADI scheme
In order to guarantee Δ · ∑Nx

i=1 ∂qx/∂x = 0 as well as

Δ ·∑Ny
j=1 ∂qy/∂y = 0 at each half time-step, another form

of the ADI scheme can be proposed. So far, all Si,j terms
(first line of Equation (A10)) have been considered to be
implicit for both half time-steps, whereas Si,j [1 + k (Di,j +
Di,j−1 + Di−1,j +Di−1,j−1)] could be considered implicit
and Si,j [k (Di,j + Di,j−1 + Di−1,j + Di−1,j−1)] left explicit.
Over the first half time-step, this leads to the same expres-
sion for ∂qx/∂x as before, whereas the expression for ∂qy∂y
then reads
∂qy
∂y

=
c
2Δ2

[
Di,j

(
St0i,j+1 − St0i,j

)
−Di,j−1

(
St0i,j − St0i,j−1

)
+ Di−1,j

(
St0i,j+1 − St0i,j

)
−Di−1,j−1

(
St0i,j − St0i,j−1

)]
.

(D7)

It can easily be shown that this leads to Δ·∑Ny
i=1 ∂qy/∂y = 0

(similar to the approach used with Equation (D2)). An analo-
gous calculation leads to the same result for the second half
time-step.
Although it is inherently mass-conserving, under certain

geometrical conditions this scheme is numerically unstable
unless abnormally small time-steps are used. In a sensitivity
test, we observed that some reasonable geometries (bedrock
and ice surface slopes) require very small time-steps of the
order of 0.001years. This means that in order to avoid any
numerical instability for the various geometries possibly en-
countered with a real glacier, the time-step has to be ex-
tremely small. It was therefore impossible for us to use an
ADI scheme that was both inherently mass-conserving and
numerically stable.
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