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WELL-POSEDNESS OF DETERMINING THE SOURCE TERM
OF AN ELLIPTIC EQUATION

WENHUAN YU

In this paper the inverse problem for determining the source term of a linear,
uniformly elliptic equation is investigated. The uniqueness of the inverse problem
is proved under mild assumptions by use of the orthogonality method and an
elimination method. The existence of the inverse problem is proved by means of
the theory of solvable operators between Banach spaces, moreover, the continuous
dependence of the solution to the inverse problem on measurement is also obtained.

1. INTRODUCTION

Identifying the coefficients, the boundary conditions, and/or the source term of a
partial differential equation via use of some additional information about the solution
to the partial differential equation is called an inverse problem. Inverse problems, of
which most are not yet solved, remain as a challenge in applied mathematics.

In this paper the problem we deal with is to identify the source term of an elliptic
equation, but for a general elliptic system this problem is ill-posed.

For instance, one hopes to get a pair (u, f) satisfying

(1) Au = f(=z,y), (lay) eD= (0’7") x (0,m),
Onu |op= [O;ucos(n,z) + dyu cos(n,y)] lep= g,
on the basis of a measurement of u at the boundary 8D of D, that is, given

u |BD= z.

The solution to the above inverse problem, if it exists, is not unique. In fact, if
the solution of the problem is unique, then the problem with z = 0 and ¢ = 0

should only have the zero solution (u,f) = (0,0). However, the function pair
(u,f) = (sin2 zsin?y, 2 cos 2z sin® y + 2 cos 2y sin® z) satisfies (1) and (2) with z =0
and ¢ =0.
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Many mathematicians have studied various inverse problems for elliptic equations.
For a simple survey we refer to [2, 3, 4, 9, 15, 16] for identifying coeflicients, [6, 19] for
identifying boundary values, [1, 7, 8, 12, 13, 14, 18, 20] for identifying source terms
of elliptic equations. We have not included a lot of papers concerning computational
methods that solve inverse elliptic problems.

One of the main purposes in studying inverse problems is to discover adequate
conditions, under which the solutions of the inverse problems exist, are unique, and/or
depend continuously on measurements.

Prilepko [13, 14] proved that the source term of the Poisson equation can be
uniquely determined if it is independent of one of the variables and is monotone.

Vabishchevich [18] also proved that determining the source term is unique but it
must satisfy some curious conditions.

In this paper the inverse problem we address is to identify a pair (w,q) satisfying

Lw = g(z)f(z,y) + #(=,y), (z,9) e D=0x(0,Y),
(3) avw |Bﬂ= ¢11 Yy E (an)s
w |y=0= ¢2(:z:), ayw |y=Y= "/’3(3)a zc Q,

and
(4) w |y=Y= ¢4(.’I)), z € Q)

where

Lw = 82w+ h(z)Byw + Y 8i(aij(2)05w) + D bi(2)Biw + c(z)w,

i,j=1 1=]
Oyw = 0w/0y, Gw=0w/0z;, O,w= Z a;j0jw cos (n, z;),
i,j=1

n normal to the boundary 991.

Khaidarov showed the uniqueness for the inverse problem (3) with (4) and h =0
in [7, 8] under the following assumptions: (1) f(z,y) is strictly positive, and (2) f is
monotonic with respect to y, that is, d,f(z,y) > 0 and 9,f # 0.

In this paper we obtain the same results about the uniqueness under the weaker
assumptions that f(z,y) is allowed to take zero on a set of measure zero when
9,f(z,y) 2 0 and 8,f # 0, or f(z,y) has a derivative bounded from below, with
respect to y, or f does not depend upon y, that is, 0,f = 0 when f > 0, using an
orthogonality lemma, a simple transform, or an elimination method.
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Amirov [1] obtained existence of an inverse problem identifying the source term
of the Poisson equation in the square integrable function class using expansions of
functions into eigenfunctions of the Laplacian operator.

The other problem we deal with is about existence in the inverse problem, that is,
for any 4 we hope to get (w,q) satisfying (3) and (4).

In this paper we obtain existence in the above-mentioned inverse problem in the
same space as that in the investigation of uniqueness, using the theory of solvable
operators between Banach spaces.

Furthermore, we obtain also the continuous dependence of the solution to the
inverse problem on measurement, which is closely related to the problem of uniqueness,
using the Banach inverse operator theorem.

Therefore, it is proved that the above-mentioned inverse problem is well-posed in

Hadamard’s sense.

2. PROBLEM STATEMENT

From now on, we suppose that ¢, f,¥1,v%2,%¥s,v¥4,aij,bi,h,c,2, and Y are given
and make the following assumptions:

H1.

aij’bi € Cl+a(m7 C, he Cu(ﬁ)’ ¢1f € Ca(ﬁ)’ C(Z) < Oa
vIE <) aij(@)éit < plél’, VEER™, VzeQ,

i,j=1

where ¢ > 0 and v > 0 are constant, and C**t® and C® are Holder
spaces, for example, see [5].

H2. Q CR™ is a bounded open set with a boundary 9Q € C?***, Y < +o0,
and = QU N.

H3. ¢, € C***(D), ¢s € Cl+°‘(m Pa,s € C2+°‘(§) and they satisfy the
consistency condition of order 0, stated in [5]; ¢ € C“(ﬁ); c(z) €0,
c(z) - 3 0:ibi(z) <0, h(z) 20, Vz € Q.

H4. 9,f20, 0,f #0, f(z,y) >0 almost everywhere in D.

H5. ¢f(z) € =6 <0, c(z) — Y 3bi(z) < —6,Vz € Q; f(z,y) 2 1> 0,

Oy f(z,y) = —e, VY(z,y) € D and 76 —e>0.
H6. 9,f =0 and f(z,y) = f*(z)>0,Vz € Q.

It is well-known that the problem

Ly = d’(i’:,y), (E,y) € D, auv lBﬂz Il’la v |y=0= 1/)21 ayv |y=Y: 1/)3
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has a unique solution v € V = C?**(D) by (5] if the assumptions H1-H3 are true.
Hence, let ©w = w — v and then it follows from (3) and (4) that

(5) Lu = q(:z:)f(:z:, y)a ou I8ﬂ= 0, u Iy:D: 0, ayu |y=Y= 0,
and
(6) uly=y=2(z), z€.

It is obvious by the consistency condition that 8,z |gq= 0.
By [5] there exists a unique solution of (5), u € V, corresponding to ¢ € C*(Q),
which is denoted by » = u(q) = u(z,y;g) to show the dependence of u on g.

From now on we shall deal with the inverse problem for identifying (u, g) satisfying

(5) and (6).

3. UNIQUENESS

To begin with, we need
LEMMA 3.1. Suppose w is the solution to the problem

(7N Lw = F(z,y), O,wlen=0, wly==0, yw |,=y=0.

Then we have

Y
/ / F(z,y)v(z,y)dzdy = / [w(z,Y)B(z) — w(z,Y)0yv(z,Y) + 0, w(z,0)g(z)] dz,
0 Q Q
where v € V = C““‘"(ﬁ) is the solution to an adjoint system of (3), that is,
(9) L' =0, Gvlea=0, v |y=0= —g(z), v |1/=Y= ,3(:1:),
where g,8 € C”‘""(ﬁ) is arbitrary and

L*v = 82v — h(z)Byv + Y _ Bi(aji(2)djv) Z‘a Yv) + c(z)v,

ij

(10) = 3Bty - bv) s

In particular, when w(z,Y) =10, Vz €, one gets

(11) /y:(]/‘;v(:c,y)F(:c,y)dzdy=/ng(z)ayw(:c,O)dz.
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PROOF: Because (9) has a unique solution v € V by [5], using Green’s formula we

have at once that
Y
/ / v(z,y)F(z,y)dzdy = / vLwdzdy = /[vayw — wdyv + hvw] |§=0 dz
o Ja D 0

+ /UY /80 Z{v Z a:;05w — w (Z ajibjv — b.-v) } cos (n,2:) + / ol

] D

= /n[w(:c,Y),B(:c) —w(z,Y)dv(z,Y) + 0yw(z,0)g(z)]dz.

o

THEOREM 3.2. Suppose the assumptions H1-H3 and one of the assumptions
H4, H5, and H6 hold. Then the solution to the inverse problem (5) and (6) for

determining (u,q), if it exists, is unique.

PROOF: Suppose that there are two solutions, (u1,¢1) and (u2,qz2), satisfying (5)
and (6). Set

U = uU; — Uy, q=q1 — q2;

then we have

(12) Lu = qf, a,,’u, |an= 0, u |y=o= 0, 6yu |y=y= 0.
and
(13) uly=y=0, z€Q.

Our purpose is to prove uw =0 and ¢ =0.

Let Q=0Q_UQo Uy, where Q- = {z € ©; ¢(z) < 0}, Q = {z € Q; ¢(z) =0},
and Q4 = {z € Q; ¢(z) > 0}.

Obviously, _ and Q4 are both open.

If Qo # Q, then 24 or Q_ is not empty. Moreover, if only one of them is empty,
for example, _ = 0 and Q4 # 0, then F(z,y) = g(z)f(=z,y) > 0, V(z,y) € D and
F # 0. When take g = 0 and 8 € C**=(f) with B(z) > 0, then the solution of (9),
v, is positive by the maximum principle (5], so

/oy [ @tz (e, ) dody > 0,

which is contrary to (11) in Lemma 3.1.

Hence, 24 and Q- are both nonempty, and then ¢(z) changes its sign in Q.

https://doi.org/10.1017/50004972700013502 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013502

388 W. Yu (6]

Set B(z) = sign g(z), = € Q, and then 8 € L™() C LP(Q) with p > 1 being
large enough.
Let the functions g1 € C{°(R™') and g, € CP(R™) satisfy gi(z,y) > 0,

g2(z) 2 0
[, alem)dedy=1, [ ale)ds=1.
Rm+l R™

Consider the regularisation operators

Anp(z,y) = n™* / a1(n(z — &),n(y — n))p(¢,n) dédn,
(14) b
Bok(z) =" [ ga(na ~ k() de

Set a,(-'-l) = Bnaij, b(") Brbi, hn = Brh, cn = Buc, gn = Bayg, Pn = B0, and
fn = 2. f, and then a{™, p™ sPny Cry@n,Bn € C°°(_), and f, € C°°(_). Moreover,

7 V1

E;),bfn) — aij,b; in C'H""(_) By Cnygn — h,c,q in C"O, respectively, f, > f in
C“(_), and B, — B in LP(Q) with |B.(z)| <1, Vz € Q. (“zn > z, in X” means

that z, converges strongly to ¢ in X .) Furthermore, according to the assumption H3

we have

cnfz) <0, cn(z) — Y 8:ibV(2) <0, VzeQ.

Consider the following problems:

(15) Lotn = qnfn, Bnunlea=0, un|y=0=0, Gyuns|y=y=0,
and

(16) Lrivn =0, Bjvn|sa=0, vnly=y=PFn, OGyvn ly=0=0,
where

Low= 8:11) + hnOyw + Z 0; (af.;‘)a,-w) + Z bS")a;w + cpw,
i, i
Brw = Z as;-“)a,-w cos (n,z;),

Lhv =820 — hndyw — Z 8 ({P850) = 3~ 8:(6™v) + cuv,
Biv = Z [Z a(k)a iv— b(k)v] cos (n, z;).
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It follows by [5] that there exist solutions u,,v, € C°(D) of (15) and (16), and then
by virtue of the maximum principle

17 -1 < v,(z,9) <1, (=z,9)€D.
Moreover, consider the following problem
(18) Lv=0, Tvlen=0, vly=y=p0, 0Oyv|y=0o=0.
There exists a unique solution v € W = H'/?(D) C L?*(D) of (18) by means of [10];

the definition of H'/?(D) can be found in [10]. Furthermore, by Lemma 3.3, which
will be proved next, it follows that

up > u in C***(D),

s .
v, v in W,

(19)

and then |v(z,y)| < 1, almost everywhere on D, where u is the solution of (12).

In addition, 8yvn, = wn are also the solutions to the following problems:
(20) Lrwn =0, Biwsloa=0, wnly=y=P =0,va(-,Y), wnly=0=0.

obviously, 8; € C*(f), and by Lemma 3.3 there is an M > 0 such that |8;(z)|,
lazvn(:c,Y)| < M,Vz e, Vn.Hence, it follows from Lemma 3.1 that

/ un(z,Y)[Br(z) — Oywn(z,Y )| dz = / gn(z) fn(z,y)0yvn(z,y) dzdy
0 D
(21) = Aqn(z)[fn(za y)v,,(:l:, y)] Iyy=0 dz — /D annayfn dzdy
= / n(2)[Bn(2) fn(2,Y) — fu(=,0)vn(z,0)ldz —/ GnVn0y fn dzdy.
Q D
If the assumption H4 is true and considering (19) one can get
un(Y) D u(,Y)=0 in Cz+°’(ﬁ).

Therefore,

, [ [ a2, ¥ )00n(a, ¥ da| < M o, ¥ oy mes 2 0.
Q

/n un(2,Y)B5(z) dz
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Let n go to infinity in (21):
0= [ a(@)B(e)1(2,Y) ~ o(2,01(z, O)lde —y/D qv, fdzdy
- /n+ o(2)[f(z,Y) - f(z,0)(z,0)]dz -/0 /n+ qvd, fdzdy

Y
+A I‘I(z)”f(l‘,y)+f($a0)v(2,0)]d:c+/o /n lg| v8y fdzdy

> [ a(@)f(eY) ~ £z, Ol - / Y /n et fdedy

Y
+ /n @) [f(=,¥) - (z,0)lds - / /n lal, fdady = 0.

The above contradiction is from the hypotheses Q4 # 0 and Q_ # @. So, ¢ =0, and
then u =0 by [5].

Next, if the assumption H5 is true, then instead of (12) and (13), setting u = we¥

we consider the following problem:

Lw + (2X + R)Oyw + (A% + hA)w = ¢(z) F(z,y),

(22)
0w len=0, w|y=0=0, Fyw|=y=0,

and

(23) wly=y=0, z€Q,

where F(z,y) = f(z,y)e ¥ and by the assumption H5 a negative constant A can be
chosen such that 8,F = (8, f — Af)e™¥ > [A\|n—¢ >0, ¥(z,y) € D and c(z) + A2 +
hA <0, c(z) + A2 + hA = Y 8:bi(z) < 0, Va € 2. (For example, take A € (¢/7,v5)
which satisfies all the above‘-mentioned requirements.

The inverse problem (22) with (23) satisfies H4. From the above conclusion we
can at once get ¢ =0, w = 0; therefore, u = 0.

Finally, if the assumption H6 is true, that is, f(z,y) = f*(z), then differentiating
the two sides of (5) with respect to y and setting w = dyu we have

(24) Lw = 0, B.,w |on= 0, w |y=y= 0.
Obviously, we have to obtain a boundary value of w on a lower base. Setting Vz € Q

0 if §yu(z,0) =0,

2 z) =
(25) (=) { sup{yn > 0; G,u(z,y) #0, Vy € [0,41)} otherwise ,
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by Lemma. 3.4, which will be proved next, we know that 3 € C**=(Q), %(z) € (0,Y),
and 8,u(z,¥(z)) =0, Vz € Q, that is,

(26) wl=0, I'= {(:B,‘;/)(:E)); z € ﬁ}

Thus, the generalised Dirichlet boundary value problem (24) with (26) has only the

zero solution in the open set
E ={(z,y); ¥(z) <y <Y,z €}

by the maximum principle, that is, dyu(z,y) = 0, V(z,y) € E. Therefore, u(z,y) =
u*(z), V(z,y) € E. But u(z,Y) = 0, so u(z,y) = 0, V(z,y) € E, and then
g(z)f*(z) =0, Ve € Q by (5). Hence g = 0 by the assumption H6. 0

LEMMA 3.3. Let a.g-c),bgk) 5 ai5,b; in C*H(Q), hi,ck,qx = h,c,q in C*(Q),

respectively, fx — f in C“(—E), and By = ( in LP(Q). Then there is a constant
M > 0 such that

Uk _‘, u in 02+a,1+a/2(5),

(27)
vy = v in W,
and
(28) |IB;(1’)| ’ |6:vk(zay)| <M, Vz € ﬁa

where uy,vi,u, and v are determined by (15), (16), (12), and (18) respectively, and
Bi(z) = Oyve(z,Y).
PROOF: By the assumptions one gets

k) 4 (k
(29) a0 s Ihecegilas Ifelles BBl < M,
where |||, denotes the norm in the space C*, |||, is the norm in the space L, and

the constant M; is independent of k. It is obvious by the theory of partial differential
equations, for example, see [5], that

(30) ““k’"k”2+a < My,
where the constant M, is also independent of k. From (30), particularly, one gets
1B2(2)| = 10yoa(2, V)], [020a(2, V)| < Iotllpye < M, VzeT,

which is just (28).
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Subtraction of (12) from (15) leads to:

(31)
Llur —u)=q(fe — f) + fr(ar — q) - Z 0; [(aff) - aij)ajuk]

- Z (bgk) - b,‘)a,'uk - (h;c - h)ayuk - (Ck - c)uk,

O (ur — u) lesa= — Z (aS;) - a.,'j)ajuk cos (n, z;),
i,j
U — U |y=0: 0, By(uk - u) |y=y= 0.

Considering (29) and (30) and then by |5)

8% — b,

&) _ 4.
a‘] — &ij

1+a

o =l < 36 {3 - i, + 3
i,j i

1A = Al + llok = ello + llge = glla + 15 = £l },

(32)

where M; is independent of k. Therefore, by the assumptions one gets
Uk — u in C 2+°‘(5).

Similarly, one has

8 .
Vg — U n w.

LEMMA 3.4. v defined by (25) possesses the following properties:
1. <(z) is defined and ¥(z) € [0,Y], Ve € Q.
2. Gyu(z,¥(z)) =0, Vz € Q.
3. YeCH(Q).

PRrOOF: First, we prove Property 1 for any z € Q.

If 0,u(z,0) # 0, then owing to u(z,0) = u(z,Y) = 0 by Rolle’s theorem there
exists ¥ € (0,Y) such that dyu(z,y) = 0. So, ¥(z) < ¥ < Y; hence, Property 1 is true.

It is obvious by the definition of 1 that Property 2 is true.

Finally, we prove Property 3.

Take any z; € O, and set y; = ¥(z1). If y1 > 0, then dyu(z1,y) # 0, Vy € [0,1).

There is no harm in supposing

(33) Oyu(z1,y) > 0, Vy € [0,31)-
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Thus, u(z1,¥2) > w(z1,y3) >0, VO<ys <y2 <1 .
We assert that 6§u(1:1,y1) < 0. In fact, the Taylor’s expansion of u(z;,y) at
(Elayl) is

1
w(21,y) = w(@1,91) + 50u(21,3)8y” + o(8y%), Vy € (31— .31 + 1),

where 6y =y — y1. Because u(z1,y) < u(z1,3), Vy € [0,31), 82u(z1,1) < 0.
Next, we prove ¥ € C@. If this were false, then there is Z € Q such that
¥ = ¥(x) is not equal to one of ¥ and ¥, where

¥ = lim sup ¥(z), ¥ = liminf ¥(z).

Obviously, 0 < ¢ < ¥ < ¥ < Y. Moreover, there are {z3,}, {z2} C Q such that 2}, —
Z, 22 - %, Y = limo9¥(zl), and ¢ = limpco¥(z2). Therefore, ,u(z,%) =
ayu(:'c',@ =0, a;‘:u(i,@ <0, and 6:11(5,@ <£0.
If 4 <y, then by (33) we have Byu(':&',_) > 0, which is contrary to Byu(fi,@ =0.
If ¥ > ¥, then by 8,u(%,¥) =0 and 92u(Z,y) < 0 thereis § > 0 with 46 < -7
such that

(34) Oyu(z,y) <0, Y(z,y) € B(%,8) x [§ + 6,7 + 26),

where B(Z,6) is the closed ball of radius § about z.
When n > N;(8) we have |22 —Z| < 6, so

(35) ayu(:cf,,y) <0, Yy € [y + 6,7 + 26].
On the other hand, if n > Ny(8), ¥(22) > % — 6 > § + 26, then
(36) Byu(zi,y) >0, Vy € [0,11)(2:31)) .

If n > max (N1, N2), then we have a contradiction comparing (35) with (36).
Now, we prove 9 € C? (ﬁ) Because for any z, €  and Vz € B; C Q

dyu(z,$(2)) =0,  FGu(z,¥(z)) #0,

there is a function p = p(z) by the implicit function theorem such that p € C*(B,),
d,u(z,p(z)) =0, Vz € By, and ¥(z1) = p(z,), where B; is a neighbourhood of z;.

We assert
¥(z) = p(z), Vz € B,,
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where B; C B is a neighbourhood of z;.

In point of fact, there is a neighbourhood of (z1,%(z1)), U, such that B:u(:c,y) +
0, VY(x,y) € U. Therefore, there exists a neighbourhood of z;, Bj, such that for any
z € B; the function ¢(y) = dyu(z,y) is strictly monotonic, and we also have

dyu(z,y) #0, Vz € Bs, Yy # ¢(z).

Thus, dyu(z,p(z)) = 0, Yz € B3N B is true if and only if ¢(z) = p(z), Yz € ByNB;3 =
B,.
Finally, we prove 9 € C’H"‘(ﬁ). Indeed, by the implicit function theorem it follows

that
_ 3;0,u(z,¥(z))
83u(:c,¢(:c)) ?

Considering Iaju(:c,d)(:c))l > ¢ >0, Vz € Q) one can get

Oip(z) = Vz € Q.

|Oi(21) — Oivp(z2)| 0;0yu(z1,y1) — 0;0,u(z2,92)| <

]
< 1/6 ~
/2 /2 )
(I-’c1 — 2>+ [y1 - yzlz) (Iz‘1 —za* + |y — 2 |2)
where y; = 9¥(2z:), (i1 =1,2).
Thus, ¥ € Cl+°‘(§). 0

4. EXISTENCE AND CONTINUOUS DEPENDENCE

First of all, recall the following definition from {17):

If A:X — )Y is a linear densely defined operator on X into ), then A’ is the
conjugate (dual) of 4 on )’ into X' where X' and )’ are conjugate (dual) spaces of
the Banach spaces X and ), respectively.

The annihilator, A+, of a set A C X' is defined by A+ = {z € X; (z,2') =
0, Vz' € A}, where (z,z'}) denotes the value of a functional z' at z, and the null space
of A is defined by N (A) = {z € X; Az =0}.

Furthermore, a set F' C X' is said to be total if to each z # 0 in X there
corresponds some ' € F' such that (z,z') #0.

From [17] one can get

LEMMA 4.1. Suppose that A is a linear closed dense defined operator. Then

1. R(A")" nD(A) = N(4),
2. R(A') is total in X' if and only if A™? exists,
3. R(A) is closed if and only if R(A') = N(A)*,
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where R(A') is the range of A' and D(A) is the domain of A.
Consider the operator
P:Q-K
(37)
Pg=u(,Y;q)

where u(g) is the solution of (5), @ = C*(Q), and
K={ve Cz+a(§); 0,v |an= 0}.

Obviously, KX is a Banach space with the norm of C“’"‘@.
LEMMA 4.2. Suppose that the assumptions of Theorem 3.2 hold. Then

1. P e £(Q,K), the space of bounded linear operatorson X to Y.

2. N(P)={0}.

3. |IPqllc < ealldllg, Vq € Q, where the constant c4 is only dependent
on aij, b,', h, C, f, Q, and Y.

PROOF: The result 2 is obvious by Theorem 3.2. The operator P is linear on @
into K by the formula

Pa=u(Yia) = [ G(.Yi€ma©)F(,n) dedn,
where G is the Green function of (5). Besides, it follows from [11] that

(39) llully < e2(llfall = + llullo)s

and one also gets ||ull, < c2||gf|lz under ¢(z) < 0, where V = C?***(D), |u|, =

sup |u(z,y)|, and F = C"‘(ﬁ). So,
(z.y)€D

1Pgllx = llu( Y39l < llulg)llv < e2llfall=-

Moreover,

If9llz = sup_{lg(z)f(=,v)I}

(z,y)eD
+ supf{la(e1)f(21, 1) — a(z2)f(z2, )|/ (Jon = 2al? + s~ 3a) ™}
< sup{If(2,9)a(2)1} + sup{l (21,31l la(21 — a(22))|/ |22 — 22|}
+sup{la(en)l (@1, m) - Fea, 1)l /(121 = zal” + ls —3a) ™}
< 171l Nalo + 51l Nl + 11 liala < lalig 1115
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where [[fllo = sup_|f(z,) and [gll, = suplg(s)]. Hence
(z,t)ED zEN

(39) 1Pqllx < callallg;

therefore, P € £(Q,K). a

LEMMA 4.3. Let the assumptions of Theorem 3.2 be true.
Then the range of P, R(P) = K, is a closed subspace of K. Moreover, Vz € K
the inverse problem (5) with (6) has a unique solution (u,q) € V X Q.

PROOF: Suppose that X = @, V =K, and A = P. So, by Lemma 4.2 one can
get that P is linear and continuous and that A'(P) = {0}. Hence, it follows by Lemma
4.1 that R(P')* = N(P) = {0}, and then R(P') = N(P)* = Q'. Thus, R(P') in Q'
is total by the definition. Using Lemma 4.1 again one gets that K is closed in K and
that the inverse operator of P, P~!, exists, that is, Vz € K there is a unique ¢ € Q
such that ¢ = P7'2z. Substituting g into (5) one can obtain u € V.

It is easy to check that (u,q) is the solution of the inverse problem (5) with (6). [0

THEOREM 4.4. If the assumptions of Theorem 3.2 are valid, then the inverse
problem (5) with (6) is well-posed in Hadamard’s sense, that is, for any z € K there
exists a unique solution (u,q) satisfying (5) and (6) simultaneously. Moreover, (u,q)
depends continuously upon z. In fact, the estimate

(40) lelly + llglg < e ll=lic

is true, where c; is a constant depending continuously on aij,bi,h,c, f,,and Y.

PROOF: In order to prove that for any z € K there is a unique pair (u,q) € Vx Q@
satisfying (5) and (6), obviously by Lemma 4.3, one only needs to prove K = K in
other words, it is sufficient to prove that the operator P defined by (37) is open. If
it were false, then Vn € N, Vg € @, there are k, € K such that k, = Pq and
llalg > nllkallx- In particular, take k, € K with [[kn]| = 1 and g» € Q with
[[gnll > n such that k., = Pgn.

By the Hahn-Banach theorem there are v} € Q' such that

loall =1, (gn,vn) =llgall, »=1,2,---.
Set v, = v/ |lgnll, n =1,2,---, then
(41) oall € 1/m,  {gn,va) =1, n=1,2,---.

On the other hand, R(P') = Q' and P’ is linear and bounded, so, P' is open by
[17]). Moreover, v, € Q' = R(P') and v, — 0 by (41), hence there exist w, € K' =
D(P') such that v, = P'w,, wn 2 0 in K'. Therefore,

[{gn; va}| = [{gn, P'wa)| = [(Pgn,wn)| = [{kn,wa)| < [|knll {lwnll = [lwa]l — 0,
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which is contrary to (41).
So far we have proved that the continuous linear operator P : @ — K is surjective
and injective, thus the inverse operator P~! : K — @ is continuous by the Banach

inverse operator theorem, for example, see [17], and then there is a constant ¢y such

that Vz€ X, g€ Q,
(42) lallg = [[P72|| < e2 ll=lix -

It is obvious that c, depends continuously on the estimate of P. Combining (42)
with (38) in Lemma 4.2 we immediately obtain (40). a

ConNcLUSION. The results of Theorem 2 are also valid for other boundary value
problems of the elliptic equation. For example, the inverse problem with Dirichlet
boundary-value condition and Neumann measurement: u(z,0) = u(z,Y) = 0 and
Oyu(z,Y) = z(z) or with Neumann boundary-value condition and Dirichlet measure-
ment: Gyu(z,0) = dyu(z,Y) = 0 and u(z,Y) = 2(z) are also well-posed under the

same assumptions as those in Theorem 1.
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