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WELL-POSEDNESS OF DETERMINING THE SOURCE TERM
OF AN ELLIPTIC EQUATION

WENHUAN YU

In this paper the inverse problem for determining the source term of a linear,
uniformly elliptic equation is investigated. The uniqueness of the inverse problem
is proved under mild assumptions by use of the orthogonality method and an
elimination method. The existence of the inverse problem is proved by means of
the theory of solvable operators between Banach spaces, moreover, the continuous
dependence of the solution to the inverse problem on measurement is also obtained.

1. INTRODUCTION

Identifying the coefficients, the boundary conditions, and/or the source term of a
partial differential equation via use of some additional information about the solution
to the partial differential equation is called an inverse problem. Inverse problems, of
which most are not yet solved, remain as a challenge in applied mathematics.

In this paper the problem we deal with is to identify the source term of an elliptic
equation, but for a general elliptic system this problem is ill-posed.

For instance, one hopes to get a pair (u, f) satisfying

An =f{x,y), (x,y) G D = (O,TT) X (O.TT),

dnu \BD= [dxu cos (n, x) + dyu cos (n, y)] \aD- 9,

on the basis of a measurement of u at the boundary dD of D, that is, given

u \gD= z.

The solution to the above inverse problem, if it exists, is not unique. In fact, if
the solution of the problem is unique, then the problem with z = 0 and g = 0
should only have the zero solution (u,f) = (0,0). However, the function pair
(u,/) = (sin2 x sin2 y, 2 cos 2x sin2 y + 2cos2y sin2 x) satisfies (1) and (2) with z = 0
and g = 0.
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384 W. Yu [2]

Many mathematicians have studied various inverse problems for elliptic equations.
For a simple survey we refer to [2, 3, 4, 9, 15, 16] for identifying coefficients, [6, 19] for
identifying boundary values, [1, 7, 8, 12, 13, 14, 18, 20] for identifying source terms
of elliptic equations. We have not included a lot of papers concerning computational
methods that solve inverse elliptic problems.

One of the main purposes in studying inverse problems is to discover adequate

conditions, under which the solutions of the inverse problems exist, are unique, and/or

depend continuously on measurements.

Prilepko [13, 14] proved that the source term of the Poisson equation can be

uniquely determined if it is independent of one of the variables and is monotone.

Vabishchevich [18] also proved that determining the source term is unique but it

must satisfy some curious conditions.

In this paper the inverse problem we address is to identify a pair (w,q) satisfying

Cw = q(x)f(x,y) + 4>{x,y), (x,y) GD = nx (0,Y),

(3) dvw\gn=i,u y€(0,Y),

w \y=0= ip2(x), dvw \y=Y-i>3(x), x e n,

and

(4) W \y=Y= i/>l{x), X Eft,

where

m m

Cw = d%w + h(x)dyw + ^ di(aij{x)djw) + ^ bi{x)diW + c(x)w,

dyw = dw/dy, diw = dw/dxi, dvw = } aijdjW cos(n,x,),

i,i=i

n normal to the boundary 9fi.

Khaldarov showed the uniqueness for the inverse problem (3) with (4) and h = 0
in [7, 8] under the following assumptions: (1) f(x,y) is strictly positive, and (2) / is
monotonic with respect to y, that is, dyf(x,y) ^ 0 and dyf ^ 0.

In this paper we obtain the same results about the uniqueness under the weaker
assumptions that f{x,y) is allowed to take zero on a set of measure zero when
dyf(x,y) ^ 0 and dyf ^ 0, or f(x,y) has a derivative bounded from below, with
respect to y, or / does not depend upon y, that is, dyf = 0 when / > 0, using an
orthogonality lemma, a simple transform, or an elimination method.
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[3] Well-posedness of an inverse problem 385

Amirov [1] obtained existence of an inverse problem identifying the source term

of the Poisson equation in the square integrable function class using expansions of

functions into eigenfunctions of the Laplacian operator.

The other problem we deal with is about existence in the inverse problem, that is,

for any V"4 we hope to get (w,q) satisfying (3) and (4).

In this paper we obtain existence in the above-mentioned inverse problem in the

same space as that in the investigation of uniqueness, using the theory of solvable

operators between Banach spaces.

Furthermore, we obtain also the continuous dependence of the solution to the
inverse problem on measurement, which is closely related to the problem of uniqueness,
using the Banach inverse operator theorem.

Therefore, it is proved that the above-mentioned inverse problem is well-posed in
Hadamard's sense.

2. PROBLEM STATEMENT

From now on, we suppose that <f>, f,ipi,ip2,i>3,ipi,o-ij,bi, h,c, ft, and Y are given
and make the following assumptions:

HI.

<HjA G C1+a(n), c,he ca(n), <f>,f e ca{p), c(x) < o,
m

" Kl2 < £ "ii(*)titi < A* \t\* , V£ e Rm, Vx G ft,

where ft > 0 and v > 0 are constant, and Ck+a and Ca are Holder
spaces, for example, see [5].

H2. ft C Rm is a bounded open set with a boundary 9ft G C2+a, Y < +oo,

and ft = ft U 5ft.
H3. Vi € C1+a(D), -03 G C1+a(n) j,2,i,A G C2+Q(ft) and they satisfy the

consistency condition of order 0, stated in [5]; q G CQ(ft); c(x) ^ 0,

=(*) - Edibi(x) ^ 0, h{x) 2 0, Vx G ft-

H4. dyf ^ 0, dyf ^ 0, f{x,y) > 0 almost everywhere in D.
H5. c(x) ^ -6 < 0, c(x) - ZdMx) ^ -6, Vx £ ft; f{x,y) 2 V > 0,

i

dyf{x,y) 2 -£, V(x,y) £D and T]VS-e>0.
H6. dyf = 0 and f(x,y) =/*(x) > 0, Vx € ft.

It is well-known that the problem

Cv — <j){x,y), {x,y) £ D, dvv\eo=i>i, v \y=o= V>2, dyv |j,=y= V"3
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has a unique solution v G V = C2+a(D) by [5] if the assumptions H1-H3 are true.
Hence, let u = w — v and then it follows from (3) and (4) that

(5) Cu = q(x)f(x,y), dvu\an=0, u\y=o=0, dyu \y=Y~ 0,

and

(6) u\y=Y=z(x), x G n.

It is obvious by the consistency condition that dvz \an— 0.

By [5] there exists a unique solution of (5), u G V, corresponding to q G Ca (f2),

which is denoted by u = u(q) = u(x,y;q) to show the dependence of u on q.

From now on we shall deal with the inverse problem for identifying (u, q) satisfying

(5) and (6).

3. UNIQUENESS

To begin with, we need

LEMMA 3 . 1 . Suppose w is the solution to the problem

(7) Cw = F(x,y), dl,w\aa=Q, w l»=o= 0, dyw\y=Y=0.

Then we have

( 8 )y

/ / F(x,y)v(x,y)dxdy = [ [w(x,Y)0(x) - w(x,Y)dyv(x,Y) + dyw{x,0)g{x)}dx,
Jo Jo Jn

where v G V = C2+a{j5) is the solution to an adjoint system of (3), that is,

(9) C'v = 0, dtv\en=0, v\y=o=-g(x), v | y = y = (3{x),

where g,f3 G C!+a(f2) is arbitrary and

C*v = d\v - h(x)dyv + ̂  WajiWdjv) - £ di(bi(x)v) + c(x)v,
ij «

( 1 0 ) / v - \
d*v = 22 ( 2_/ aJifyv - biv \ cos (n, n).

i j

In particular, when w(x,Y) = 0, Va; G fi, one gets

(11) / / v(x,y)F{x,y) dxdy = f g{x)dyw(x,0)dx.
Jy=o Jn Jo
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[5] Well-posedness of an inverse problem 387

PROOF: Because (9) has a unique solution v € V by [5], using Green's formula we
have at once that

/ / v(x,y)F(x,y)dxdy = I vCwdxdy — I [vdyw — wdyv + hvw] \%=0 dx
Jo Jn JD Jn

+ / ^ < v^^dijdjw — wl ^^djidjV - b{V ) > cos(n,Xi) + / wCv

= I [w{x, Y)/3{x) - w(x,Y)dsv{x,Y) + dyw(x,0)g{x)]dx.
Jn

D
THEOREM 3 . 2 . Suppose the assumptions H1-H3 and one of the assumptions

H4, H5 , and H6 hold. Then the solution to the inverse problem (5) and (6) for

determining (u,q), if it exists, is unique.

PROOF: Suppose that there are two solutions, (1*1,91) and (^2,92), satisfying (5)

and (6). Set

u = t i i - u 2 , 9 = 9i - 921

then we have

(12) Lu — qf, dvu |en= 0, ii|j,=o=O, dyu | y = y= 0.

and

(13) u\y=Y=0, zGfi.

Our purpose is to prove u = 0 and 9 = 0.

Let H = n_ U fi0 U Q+, where fl_ = {a; 6 fi; q(x) < 0}, ft0 = {x G fi; q(x) = 0},
and fi+ = {x E fl; 9(1) > 0}.

Obviously, fi_ and fi-|_ are both open.

If fi0 7̂  0 , then f2_(- or fi_ is not empty. Moreover, if only one of them is empty,
for example, ft_ - 0 and 0,+ ^ 0, then ^(a;,^) = q(x)f(x,y) ^ 0, V(a;,y) G -D and
F ^ 0 . When take g = 0 and (3 € C2+Q(n) with /3(x) > 0, then the solution of (9),
v, is positive by the maximum principle [5], so

/ / q{x)f{x,y)v{x,y) dxdy > 0,
Jo Jn

which is contrary to (11) in Lemma 3.1.

Hence, fi+ and fi_ are both nonempty, and then q(x) changes its sign in 0.
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Set /3(x) = sign q(x), x £ fi, and then /? £ L°°(fi) C £p(fi) with p > 1 being
large enough.

Let the functions gi £ C0°°(Rm+1) and g2 £ C70°°(Rm) satisfy gi{x,y) ^ 0,

gi(x,y)dxdy=l, /
JR.R.™

Consider the regularisation operators

(14)
np{x,y)=nm+1 f gi(n(x-(),n(y-r)))pti,

Q3nfc(x) = nm / S2(n(* - 0 )*(0 d£.

Set a*-? = Q3nai;-, 6|n) = Q3n6,-, fcn = 03,,^, cn = « n c , 9 n = <8n<?) /3n = «8n^, and

/ „ = » „ / , and then a ^ , ^ , ^ , ^ , ^ , ^ £ C~(fS), and /„ £ C°°(~D). Moreover,

a W,6(" ) J» aij,bi in C 1 + a ( n ) , fen,cn,gn A h,c,q in Ca(fi) , respectively, / „ - i / in

C a f D ) , and ^ n -^ /3 in £P(ft) with |/9n(z)| ^ 1, Vz £ n . ("xn -4 x, in X " means

that x n converges strongly to x in X.) Furthermore, according to the assumption H3

we have

c^x) < 0, cn(x) - J ] fti(.B)(x) < 0, Vx £ 0.

Consider the following problems:

(15) Cnun — qnfn, Bnun | e n = 0, un \y=0- 0, dyun | B =y= 0,

and

(16) C*nvn = 0, B*nvn | 8 n = 0, »B \V=Y= (3n, 8yvn \y=0= 0,

where

£nw = 32
yw + hndyw + J^di (aWdjw} + Y, *in)fiiti> + cnw,

i,i i

\^djW cos (n,xi),

C*nv = d2
yv - hndyv -J^di(affdjv) -J^di(b<.n)v) + cnv,

B> = E [ E a^div - b?)v]cos (»• *o-
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It follows by [5] that there exist solutions un,vn £ C°°{D) of (15) and (16), and then
by virtue of the maximum principle

(17) -\<vn{x,y)<\, (x,y)eD.

Moreover, consider the following problem

(18) C*v = 0, a > | 8 n = 0 , v\y=Y=f3, dyv\y=o=O.

There exists a unique solution v £ W = Hll2{D) C L2(D) of (18) by means of [10];
the definition of HXI2(D) can be found in [10]. Furthermore, by Lemma 3.3, which
will be proved next, it follows that

un±u in

vn —» v in W,

and then |v(z,j/)| ^ 1, almost everywhere on D, where u is the solution of (12).

In addition, dyvn = wn are also the solutions to the following problems:

(20) £ > n = 0, £ > „ | e n = 0, wn \y=Y= P*n = dyvn(-,Y), wn | , = 0= 0.

obviously, /?* G C°°(n), and by Lemma 3.3 there is an M > 0 such that |/?*(z)|,

|9^?;n(a;,y)| ^ M, Vx £ J2, Vn. Hence, it follows from Lemma 3.1 that

/ un(x,Y)\/3Z(x)-dywn(x,Y)]dx = / qjx)fn{x,y)dyvn(x,y) dxdy
Jn JD

(21) = / qn{x)[fn{x,y)vn(x,y)] |J1O dx - / qnvndyfndxdy
Jn JD

= ( qn{x)[f3n{x)fn{x,Y) -/„(«,0)vn(x,0)]dx - I qnvndyfndxdy.
Jn JD

If the assumption H4 is true and considering (19) one can get

= 0 in

Therefore,

U2 M |M-,mic(n) mes\J un{x,Y)fc{x)dx , Uun(x,Y)d2
yvn(x,Y)dx
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Let n go to infinity in (21):

0 = / q(x)[/3(x)f(x,Y)-v(x,0)f(x,0)]dx- f qvdyfdxdy
Jo JD

= / q(x)[f(x,Y) - f(x,0)v(x,0)}dx - I I qvdyfdxdy
Jo+ Jo Jn+

+ [ \q(x)\[f(x,Y) + f(x,0)v(x,0)}dx+ f I \q\vdsfdxdy
Jn- Jo Ja_

>[ q(x)[f(x,Y) - f(x,0)]dx - f f qdyfdxdy
Jn+ Jo Jn+

+ [ \q(x)\[f{x,Y)-f(x,O)]dx- I f \q\dyfdxdy = 0.
Jtl- Jo 7fJ_

The above contradiction is from the hypotheses fi+ ^ 0 and J7_ ^ 0. So, q = 0, and
then u = 0 by [5].

Next, if the assumption H5 is true, then instead of (12) and (13), setting u = weXy

we consider the following problem:

Cw + (2A + h)dyw + (A2 + hX)w = q{x)F{x,y),
\ )

dvw |en= 0, w \y=o= 0, dyw \V=Y— 0,

and
(23) w\y=Y=o, x e n,

where F(x,y) = f(x,y)e~Xy and by the assumption H5 a negative constant A can be
chosen such that 8VF = (dyf - A/)e-

A» ^ |A|?7 - e > 0, V(a;,j/) G D and c(x) + A2 +

h\ < 0, c(z) + A2 + h\ - Y^dibi{x) ^ 0, Vx G fi. (For example, take A G (e/ri,^/s)

which satisfies all the above-mentioned requirements.

The inverse problem (22) with (23) satisfies H4. From the above conclusion we

can at once get 9 = 0, w = 0; therefore, u = 0.

Finally, if the assumption H6 is true, that is, f(x,y) = f*(x), then differentiating
the two sides of (5) with respect to y and setting w = dyu we have

(24) Cw = 0, dvw | e n = 0, w \y=Y= 0.

Obviously, we have to obtain a boundary value of w on a lower base. Setting Vx G fi

fO if a,u(x,0) = 0,
(25) j>{x) = I » V » y •

[ sup{j/i > 0; dsu(x,y) f 0, Vy G [0,yi)} otherwise,
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by Lemma 3.4, which will be proved next, we know that i}> £ C 1 + a ( f2 ) , ip(x) € ( 0 , 7 ) ,

and dyu(x,ip(x)) = 0, Vx £ fi, that is,

(26) w | r = 0, T = {(x,-0(x)); x e I)}.

Thus, the generalised Dirichlet boundary value problem (24) with (26) has only the
zero solution in the open set

E = {{x,y); i,{x)<y<Y, x e SI}

by the maximum principle, that is, dyu(x,y) = 0, V(x,y) £ E. Therefore, u(x,y) —
u*(x), V(x,y) £ E. But u(x,Y) = 0, so u(x,y) = 0, V(x,y) e £ , and then
q(x)f*(x) = 0, Vs G fi by (5). Hence g = 0 by the assumption H6. D

LEMMA 3 . 3 . Let a\*\b\k) A aihbi in C1 + Q(n), hk,ck,qk -^>h,c,q in CQ(T2),
respectiveiy, fk —* f in Ca (T)) , and f}k -^> fi in £p(fi). Then there is a constant
M > 0 sucii that

uk±ui
(27)

vk —> v m W,

and

(28) iftOOi, |a>A(x,y)|^M, v ^ n ,

wiiere Ui,Vfc,u, and u are determined by (15), (16), (12), and (18) respectively, and

PROOF: By the assumptions one gets

(29)

where II II denotes the norm in the space Ca, II II is the norm in the space Lp, and
II II Ct ^ ' 11 (I P *̂  '

the constant M\ is independent of k. It is obvious by the theory of partial differential
equations, for example, see [5], that

(30) ll«*,»fc||2+a ^ Mt,

where the constant M2 is also independent of k. From (30), particularly, one gets

|ft(s)| = \dyvk(x,Y)\, \d2
yvk(x,Y)\ ^ \\vk\\2+Q ^ M, Vx € n,

which is just (28).
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Subtraction of (12) from (15) leads to:

(31)

C(uk - u) = q(fk - f) + fk{qk -q)-^2 ft [(a|*° - *ij)dj

16; - bijdiUk -
i

du(uk — u) \an— — 2__, [aij ~ aij)djUk cos(n,a;i),

uk — u |j,=o= 0, dy(uk - u) \y=Y= 0.

Considering (29) and (30) and then by [5]

\\uk~u\\2+a^]

+ \\hk - h\\a + \\ck - c\\a + \\qh - q\\a + \\fk - f \ \ a } ,

where M\ is independent of k. Therefore, by the assumptions one gets

uk —> u in O x^)-

Similarly, one has

vk —> v in W.

LEMMA 3 . 4 . ip defined by (25) possesses the following properties:

1. r/>(x) is defined and if>(x) 6 [0, Y], Vx 6 fi.

2. dvu(x,ip(x)) = 0, Vx£ Q.

3. V ^

'J I l l + Q
(32) • • • »

PROOF: First, we prove Property 1 for any x € fi.

If Sj,i£(a;,0) 7̂  0, then owing to u(x,0) = u(x,Y) = 0 by Rolle's theorem there

exists y G (0, Y) such that dyu(x,y) — 0. So, tp(x) ^y <Y; hence, Property 1 is true.

It is obvious by the definition of tp that Property 2 is true.

Finally, we prove Property 3.

Take any X\ G fi, and set yx = ip(xi). If j/i > 0, then 9j,u(a;i,3/) ^ 0, Vy G [0,yi).

There is no harm in supposing

(33) dyu(Xl,y)>0, Vye[0,yi).
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Thus, u(xi,y2) > u(2!,2/3) > 0, V0 < y3 < y2 < yi •

We assert that dyu(xi,yi) < 0. In fact, the Taylor's expansion of u(xi,y) at

0=i,yi) is

u{xx,y) -u(x1,y1) + -d*u(xi,yi)5y2 + o(8y2), Vy £ (yi -T),yi + 77),

where 6y = y - y i . Because w(xi,y) < u(s:i,3/i), Vy £ [0,yi), d$u{xi,yi) < 0.

Next, we prove xf> £ C(fi) . If this were false, then there is x £ fi such that

y = ij)(x) is not equal to one of ^ a n d V1, where

ij> = ]im sup ij)(x), ij} = liminf i>{x).

Obviously, O^rf^y^ip^Y. Moreover, there are {zj,}, {x^} C fi such that xl
n —*

x, x2
n -> x, T]>_ = ]imn-,ooi)(x

1
n), and V = hmn_o oV'(x^) - Therefore, dyu(x,i>) =

dyu(x,iP) = 0, dlu(x,rjj) ^ 0, and flju(x,^) ^ 0.

If ip < y, then by (33) we have 9SM(K,^0) > 0, which is contrary to dyu{x,^ = 0.

If xj) > y, then by dyu(x,y) = 0 and dyu(x,y) < 0 there is 8 > 0 with AS < if) — y

such that

(34) ^«(*>y)<0I W{x,y)€B{x,S)x[y + S,y + 26],

where B(x, 6) is the closed ball of radius 8 about x.

When n > Ni(6) we have |x^ — x| < 5, so

(35) dyu(x2
n,y) < 0, Vy £ [y + 8,y + 28}.

On the other hand, if n > N2(S), ^(s£) > ^ - ^ > y + 25, then

(36) dyu(x2
n,y) > 0, V y £ [ 0 , V K ) ) .

If n > max(iV1,iV2)) then we have a contradiction comparing (35) with (36).

Now, we prove if> £ C1 (fi) . Because for any x\ £ f2 and Vx £ B\ C fi

there is a function p = p(x) by the imphcit function theorem such that p £ C1(Bi),

dyu(x,p(x)) — 0, Va; £ 5 i , and J0(zi) = PC^OI where 5 i is a neighbourhood of xi.

We assert
i,{x) = p(x), Vx £ B2,
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where B2 C B\ is a neighbourhood of X].

In point of fact, there is a neighbourhood of (xi,ip(xi)), U, such that d^u(x,y) 7̂
0, V(x,y) £ U. Therefore, there exists a neighbourhood of Xj, B3, such that for any
x £ B3 the function <j){y) = dyu(x,y) is strictly monotonic, and we also have

Thus, dvu(x,p(x)) = 0, Vx £ B 3 n 5 i is true if and only if V>(x) =p(x ) , Vx €

B2.

Finally, we prove if> £ C1+Or(f2) . Indeed, by the implicit function theorem it follows
that

Considering |9^xt(x,'0(a;))| ^ c > 0, Vx £ fi one can get

O - dil>(x2)\ ^ l,_\didyu(x1,y1) - didyu(x2,y2)\

2

J ^ ! — 352| -\-\y\-V2\

where y, = tp(xi), (i = 1,2J.

Thus, V £ C 1 + Q ( ? I ) . D

4. EXISTENCE AND CONTINUOUS DEPENDENCE

First of all, recall the following definition from [17]:

If A : X —* y is a linear densely defined operator on X into y, then A' is the
conjugate (dual) of A on y' into X', where X' and y are conjugate (dual) spaces of
the Banach spaces X and y, respectively.

The annihilator, A1-, of a set A G X' is defined by Ax = {x £ X; {x,x') =

0, Vx' £ A}, where (x,x') denotes the value of a functional x' at x, and the null space

of A is defined by M{A) = {x £ X; Ax = 0}.

Furthermore, a set F' C X' is said to be total if to each x ^ 0 in X there

corresponds some x' £ F' such that (x,x') ^ 0.

From [17] one can get

LEMMA 4 . 1 . Suppose that A is a linear closed dense defined operator. Then

2. TZ{A') is total in X' if and only if A~l exists,

3. TZ{A) is closed if and only if TZ(A') = ^
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where Tl^A') is the range of A' and V(A) is the domain of A.

Consider the operator

P-.Q-+K.
(37)

Pq = u(-,Y;q)

where u(q) is the solution of (5), Q = Ca(JT) , and

/C = { « e C 2 + Q ( n ) ; dvv\gn=0}.

Obviously, K, is a Banach space with the norm of C2+a(?2) .

LEMMA 4 . 2 . Suppose that the assumptions of Theorem 3.2 hold. Then

1. P G C(Q, IC), the space of bounded iinear operators on X to Y .

2. Af(P) = {0}.
3- Il-P l̂ljc ^ C4 Ikllo ) ^9 6 Q J where the constant C4 is only dependent

on aij, bi, h, c, f, il, and Y.

PROOF: The result 2 is obvious by Theorem 3.2. The operator P is linear on Q

into K, by the formula

Pq = u(-,Y;q)= \ G{;Y;t,r,)q{t)f(t,T,)dtdri,
JD

where G is the Green function of (5). Besides, it follows from [11] that

(39) Hv

and one also gets ||w||0 ^ c-i ||g/||^r under c(x) ^ 0, where V = C2+a(D), \\u\\Q =

sup \u(x,y)\, and T = Ca(B). So,

= \\u(;Y;q)\\K ^ \\u(q)\\v < c2

Moreover,

\\fq\\3r= snp_{\q(x)f(x,y)\}

i ~ x2\
2 + \yi — 3/212)

- q{x2))\ I \xx - x2\
a}

,yi) - f(x2,y2)\ l(\Xl - x2|2 + \Vl - y2 |2)

ll/llo Ikllo + ll/llo IklL + II/IL Ikllo < lkllQ II/IU,
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where | | / | | 0 = s u p _ | / ( x , t ) | and ||g||0 =sup |g(x) | . Hence

(39) Q

therefore, PeC(Q,IC). D

LEMMA 4 . 3 . Let the assumptions of Theorem 3.2 be true.

Then the range of P, 1Z(P) = K, is a closed subspace of K. Moreover, Vz £ K

the inverse problem (5) with (6) has a unique solution (u,q) £ V x Q.

PROOF: Suppose that X = Q, y = K., and A = P. So, by Lemma 4.2 one can

get that P is linear and continuous and that M{P) = {0}. Hence, it follows by Lemma

4.1 that ft(P')-1 = M{P) = {0}, and then TZ(P') = M{P)L = Q'. Thus, ft(P') in Q'

is total by the definition. Using Lemma 4.1 again one gets that K is closed in K and

that the inverse operator of P, P—1, exists, that is, V2 £ K there is a unique q £ Q

such that q = P~xz. Substituting q into (5) one can obtain u £ V.

It is easy to check that (u, q) is the solution of the inverse problem (5) with (6). D

THEOREM 4 . 4 . If the assumptions of Theorem 3.2 are valid, then the inverse

problem (5) with (6) is well-posed in Hadamard's sense, that is, for any z £ K, there

exists a unique solution (u,q) satisfying (5) and (6) simultaneously. Moreover, (u,q)

depends continuously upon z. In fact, the estimate

(40) IMIv + Nlg<ciNl ic

is true, where ci is a constant depending continuously on aij,bi,h,c,f,Cl, and Y.

PROOF: In order to prove that for any z £ K, there is a unique pair (u, q) £ V x Q

satisfying (5) and (6), obviously by Lemma 4.3, one only needs to prove K = K in
other words, it is sufficient to prove that the operator P defined by (37) is open. If
it were false, then Vn £ N , V<j £ Q, there are kn £ K such that kn = Pq and
IMIc? > nl l^n|lx- I n particular, take kn E. K with ||fcn|| = 1 and qn £ Q with
\\qn\\ > n such that kn = Pqn-

By the Hahn-Banach theorem there are v^ £ Q' such that

K | | = l , <««,<> = ||9»||, n = l , 2 , . - . .

Set vn = < / | | g n | | , n = 1,2, ••• , then

(41) K H ^ l / n , <?„,»„) = 1 , n = l ,2 , - - - .

On the other hand, TZ(P') = Q' and P' is linear and bounded, so, P' is open by
[17]. Moreover, vn £ Q' - Tl(P') and vn -» 0 by (41), hence there exist wn £ K' =

V(P') such that vn = P'wn, wn A 0 in K.'. Therefore,

wn)\ = K*«,«;B)| ^ \\kn\\ \\wn\\ = \\wn\\ -» 0,
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which is contrary to (41).

So far we have proved that the continuous linear operator P : Q —» K. is surjective

and injective, thus the inverse operator P " 1 : K —* Q is continuous by the Banach

inverse operator theorem, for example, see [17], and then there is a constant Ci such

that Vz £ K, 3qeQ,

(42) \\q\\Q = \\P-1*\\<c*\\*\\K-

It is obvious that c-i depends continuously on the estimate of P. Combining (42)

with (38) in Lemma 4.2 we immediately obtain (40). U

CONCLUSION. The results of Theorem 2 are also valid for other boundary value

problems of the elliptic equation. For example, the inverse problem with Dirichlet

boundary-value condition and Neumann measurement: u(z,0) = u(x,Y) = 0 and

dyu(x,Y) = z(x) or with Neumann boundary-value condition and Dirichlet measure-

ment: dyu(x,0) = dyu(x,Y) = 0 and u(x,Y) = z(x) are also well-posed under the

same assumptions as those in Theorem 1.

REFERENCES

[l] A. Kh. Aminov, 'Solvability of inverse problems', (in Russian), Siberian Math. J. 28
(1988), 865-872.

[2] J.R. Cannon and W. Rundell, 'An inverse problem for an elliptic partial differential equa-
tion', J. Math. Anal. Appl. 126 (1987), 329-340.

[3] A.M. Denisov and S.I. Solov'eva, 'A problem for determining a coefficient of a nonlin-
ear stationary heat equations', (in Russian), J. Comput. Math. Math. Phys. 33 (1993),
1294-1304.

[4] A. Friedman and B. Gustafsson, 'Identification of the conductivity coefficient in an elliptic
equation', J. Math. Anal. Appl. 126 (1987), 777-787.

[5] D. Gilberg and N.S. Trudinger, Elliptic partial differential equations of second order
(Springer-Verlag, Berlin, Heidelberg, New York, 1977).

[6] S.J. Hu and W.H. Yu, 'Identification of floated surface temperature in floated gyroscope',
in Proc. 3rd IFAC Symp. Control of Distributed Parameter Systems, Toulouce, France,
(1982).

[7] A. Khaidarov, 'A class of inverse problems for elliptic equations', Soviet Math. Dokl. 30
(1984), 294-297.

[8] A. Khaidarov, 'On estimates and the existence of solutions on a class of inverse problems
for elliptic equations', Soviet Math. Dokl. 35 (1987), 505-507.

[9] R.V. Korn and M. Vogelius, 'Determining conductivity by boundary measurements',
Comm. Pure Appl. Math. 37 (1984), 289-298.

[10] J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications,
I and II (Springer-Verlag, Berlin, Heidelberg, New York, 1972).

https://doi.org/10.1017/S0004972700013502 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013502


398 W. Yu [16]

[11] C. Miranda, Partial differential equations of elliptic type (Springer-Verlag, Berlin, Heidel-
berg, New York, 1972).

[12] D.G. Orlovskii, 'An inverse problem for a second-order differential equation in Banach
spaces', Differential Equations 25 (1989), 730-738.

[13] A.I. Prilepko, 'On inverse problems in potential theory,', Differential Equations 3 (1967),
14-20.

[14] A.I. Prilepko, 'Inverse problems of potential theory', Math. Notes of Academy of Sciences
of USSR, Mat. Zameski 14 (1975), 990-996.

[15] Z. Sun, 'On an inverse boundary value problem in two dimensions', Comm. Partial Dif-
ferential Equations 14 (1989), 1101-1113.

[16] J. Sylvester and G. Uhlmann, 'Inverse boundary value problems at the boundary contin-
uous dependence', Comm. Pure Appl. Math. 41 (1988), 197-219.

[17] A.E. Taylor and D.C. Lay, Introduction to functional analysis (John Wiley and Sons, New
York, 1980).

[18] P.N. Vabishchevich, 'Inverse problems of finding the second member of an elliptic equation
and its numerical solution', Differential Equations 21 (1985), 201-207.

[19] W.H. Yu, 'On well-posedness of an inverse problem for an elliptic system', (in Chinese),
J. Math. 7 (1987).

[20] W.H. Yu, 'On determination of source terms in the 2nd order linear partial differential
equations', Ada Math. Sci. 13 (1993), 23-32.

Department of Mathematics
Tianjin University
Tianjin 300072
People's Republic of China

https://doi.org/10.1017/S0004972700013502 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013502

