DIAGONALS OF NILPOTENT OPERATORS

by C. K. FONG
(Received 30th January 1985)

The purpose of the present note is to answer the following question of T. A. Gillespie, learned from G. J. Murphy [4]: for which sequences $\left\{a_{n}\right\}$ of complex numbers does there exist a quasinilpotent operator Q on a (separable, infinite-dimensional, complex) Hilbert space H, which has $\left\{a_{n}\right\}$ as a diagonal, that is $\left(Q e_{n}, e_{n}\right)=a_{n}$ for some orthonormal basis $\left\{e_{n}\right\}$ in H ?

It was pointed out in [4] that $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ is the diagonal of a nilpotent operator on a n-dimensional space if and only if $a_{1}+\cdots+a_{n}=0$. In fact, if (a_{1}, \ldots, a_{n}) is a diagonal of a nilpotent operator N, then $a_{1}+\cdots+a_{n}$ is $\operatorname{tr}(N)$, the trace of N, and hence must be zero. Conversely, if we have $a_{1}+\cdots+a_{n}=0$, then (a_{1}, \ldots, a_{n}) is the diagonal of the matrix

$$
N=\left(\begin{array}{cccc}
a_{1} & a_{1} & \ldots & a_{1} \\
a_{2} & a_{2} & \ldots & a_{2} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n} & a_{n} & \ldots & a_{n}
\end{array}\right)
$$

and a direct computation gives $N^{2}=0$.
It turns out that the question has a simple-minded answer:
Theorem. For each bounded sequence $\left\{a_{n}\right\}$ in \mathbb{C}, there is a nilpotent operator N on H such that $N^{4}=0$ and $\left(N e_{n}, e_{n}\right)=a_{n}$ for some orthonormal basis $\left\{e_{n}\right\}$.

For the proof of this theorem, we need a result taken from [2; Corollary 4]. For the reader's convenience, we provide a sketch of the proof based on an idea in [1].

Lemma 1. If T is an operator on H and if $0 \in W_{e}(T)^{0}$, the interior of the essential numerical range of T, then there is an orthonormal basis $\left\{e_{n}\right\}$ such that $\left(T e_{n}, e_{n}\right)=0$ for all n.

Proof. Notice that, for any sequence $\left\{c_{n}\right\}$ in $W_{e}(T)^{0}$, there is an orthonormal sequence $\left\{f_{n}\right\}$ in H such that $\left(T f_{n}, f_{n}\right)=c_{n}$. Since $0 \in W_{e}(T)^{0}$, there is an orthonormal basis $\left\{e_{n}\right\}$ such that the sequence $\left\{\left(T e_{n}, e_{n}\right)\right\}$ contains $1 / k,-1 / k, i / k,-i / k$ for sufficiently large k, say, for $k \geqq k_{0}$. By making a rearrangement if necessary, we may assume that the partial sums

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}, \quad n=1,2, \ldots
$$

where we write a_{n} for ($T e_{n}, e_{n}$) for brevity, have a subsequence converging to zero.

Choose n_{1} such that $a_{1}, a_{2}, \ldots, a_{n_{1}}$ contains $1 / k_{0},-1 / k_{0}, i / k_{0},-i / k_{0}$ whose convex hull contains $s_{n_{1}}$. Let T_{1} be the compression of T to the subspace M_{1} spanned by $e_{1}, \ldots, e_{n_{1}}$. Then $\operatorname{tr}\left(T_{1}\right)=s_{n_{1}} \in W\left(T_{1}\right)$, the numerical range of T_{1}. There is a unit vector f_{1} such that ($T_{1} f_{1}, f_{1}$)= $s_{n_{1}}$. Let $N_{1}=M_{1} \ominus \mathbb{C} f_{1}$ and A_{1} be the compression of T to N_{1}. Since $\operatorname{tr}\left(A_{1}\right)=0$, by Fillmore [3], A_{1} has a zero diagonal. We have shown that T_{1} has a diagonal consisting of

$$
\underbrace{0,0, \ldots, 0,}_{n_{1}-1 \text { times }} s_{n_{1}}
$$

Next, we replace $\left\{a_{n}\right\}$ by $s_{n_{1}}, a_{n_{1}+1}, a_{n_{1}+2}, \ldots$ and argue in the same way as before to obtain n_{2} such that the compression of T to the subspace spanned by $f_{1}, e_{n_{1}+1}, \ldots, e_{n_{2}}$ has a diagonal consisting of

$$
\underbrace{0,0, \ldots, 0,}_{n_{2}-n_{1} \text { times }} s_{n_{2}}
$$

and the unit vector f_{2} satisfies $\left(T f_{2}, f_{2}\right)=s_{n_{2}}$ is a linear combination of $e_{n_{1}+1}, \ldots, e_{n_{2}}$. Continuing in this manner, we obtain an orthonormal basis $\left\{g_{n}\right\}$ such that $\left(T g_{n}, g_{n}\right)=0$ for all n. The detailed argument is left to the reader.

Lemma 2. Let $\left\{c_{n}\right\}$ be a bounded sequence in \mathbb{C} and A be the diagonal operator with c_{1}, c_{2}, \ldots as its diagonal elements. If $0 \in W_{e}(A)^{0}$, then there is a nilpotent operator N and an orthonormal basis $\left\{e_{n}:-\infty<n<\infty\right\}$ such that $N^{2}=0$ and $\left(N e_{n}, e_{n}\right)=c_{n}$ for $n>0$ while $\left(N e_{n}, e_{n}\right)=0$ for $n \leqq 0$.

Proof. Let N be the block matrix

$$
\left(\begin{array}{rr}
A & A \\
-A & -A
\end{array}\right) .
$$

By Lemma 1, $-A$ has a zero diagonal and hence the lemma follows.
Lemma 3. If a_{1}, a_{2}, b, c are given complex numbers satisfying $a_{1}+a_{2}=b+c$, then there are numbers r, s such that

$$
\begin{gathered}
|r|,|s| \leqq 2 \max \left(\left|a_{1}\right|,\left|a_{2}\right|,|b|,|c|\right) \text { and } \\
\left(\begin{array}{cc}
a_{1} & r \\
s & a_{2}
\end{array}\right) \cong\left(\begin{array}{cc}
b & * \\
0 & c
\end{array}\right)
\end{gathered}
$$

where the symbol " \cong " stands for "unitarily equivalent".
Proof. It suffices to show that, for suitable r and s, b is an eigenvalue of the left-hand-side matrix. The characteristic polynomial of the left-hand-side matrix is given by

$$
p(X)=\left(X-a_{1}\right)\left(X-a_{2}\right)-r s
$$

Thus we may choose r, s in such a way that $p(b)=0$ and $|r|=|s|=\left|b-a_{1}\right|^{1 / 2}\left|c-a_{2}\right|^{1 / 2}$ which is not greater than $2 \max \left(|b|,|c|,\left|a_{1}\right|,\left|a_{2}\right|\right)$.

Now we are ready to prove the theorem. Assume that $\left|a_{n}\right| \leqq M$ for all n. Take two bounded sequences $\left\{b_{n}\right\},\left\{c_{n}\right\}$ in such a way that
(i) $b_{n}+c_{n}=a_{2 n-1}+a_{2 n}$ for all n, and
(ii) each of the numbers $0,1,-1, i,-i$ occurs infinitely many times in both $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$.
By Lemma 3, there exist sequences $\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ such that

$$
\left(\begin{array}{cc}
a_{2 n-1} & r_{n} \\
s_{n} & a_{2 n}
\end{array}\right) \cong\left(\begin{array}{cc}
b_{n} & d_{n} \\
0 & c_{n}
\end{array}\right)
$$

for some bounded sequence $\left\{d_{n}\right\}$. In view of (ii), it follows from Lemma 2 that there exist nilpotent operators N_{b} and N_{c} such that $N_{b}^{2}=N_{c}^{2}=0,\left\{b_{n}\right\}$ is a diagonal of N_{b} and $\left\{c_{n}\right\}$ is a diagonal of N_{c}. Let D be the diagonal operator with d_{1}, d_{2}, \ldots as its diagonal elements and let

$$
N=\left(\begin{array}{cc}
N_{b} & D \\
0 & N_{c}
\end{array}\right) .
$$

Then $N^{4}=0$ and

The proof is complete.

REFERENCES

1. Peng Fan, On the diagonal of an operator, Trans. Amer. Math. Soc. 283 (1984), 239-251.
2. Peng Fan and Che-Kao Fong, Operators with zero diagonals.
3. P. A. Fillmore, On similarity and the diagonal of an matrix, Amer. Math. Monthly 76 (1969), 167-169.
4. G. J. Murphy, Private communication, (1983).

Department of Mathematics
University of Toronto
Toronto
Ontario
Canada M5S 1A1

Current address
Department of Mathematics
University of Ottawa
Ottawa, Ontario
Canada K1N 9B4

