DIAGONALS OF NILPOTENT OPERATORS

by C. K. FONG

(Received 30th January 1985)

The purpose of the present note is to answer the following question of T. A. Gillespie, learned from G. J. Murphy [4]: for which sequences $\{a_n\}$ of complex numbers does there exist a quasinilpotent operator Q on a (separable, infinite-dimensional, complex) Hilbert space H, which has $\{a_n\}$ as a diagonal, that is $(Qe_n, e_n) = a_n$ for some orthonormal basis $\{e_n\}$ in H?

It was pointed out in [4] that $(a_1, \ldots, a_n) \in \mathbb{C}^n$ is the diagonal of a nilpotent operator on a *n*-dimensional space if and only if $a_1 + \cdots + a_n = 0$. In fact, if (a_1, \ldots, a_n) is a diagonal of a nilpotent operator N, then $a_1 + \cdots + a_n$ is tr(N), the trace of N, and hence must be zero. Conversely, if we have $a_1 + \cdots + a_n = 0$, then (a_1, \ldots, a_n) is the diagonal of the matrix

$$N = \begin{pmatrix} a_1 & a_1 & \dots & a_1 \\ a_2 & a_2 & \dots & a_2 \\ \dots & \dots & \dots & \dots \\ a_n & a_n & \dots & a_n \end{pmatrix}$$

and a direct computation gives $N^2 = 0$.

It turns out that the question has a simple-minded answer:

Theorem. For each bounded sequence $\{a_n\}$ in \mathbb{C} , there is a nilpotent operator N on H such that $N^4 = 0$ and $(Ne_n, e_n) = a_n$ for some orthonormal basis $\{e_n\}$.

For the proof of this theorem, we need a result taken from [2; Corollary 4]. For the reader's convenience, we provide a sketch of the proof based on an idea in [1].

Lemma 1. If T is an operator on H and if $0 \in W_e(T)^0$, the interior of the essential numerical range of T, then there is an orthonormal basis $\{e_n\}$ such that $(Te_n, e_n) = 0$ for all n.

Proof. Notice that, for any sequence $\{c_n\}$ in $W_e(T)^0$, there is an orthonormal sequence $\{f_n\}$ in H such that $(Tf_n, f_n) = c_n$. Since $0 \in W_e(T)^0$, there is an orthonormal basis $\{e_n\}$ such that the sequence $\{(Te_n, e_n)\}$ contains 1/k, -1/k, i/k, -i/k for sufficiently large k, say, for $k \ge k_0$. By making a rearrangement if necessary, we may assume that the partial sums

$$s_n = a_1 + a_2 + \dots + a_n, \qquad n = 1, 2, \dots$$

where we write a_n for (Te_n, e_n) for brevity, have a subsequence converging to zero.

221

C. K. FONG

Choose n_1 such that $a_1, a_2, \ldots, a_{n_1}$ contains $1/k_0, -1/k_0, i/k_0, -i/k_0$ whose convex hull contains s_{n_1} . Let T_1 be the compression of T to the subspace M_1 spanned by e_1, \ldots, e_{n_1} . Then $\operatorname{tr}(T_1) = s_{n_1} \in W(T_1)$, the numerical range of T_1 . There is a unit vector f_1 such that $(T_1f_1, f_1) = s_{n_1}$. Let $N_1 = M_1 \ominus \mathbb{C}f_1$ and A_1 be the compression of T to N_1 . Since $\operatorname{tr}(A_1) = 0$, by Fillmore [3], A_1 has a zero diagonal. We have shown that T_1 has a diagonal consisting of

$$\underbrace{0, 0, \dots, 0,}_{n_1 - 1 \text{ times}} s_{n_1}$$

Next, we replace $\{a_n\}$ by s_{n_1} , a_{n_1+1} , a_{n_1+2} ,... and argue in the same way as before to obtain n_2 such that the compression of T to the subspace spanned by f_1 , e_{n_1+1} , ..., e_{n_2} has a diagonal consisting of

$$\underbrace{0, 0, \dots, 0,}_{n_2 - n_1 \text{ times}} s_{n_2}$$

and the unit vector f_2 satisfies $(Tf_2, f_2) = s_{n_2}$ is a linear combination of $e_{n_1+1}, \ldots, e_{n_2}$. Continuing in this manner, we obtain an orthonormal basis $\{g_n\}$ such that $(Tg_n, g_n) = 0$ for all *n*. The detailed argument is left to the reader.

Lemma 2. Let $\{c_n\}$ be a bounded sequence in \mathbb{C} and A be the diagonal operator with c_1, c_2, \ldots as its diagonal elements. If $0 \in W_e(A)^0$, then there is a nilpotent operator N and an orthonormal basis $\{e_n: -\infty < n < \infty\}$ such that $N^2 = 0$ and $(Ne_n, e_n) = c_n$ for n > 0 while $(Ne_n, e_n) = 0$ for $n \le 0$.

Proof. Let N be the block matrix

$$\begin{pmatrix} A & A \\ -A & -A \end{pmatrix}.$$

By Lemma 1, -A has a zero diagonal and hence the lemma follows.

Lemma 3. If a_1 , a_2 , b, c are given complex numbers satisfying $a_1 + a_2 = b + c$, then there are numbers r, s such that

$$|r|, |s| \leq 2 \max(|a_1|, |a_2|, |b|, |c|) \quad and$$
$$\binom{a_1 \quad r}{s \quad a_2} \approx \binom{b \quad *}{0 \quad c}$$

where the symbol " \cong " stands for "unitarily equivalent".

Proof. It suffices to show that, for suitable r and s, b is an eigenvalue of the left-hand-side matrix. The characteristic polynomial of the left-hand-side matrix is given by

$$p(X) = (X - a_1)(X - a_2) - rs.$$

Thus we may choose r, s in such a way that p(b) = 0 and $|r| = |s| = |b - a_1|^{1/2} |c - a_2|^{1/2}$ which is not greater than $2 \max(|b|, |c|, |a_1|, |a_2|)$.

Now we are ready to prove the theorem. Assume that $|a_n| \leq M$ for all *n*. Take two bounded sequences $\{b_n\}, \{c_n\}$ in such a way that

- (i) $b_n + c_n = a_{2n-1} + a_{2n}$ for all *n*, and
- (ii) each of the numbers 0, 1, -1, i, -i occurs infinitely many times in both $\{b_n\}$ and $\{c_n\}$.

By Lemma 3, there exist sequences $\{r_n\}$ and $\{s_n\}$ such that

$$\begin{pmatrix} a_{2n-1} & r_n \\ s_n & a_{2n} \end{pmatrix} \cong \begin{pmatrix} b_n & d_n \\ 0 & c_n \end{pmatrix}$$

for some bounded sequence $\{d_n\}$. In view of (ii), it follows from Lemma 2 that there exist nilpotent operators N_b and N_c such that $N_b^2 = N_c^2 = 0$, $\{b_n\}$ is a diagonal of N_b and $\{c_n\}$ is a diagonal of N_c . Let D be the diagonal operator with d_1, d_2, \ldots as its diagonal elements and let

$$N = \begin{pmatrix} N_b & D \\ 0 & N_c \end{pmatrix}.$$

 $N = \begin{pmatrix} b_{1} & * & | & d_{1} & 0 \\ * & b_{2} & 0 & d_{2} \\ & & \ddots & & \ddots \\ \hline & & & & \ddots \\ \hline & & & & c_{1} & * \\ & & & c_{2} \\ & & & & \ddots \end{pmatrix} \cong \begin{pmatrix} b_{1} & d_{1} & * \\ 0 & c_{1} & & \\ & & b_{2} & d_{2} \\ * & & 0 & c_{2} \\ & & & & \ddots \end{pmatrix}$ $\cong \begin{pmatrix} a_{1} & r_{1} & & \\ \frac{s_{1} & a_{2}}{s} & & \\ & & & & \ddots \\ & & & & & s_{2} \\ & & & & & s_{2} \\ & & & & & s_{2} \\ & & & & & & & s_{2} \\ & & & & & & s_{2} \\ & & & & & s_{2} \\ & & & & & & & s_{2} \\ & & & & & & & s_{2} \\$

The proof is complete.

Then $N^4 = 0$ and

C. K. FONG

REFERENCES

1. PENG FAN, On the diagonal of an operator, Trans. Amer. Math. Soc. 283 (1984), 239-251.

2. PENG FAN and CHE-KAO FONG, Operators with zero diagonals.

3. P. A. FILLMORE, On similarity and the diagonal of an matrix, Amer. Math. Monthly 76 (1969), 167-169.

4. G. J. MURPHY, Private communication, (1983).

DEPARTMENT OF MATHEMATICS University of Toronto Toronto Ontario Canada M5S 1A1

CURRENT ADDRESS DEPARTMENT OF MATHEMATICS UNIVERSITY OF OTTAWA OTTAWA, ONTARIO CANADA K1N 9B4

224