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Hausdorff and Quasi-Hausdorff Matrices
on Spaces of Analytic Functions

P. Galanopoulos and M. Papadimitrakis

Abstract. 'We consider Hausdorff and quasi-Hausdorff matrices as operators on classical spaces of an-
alytic functions such as the Hardy and the Bergman spaces, the Dirichlet space, the Bloch spaces and
BMOA. When the generating sequence of the matrix is the moment sequence of a measure y, we find
the conditions on p which are equivalent to the boundedness of the matrix on the various spaces.

1 Introduction
1.1 Hausdorff and Quasi-Hausdorff Matrices

Let A be the forward difference operator, defined on scalar sequences {u,}$> by
Apty = fin — fins1, and its iterates A° = A AF = Ao AFlfork = 1,2,....
The Hausdorff matrix H = H(j,), with generating sequence {y, }¢°, is the infinite
lower-triangular matrix with entries ¢, = (Z) A"k, 0 < k<.

An important special case occurs when {1, }°° is the moment sequence of a mea-
sure. That is, p,, = f(o,l] t" du(t), where p is a finite positive Borel measure on (0, 1].
These matrices are denoted by H,, and their entries are easily found to be

1
Cn = (Z) / (1 — )" Fdu(t), 0<k<n
0

They had been originally studied in connection with summability of series and later
on as operators on sequence spaces and on spaces of functions. See [3,8,9,11,12]. The
study of Hausdorff matrices H,, as transformations on spaces of analytic functions
such as the Hardy spaces H?, 1 < p < +00, was introduced for the first time in [5].

In general, let X be a Banach space of analytic functions on the unit disc D. We
consider a Hausdorff matrix H,, = (¢, x) and for each function f(z) = ZZ:; a,z" €
X, we consider the formal power series

Hu(N@) = 3D csar) 2"
n=0 k=0

and also the transpose matrix A, = H}; and the corresponding formal power series

Au(f)(z) = Z(Z Cn,kan) Zk-
k=0 n=k
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The matrices A, are called quasi-Hausdor{f matrices.

In this work we address the problem of finding, for various classical spaces X, the
exact necessary and sufficient conditions on the measure p so that for every f € X,
the series defining H,,(f) and A, (f) converge in D, the resulting functions belong to
X and the operators H,, and A, are bounded on X.

The spaces X we shall consider are the Hardy spaces, the Bergman spaces A?, 1 <
p < +00, the disc algebra A, the Dirichlet space D, the spaces BMOA and VMOA,
the Bloch-space B and the little-Bloch-space By. For all the facts about these spaces
see [4,7,14].

In the rest of this work the symbol C stands for an absolute positive constant, while
C(k, 1, ...) stands for a positive constant depending only on the parameters k, I, . . ..
These constants may not be the same on their various occurrences, even in the same
set of equalities and/or inequalities. The symbol a < b means that  is bounded from
above and from below by two positive absolute constants.

1.2 The Associated Integral Operators
For t € (0, 1] we consider the two families of transformations

tz

¢t(2) = ma

Y(z) =tz+1—t, z€D,

of the unit disc into itself and the family of weight functions

1
= — Py E D.
wi(2) t—Dz+1 °

If 1 is a finite positive Borel measure on (0, 1], then we define
SN = [ @G dutn), zeD.
(0,1]

The integral is finite, since, by the lemma of Schwartz and ¢,(0) = 0, we have
[we (2| f (¢ (2))] < I%M SUP|¢|<|e | F(O-
We also define
T.(f)(2) = f(W(2)) dp(t)
(0,1]
for those analytic functions f and points z for which the integral is defined.
The following result is proved in [5], but only under extra conditions on .

Lemma 1.1  Let u be a finite positive Borel measure on (0,1] and f be analytic in
D. Then the power series H,(f)(z) converges in D and H,(f)(z) = S,.(f)(2) for every
zeD.
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Proof The absolute convergence of H,,(f)(z) is proved by

Z‘ Z anak‘ |2|" / Z |ak\ ( > _ t)n7k|z‘”7k) tk|z|k du(t)
n=0 k=0
= t|z| k
_/01]1—(1—t)|z|k( t)||) dﬂ/(t)

1 +00
ﬁu(o, 1] Z ‘ak|‘z|k < +00.

R e

The same calculation, without absolute values, gives H,(f)(z) = S,(f)(2). [ |
Unlike the case of H,, the coefficients by = EZZ?( cnkan of the power series

A, (f)(z) may not converge. For the sake of completeness we state the following
trivial lemma, known from [5].

Lemma 1.2 Let ;1 be a finite positive Borel measure on (0,1]. Then, for each poly-
nomial f, the function A, (f) is also a polynomial and A,,(f)(z) = T,(f)(2) for every
zec D.

1.3 Previous Results and the Structure of This Paper

The operators H,, and S, are identical (Lemma 1.1) and this we denote in the whole
work by H, = §,. On the other hand, the operators A, and T}, are not a priori
identical outside the linear space of polynomials (Lemma 1.2 ). The easiest of the
two is T, and its boundedness is studied first. One then needs an extra argument to
pass to A, and this becomes involved in certain cases, like H* = A*°, BMOA and B,
where polynomials are not dense.

Section 2: In [5] a condition (depending on p) on u was proved to be sufficient for
the boundedness of H, = T,: H? — H? in all cases 1 < p < +00 and the same
condition was also proved necessary in case p = 1.

Independently, [13] gives the same sufficient condition for the boundedness of
H, =T,: H? — H? when 2 < p < +00 and a weaker condition when 1 < p < 2.

In the present parer we prove (Theorem 2.4) that the condition in [5] and in [13]
(but, there, only when 2 < p < 4+00) is also necessary and we cover the full range
1 < p < +00. We also give (Proposition 2.1) another proof for the sufficiency of the
condition, entirely different from the previous proofs in [5,13].

Regarding the boundedness of A, and of T,, on H?, [5] gave the condition on 1
which is necessary and sufficient in the case of T, and for 1 < p < +00 and [13]
gave the necessary and sufficient condition in the case of A, and for 1 < p < +oo0.

Here we give (Proposition 2.2), in a different way, the necessary and sufficient
condition for the boundedness of T), in the range 1 < p < +00 and (Theorem 2.3)
the necessary and sufficient condition for the boundedness of A, in the range 1 <
p < +oo. We also prove the equality of the two operators on H? when 1 < p < +o0.
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Another result (Theorem 2.4) is that H,: H? — H? and A,: HY — HP are
adjoint when 1 < p < 400 and p’ is the exponent conjugate to p.

The boundedness of T,, and H,, on A is treated in Proposition 2.5 and Theorem
2.6. The more difficult cases of the disc algebra Ay and, especially, of H* for the
operator A, are covered by Theorems 2.7 and 2.8.

Section 3: In [13] there is a sufficient condition for the boundedness of H,, on the
Bergman spaces A? in the restricted range 4 < p < +oo and we give (Theorem 3.6)
the necessary and sufficient condition for the full range 1 < p < +oc0. In order to
do this, it seemed technicaly necessary to introduce and study in detail (Proposition
3.4) the adjoint S}, of H, = §,,.

In [13] a sufficient condition for the boundedness of A, on A? is given when 1 <
p < +oo. Here we give (Proposition 3.1) the necessary and sufficient conditions for
the boundedness of T, when 1 < p < +o0 and (Theorem 3.2) for the boundedness
of A;, when 1 < p < +00. Observe that the case of p = +oo for A, is already treated
in the previous section.
Sections 4, 5, 6: We prove the necessary and sufficient conditions for the boundedness
of H, and of A, on the Dirichlet spaces, BMOA, VMOA, the Bloch and the little-
Bloch spaces. For all these there were no previous results in the literature.
Section 7: Finally, we state, but without proof, our results concerning the Lipschitz
classes and a few open problems that might be interesting.

In all cases we give exact estimates, and in some instances the exact values, of the
norms of the operators on the various spaces.

2 The Hardy Spaces H?, 1 < p < +00, and the Disc Algebra
In the following proposition we find sufficient conditions on y for the boundedness
of S,, on the H? spaces, giving a more direct proof than the one in [5].
Proposition 2.1  Let p be a finite positive Borel measure on (0, 1] with
0 fou t7 7 du(t) < +oo, for1 < p < +o0,
(ii) f(o,l] log + du(t) for p = 1.
Then H, = S, : H? — H? is a bounded operator and

(iii) ||H||r—pr < C max ( zﬁ’ 1) f(O,I] 7 du(t) < +oo, for 1 < p < +oq,
(1) |H,|lgm—m < Cf(O,l](l +log 1) du(t) for p = 1.

Proof Let f € H?,1 < p < +o0. Using the generalized Minkowski inequality,
1 o i0y|p i0\\|p %
(2.1) ||S,u(f)||HP < {_ ‘Wt(e )| |f(¢t(€ ))| d9} dﬂ(t)-
01 L 2T Jo

We fixat € (0, 1] and work with the inner integral

r i0
A1) :/ 1_(11_t)eie|p ‘f(1—(t16— t)eie) ‘pg'

|

https://doi.org/10.4153/CJM-2006-023-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2006-023-5

552 P. Galanopoulos and M. Papadimitrakis

We define ¢’ to be the radial projection of = (1 t) —1¢— on the boundary 0D of the

0 1—(1—t
unit disc. This means e = e 1= - )|

geometrically, one can see that,

and, either by trivial calculations or

(2.2)

C
— 0<t<lL

HE

If Nf(e'?) = supy.,., |f(re'?)] is the radial maximal function, then the above
estimate (2.2) gives for § <t <1,

o
2

@3 aw <cr [ NErse < crlsl.

Now, let 0 < t < 3 and write A(t) = f0<\9\<f +co<n = A1 (1) + Ay (¢). For the
first integral, using (2.2), we find B -

1 suip| dO| do
Alt) < — Nf(e)|P| =
() < 24 /0<9|<t| Jel ‘d¢ 2 tp 1HfHHp

In A,(t) we have ’W‘ C < 1, implying ’f(m) | < ClIfllze-
Hence,

p .
Ay(t) < CP/ _d9||f||Hz s fllfe, i1 < p < oo,
s = \Clog il ifp=1,

and, finally, in case 0 < t < %,

At) < pcl’l = 1HfHHP7 ifl < p < +oo,
C(+log )| flm, ifp=1.

Together with (2.1) and (2.3), we get the announced estimates for p € [1, +00).
In case p = +00 the estimate is immediate, since

5@ < [ @IS < [ Lol

The following result is known from [5], where, in fact, the equality || T, ||pr—n» =

f(O,l] £ dpu(t) is proved foF p € [1, +00) through the use of composition operators.
Here we present an alternative proof.

Proposition 2.2 Let 1 < p < 400 and p be a finite positive Borel measure on (0, 1].
Then T,,: H? — H? defines a bounded operator if and only if

/ £ du(t) < +oo.
(0,1]

/ tii du(t) < HTMHHV—)HP < C/ tii du(t).
(0,1] 1

Also

)
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Proof It is easy to prove that there exists a fixed « > 1 such that for every 6 €

[—m, 7], every r € [0, 1] and every t € (0, 1), the point tre’’ + 1 — ¢ is contained in
the kite-shaped region I'o (¢"’) = {z € D : ‘61 ‘—‘Z\ <a}.
Now, it is implied that |f(tre® + 1 — t)| < N,f(e"’), where N,f({) =

Sup,cr, (o) | f(2)] is the well-known non-tangential maximal function.

Assuming that f(o 1 77 dp(t) < +00, and using Minkowski’s inequality,

I Tl < {/;{ (Q”N f(ene)du(t)}pdi}

< / {7 Ny D aun <c. / e dp(t)]| e
(0,1] (0,1]

—tm

Assummg now that T, is bounded on H? and con51der1ng the functions f\(z) =
i ZA,O < A< %, 1t is clear that T#(fA) = f(” = du(t)fy.  This implies

f d,u(t) < || Tullp—pe forall X < < ﬁnlshlng the proof. [ |

Now we shall see that under the same conditions A, defines a bounded operator
on Hardy spaces.

Theorem 2.3 Let1 < p < +oo and p be a finite positive Borel measure on (0, 1].
Then A,: H? — HP defines a bounded operator if and only if

||AHHHP~>HP = /0 t_% d/t(t) < +00.

)

Moreover, under this condition, A, (f) = T,(f) for every f € H?.

Proof Letl < p < +ooand [ 75 du(t) < +oo. If f(z) = St a € HP,

then sy — f|lur — 0, where sy(z) = SN a,z" are the partial sums of the Taylor
series of f. From Lemma 1.2 and Proposition 2.2 we get immediately that A, (sy) =
T,(sn) — T,(f) in HP. Using series representation, this means that

Z(ch an) 2 = Tu())(2) = Z byt
k=0 n=k =0
in H?. Thus, for each k, we get Z;r:,i Cnk @n = by. Therefore, the series A, (f)(z)

is identical to the function T),(f)(z) and, combining this with Proposition 2.2, we
conclude that for each p € (1, +00), A,: H? — HP defines a bounded operator and

Al < C/ t 7 du(t).
(0,1]
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Let p = 1 and f(O.l] +du(t) < +oo. Letalso f(z) = S anz" € H' and

consider the (C, 1) means ox(z) = Zi’;o(l - ﬁ) a,z" of the Taylor series of f.
Since |lon — fllm — 0, we get A, (on) = T,(on) — T,(f) in H'. This means

i‘i(ﬁ:(l - NZ— 1) C”ﬁka”) Zk - Tu(f)(z) = f kak
k=0 n—k o

in H', implying that for each k, the series Z:f,i Cnkan is (C, 1) summable to by. In
order to get Z::,z Cnkdn = by, it is enough to show Tauber’s condition: ¢,a, =
O(%). Since |a,| < || ]|z, it is enough to show ¢, = O(%). Now

_ (" kel oy on—ky /g du(t)
Cnk = (k) /(0’1] /(O’t](s (1—y5) ) ds "
S <I’l)/ d:u(t) |($k+1(1 _S)rlfk)/‘ ds
k) Jo t (0,1]

e+ 1kt du(t) 1
< att) _ (L)
=2y (n+ 1)kt /(0’1] t O( n)

After having proved that by = Z::,z Cn kan, the rest of the argument is the same as in
the case 1 < p < +oo0.
For the necessity, we assume that A, is bounded and consider the functions
ZA . —\
filz) = ﬁ = Zzzf)(—l)”( Mz for 0 < A < %. Since (=1)"(7) > 0, we
find that

&2 SN L k<—)\> R (—A—k) . .
k(=1 = -1 -D)"(1—-1)"d
nEch,u >(ﬂ> /Mt( * n§:0: D =" du)

- (—1)k<_k> | auo,
k (0,1]

This implies that f(O.l] A du(t) < +oo forevery A,0 < A < %, and

+oo , +00 )\
A/,m)(z)—zj( cn,k<—1>"< ))zk— | .
k=0~ n=k " 1]

Therefore f(m] t= A du(t) < ||A,|lHr— e, for every A € (0, %), finishing the proof.
For the exact value of the norm, see the remark before Proposition 2.2. |

The proof of the case p = 1 in the following theorem is in [5], and we include it
for the sake of completeness.
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Theorem 2.4 Let1 < p < 400, p' = # and p be a finite positive Borel measure
on (0,1]. Then H,, is bounded on H? if and only if

HHIU,”HP*)HP = / t%_l du(t) < 400, ifl <p <400
0,1]

and )
| Hp || 1 — p x/ (l + log —) dp(t) < +oo.
(0.1] ¢

If 1 < p < +00, then, under the above conditions, H,: H? — H? and A,,: HY —
H?' are adjoint.

Proof Proposition 2.1 proves the sufficiency part.
If p = +oo and H,, is bounded on H*°, then H, (1) € H* and, hence,

1 1
—du(t) = lim ———du(t) < ||H,||ge—gee.
Aﬂtu e LO R LA

Also, iff(0 1 +du(t) < +oo, then

1 1
H, < —d w < —d .
HDE < [ g Ol < [ Sl

Now, let p = 1 and H,, be bounded on H'. Using Hardy’s inequality, we get

1 1 1
/ ( 1 +log —) du(t) < C/ log — du(t)
©,1] t ounl—t “t

+00
1
=C 1—6)"du(t
;nﬂ/(o_’l}( V' dpu(t)

< ClH Wl < ClH .

Let 1 < p < +00, assume that H,, is bounded on H? and let HL: HY — HP be
the bounded adjoint of H,,. We claim that for all f € H” and all polynomials g,

2 . — do 2 o ———— df
/0 B o = /0 @A) o

This is trivial to prove when we replace e’ by re’’; we subsequently let r — 1—,
bearing in mind that both f and H,,(f) are in H. This identity implies that H,(g) =

A, (g) for all polynomials g and, in view of the density of polynomials in H” "and of

Theorem 2.3, the proof will be complete, if we prove that f(o 1 7! du(t) < +oo.

Let 0 < A < # and consider the functions f\(z) = ﬁ = EZS()) (n+/>,71)zn'

For the partial sums sy x of the Taylor series of f, we know that ||sxn — fillr — 0
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and, since H/L is bounded, we find A, (s\ n) = H/L(S)\’N) — H;i(fA) in H?'. Thus, for
eachz=x € [0,1) wegetA,(syn)(x) — H}Q(fA)(x). Due to monotone convergence,

+00 )\ _ 1
Au(san)(x) — / Z (n " >(1 —t+tx)"du(t) = /
0,11 5,5 n (

| t%fm du(e).
0,1

Therefore, f(O,l] & du(t) fa(z) = H,(f1)(2) for every z € [0, 1). By analytic con-
tinuation, this extends to all z in the unit disc, implying

1
[ 0 < U = Wl
0,1

forall A € (0, 1) and, finally, [, | ¢7~" du(t) < | Hllsr—1ze- n

The last two results concern the behaviour of Hausdorff and quasi-Hausdorff ma-
trices on the disc algebra A,.

Proposition 2.5  Let 1 be a finite positive Borel measure on (0, 1]. Then T, is bounded
on Ay and

||T;4HA0—>A0 = (0, 1].
Proof If f € Agpandz,z in D, using w = tz + 1 — t, we find easily

\T.(f)(@) = Tu(f)(2)] < u(0,1]  max [f(w) — f(w2)].

[wi—w,|<|z1—2]

Therefore, T,,(f) is in Ao.
The inequality ||A,||4,—4, < 1(0, 1] is obvious and we get the opposite inequality,
considering T, (1) = u(0, 1]. [ |

Theorem 2.6  Let u be a finite positive Borel measure on (0,1]. Then H, = S, is
bounded on A, if and only iff(o 1 %d,u(t) < 400. Moreover,

1
Hila = [ duto
(0,1]

Proof The necessity of the condition and the exact formula for the norm of the
operator are proved in the same way as the case p = +00 of Theorem 2.4. Therefore,
it is enough to prove the sufficiency of the condition. Hence, let f(O.l] Fdu(t) < +o00

and f € Ag and forany ¢ > 0 find § > 0'so that [, ; ¢ du(t) < €. Then

[Hu(f)(2) = Hu(f)(20)] < 2€][ f]]a,

1 tz
’ /[5,1] 1-(1- t)Zf( 1-(1-— t)z)

o )‘du(t).

11—tz  \1—(1—1t)z
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Due to uniform convergence, the last term tends to 0 when z — z,. Hence,
limsup, . [H,(f)(z) — H,(f)(z0)| < 2¢| f|4,> implying that H,(f) is continuous
at the arbitrary z, € D. u

The behaviour of A;, on the spaces Ay and H*® remains open, and the last two results
of this section exactly describe this behaviour.

Theorem 2.7  Let u be a finite positive Borel measure on (0, 1]. Then A, is bounded
on Ay if and only if sup, logn f(o.l](l — t)"du(t) < +oo. In this case we have that
A, =T, on Ay and, hence, ||A, | a,—a, = 1£(0,1].

Proof (A) The maximum of t*(1 — )" ¥ on (0,1] is (%)k(l - %)”*k att = %
Therefore,

Cnk = (Z)/ (1 — )" Fdu(r) + <:)/ (=) Fdu(r)
0.7 (51

< C(k){,u(o, %) T e (0, 1]}.

Hence, when n — +o0,
(2.4) Cuk — 0.

Our next aim is to prove that {c, s} is almost-decreasing. The meaning of this is
expressed by (2.5) and (2.6) below. Clearly,

n+1 k n—k k
(2.5)  cpk — Cpr1k = ( r ) /(Oﬁ ) )t (1—1) (n 1 t) du(t) Tnk

n+l

where
+0oo +0o0o

(2.6) > rak<Cl)D At / X (O dpl®)
n=k n=k ©,57) "

+oo
=C 1Y sy (n) dpa()
0.7) n=k '

< C(k)u(o, Fkl) < +o0.

The next result is that {c, } is almost-convex, as expressed by (2.7) and (2.8).

Cn,k_ZCnJrl,k + Ch2k =

CIZZ) /(0,1] - t)n_k{ (t a niz)z B (:(f;r)(zn;];))Z} Apt).
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+ _ k k(n+2—k) — + : 2k
We set tn,k = w0 + D) (n2)? and then 0 < tn,k < tn,k S mln(m, 1) . For all

t € (¢, tyy) we have

(= 53) = ezl SE

Hence,

n 1 _
(2.7)  cup—2¢h1k + Cpiap > —C (k )—/ t*(1 — )" *du(t) = —Rps.
—1/)n (tt

+
nk’ n.k)

where R, = 0 when k = 0. This implies

+00 +00
08 = C0 3 [ ) dut)
n=k n=k (0.1]
[+]

< C(k) N T n N du(r) < Ck)p(0,1] < +oo.
(0,1]

~lR

n=k
From (2.7),
m
(2.9) 21k — Cmelk = Z (Cuk — Cre1 k)
—r
m
> Z (=Ruk — " — Ru—1k + Cmk — Cms1 k)
n=(2)
m
> —C Z an,k + Cm(cm,k - Cm+1ﬁk)-

n=[%]

From (2.8) and (2.9) we find limsup,,,_,, . m(cmk — Cme14) < 0 and from (2.5),

k
mM(Cmk — Cmi1k) = —C(k)m /(0 ot du(t) > C(k)u(O, p—ry 1),

Y m+1
implying lim inf,,, ;o Mm(cyk — cmi14) > 0. Therefore
(2.10) n(Cnk — Cpr1k) — 0.

Applying summation by parts together with (2.4) and (2.10),

+0o0

(2.11) Z(ﬂ + 1) (enk — 2Cns1k + Cnia) = (k+ Dewg — keger -
n=k
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which, together with (2.7) and (2.8), gives

+oo +oo
(2.12) Y (n+ Dlenk — 2cur1x+ Cnsakl < (k+ Dk — kegarx +2 > _(n+1DRyx
n=k n=k
< +00.

(B) Now let f(z) = Z;ﬁ% a,z" € Ap and considers, = ay + -+ a, and o, =
——=(sp + - - - + s5,). After the usual summation by parts, we get

n+1
N N-2

(2.13) }:%wn=§:mw—z%ﬂk+qﬂwm+1wn
n=k n=k

+ N(en—1k — eNg)ON—1 — k(Ckk — Ckr1k)Tk—1 + CNKSN — ChkSk—1-

Since {o,} is bounded, from (2.10), (2.12) and (2.13) it is implied that the conver-
+00 . . . . .
gence of Y~/ ¢, xa, is equivalent to the existence of lim,,_ ;o ¢y ks, in C.

Assume now that A, is bounded on Ag. Then, for every f € Ay, the series
S 120 cnoan converges and, hence, the limit

n—+oo

lim ¢85, = hm CnO/ D,(0) f( "9)
exists in C, where

51n(n+ =)0
= - + cos 0
Z 2 sin 19

v=1

is the Dirichlet kernel. From the Uniform Boundedness Principle we get that
sup, cuologn < +oo. Because lim,_,+o0 €405, = 0 for every polynomial f and be-
cause polynomials are dense in Ay, we conclude that lim,_, o ¢y 05, = 0. for every
f € A.

Suppose that

(2.14) sup ¢,k logn < +o0o
n
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is true for some k. We shall prove it for k + 1, implying that it is true for all k and
hence, that

(2.15) lim cyxs, =0

n—+00

is true for all k. Now, from (2.9),

n
Cnjkt+1 = m(Cnfl,k — Cuj) T an.k
+00
<Ck) D MRy + CR)(Cnya) ik + k)
m=[n/2]

and, performing more carefully the estimates that led to (2.8), we get

+oo
i SCKR) D m 1 [ g (1) dpa(t) + COR) ey + i)
m=[n/2] (waﬁ
2]
< Ck) tk m 1 dp(t) + Ck) (cpnap x + k)
m=[n/2]

8k
< COR(0.2) + CRIelnpars + ni) < Ot + €0

From this and (2.14), we get sup, lognc, k1 < +oo, and the proof of (2.14) and
(2.15) is complete for all k. Now, (2.13) implies

+00 +0o0
(2.16) Z Cnjln = Z(Cn,k—26n+1,k+6n+z,k)(n+1)Un —k(cpfo— Ck+1,k) Ok—1 — ChkSk—1
n=k n=k

for every k.
From (2.7), we have that for every p € [0, 1)

+oo 400 +00 +00
k n k(1 _ p\n—k k
S (X)X (1) [ Fa-ortaue
k=0 n=k k=1 n=k ’
:c/ P du) < oo,
o1 (L=p)(1 —1p)
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and, from (2.12),

+o0 +oo

DN+ Dlews — 261k + Curail
k=0 n=k
+0o0o +00 +00
<Y (Ge+ Dk — ke k) 9 +2) 0> (n+ DR it
k=0 k=0 n=k
+oo +0o0
3pt + 2pt?
— [ R aun 4230 3 0+ DRt < +ox.
oy (L=pt)? k=0 n—k

Therefore, from (2.16) and for any z € D,

+oo +oo +oo n

k k
Z(Z Cn,kan) z = Z(Z(Cn,k = 2Cpt1k + Cui2,k)Z ) (n+1)o,
k=0 n=k n=0 k=0
+00 +00
k k
= klekk = k1 R)ok-12 =Y cersio12
k=1 k=1
n+1 n+2
Z(chkz - ZZCM 2k + chmﬂ ) (n+1)o,

n=0

/ ]Zan(l —t+1t2)" du(t) = T,(f)(2).
0,1

Theorem 2.8  Let u be a finite positive Borel measure on (0, 1]. Then A, is bounded
on H* if and only iflim,_,,, logn f(o 1](1 —1)"du(t) = 0. In this case A, = T, on
H®> and ||A,,||proe — oo = (0, 1].

Proof All results in part (A) of the proof of Theorem 2.7 remain unchanged, since
the function space is not involved there. On the other hand, part (B) depends upon
the validity of (2.15) for all k.

If we assume lim,_, 4o cuologn = lim,_ o logn f(O‘l](l — t)"du(t) = 0, then
exactly as before, we can show by induction that lim, o0 cnilogn = 0 for all k.
Since |s,| < Clognl|f||u= for all f € H*, we immediately get (2.15), and the
sufficiency part of the theorem is proved.

Now, assume that A, is bounded on H*. Then, exactly as before, we see that
lim,,_ o0 €408, exists in C for all f € H*, and the Uniform Boundedness Principle
implies, as before, that sup,, ¢, ologn < +oo. But the polynomials are not dense in
H®® and, hence, we cannot easily get

(2.17) lim ¢,0logn =0.

n—+0oo
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Therefore, the rest of the proof consists in proving that if lim,_, o ¢ 05, exists in C
forall f € H*, thenlim,_,, o cy0logn = 0.
Suppose that, on the contrary, there is a sequence {7} so that

(2.18) cuy0lognj — p # 0.

We say that ¢ is of type C if it is 27- periodic, isin C*(R\ 27Z), is real and odd, is
decreasing in (0, 7] and satisfies ¢(0+) = 7 and ¢(7) = 0. Then (see [15])

(i) qb(n) is imaginary, (b(—n) = —(b(n) for all n and hence, sy¢(0) = 0 for all N,
(i) |snp(0)] < Cp for some absolute Cy, for all N and all 6,
(iii)  snyo(0) — (b(@) umformly ind < |0] <, forall §, and
()~ SR = e Lt O(1) = L.
We now construct a sequence of exponential polynomials {1y } as follows.

We first consider a function ¢ of type C and a large enough N; so that 2Ny is
in the sequence {n;} of (2.18) and so that ‘ 1og23\11 ij;l q;l(n) — 1| < 1. From (ii),
Isn, 1(0)] < Cy forall 6.

Let 1, = sn, ¢ and suppose that ¢, . . ., ¢, have been constructed so that
(2.19) degv; =Nj, j=1,...,k where2N;areall from {n;} and,
(2.20) Njyp >3Nj, j=1,....k—1
(2.21) $i(0)=0, j=1,....k

C() ™ .
1 1
(2.23) W (O)] + -+ |[(0)] < c0(1 ot o 1) for all @ and
(2.24) lgN Z¢](n)—1’ <= i=1,....k

From (2.21) we have that for some &, € (0, 31,

(225) @]+ A OIS Co(5 4+ 5). 18] < b

NI'—‘

We consider any ¢4 of type C and supported in [, d] and take large enough
Ni41 so that 2Nj; isin {#;} and so that

. Nk+1
21
Niwr > 3Ni, ‘— - 1’
k+1 > 3Nk Tog N ;(bkﬂ(ﬂ) k+1

and due to (iii),

C
(2.26) v G ()] < o2, B < (0] <.
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Now, if we define 51 = sn,,, Pk+1> then (2.19)—(2.22) and (2.24) are automat-
ically satisfied for j = k + 1. Combining (2.22) and (2.26) for & < || < 7 and
(ii) and (2.25) for |8] < &, we get (2.23) for k + 1. Therefore, we have inductively
constructed {1y} satisfying (2.19)—(2.24) with k = +oc.

Consider the series
+00

Z eiZNkak(e) )

k=1

By (2.23), the series defines a bounded 27-periodic function f. Due to (2.19) and
(2.20), f € H* and the frequency ranges of the summands do not overlap. From
(2.22), we have that the series converges uniformly in 6 < |f| < = for all §, and from
(2.23), that its partial sums are uniformly bounded everywhere. Therefore, the series
is the Fourier series of f, and thus,

m
3N, 03N, f (0) = €3N0 Z Pr(0) = 0,

k=1

while, from (2.18) and (2.24),

m Nm Nm

N, 05N, f(0) = Csz,o{ Z Pe(0) — Zﬂ)k(ﬂ)} = —ON,,0 Z'l/)k(”)
k=1 n=1 n=1
ZNfl Zb\k(”) 1.
= — log2N,, === "—~ . 0.
C2N,,,0 108 21N}y, log 2N, - 21P7é

This is a contradiction to the existence of lim,_, o €n05,f(0) forall f € H*. [ |

3 The Bergman Spaces A?, 1 < p < +oc.

In this section we study Hausdorff matrices and quasi-Hausdorff matrices on Berg-
man spaces A?;1 < p < +oo. We find the necessary and sufficient conditions in
order for H, and A, to define bounded operators on these spaces.

Proposition 3.1 Let 1 < p < +o0 and i be a finite positive Borel measure on (0, 1].
Then T,: AP — AP is a bounded operator if and only if

| Tyllar—ar = / £ du(t) < +oo.
(0,1]

Proof Letl < p < +oo, f(o 1 £ du(t) < +oo and f € AP. By Minkowski’s
inequality and the change of variable w = ¢, (z) = tz+ 1 — ¢,

1T () las < / e () £
(0,1]
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Now assume that T), is bounded and consider the functions fy(z) = (1 T 0< A<
%. Since f) € AP and T,,(f,)(2) = f(o.l x dp(t) f1(2), it follows that f(01 xdu(t) <
| T, ||ar—ar forall X € (0, 2), Taking the limit as A — E —, we get the result we want.

|

Since A® = H, the case p = +00 in the next theorem has been covered by Theo-
rem 2.8.

Theorem 3.2 Let 1 < p < +oo and p be a finite positive Borel measure on (0, 1].
Then the operator A, : AP — AP is bounded if and only if

_2
[[Apll e a0 :/ t7 7 du(t) < +oo.
(0.1]

Proof The proofis the same as the proof of Theorem 2.3, using now (see [14]) that
if fz) = 0% a,2" € AP, then YN a,2" — fin AP, if 1 < p < +00, and
SN (1= ) an" — fin Al ]

We continue towards finding sufficient conditions so that S, = H,, is bounded
on AP. The next result is only a preliminary rough form of Theorem 3.6.

Proposition 3.3 Let 1 < p < +o0 and p be a finite positive Borel measure on (0, 1]
under the further conditions

(I ,m | Joy (1 =" du(®)? < +oo, forp =2,
(i) S t7 7 du(t) < +oo, for2 < p < +oo.
Then H, = S,, : A? — AP is bounded. Also,

(i) |Hollae—pe < CLSIS 1] o (1 t)”du(t)\z}% forp =2,

(iv) |Hpullar—ar < Cmax ( ﬁv 1) f(ol “Vdult), for2 < p < 40,
) HH [l ap—ar < (0 1], for1 < p < 2.

Proof Letl < p < 400, p # 2and f € AP. Then

1 tz P :
I1Su(Pllar S/«m{//,) =t —t)z\l"f(l—(l—t)z)‘ d’“(z)} (o)
:/ +/ :Kl +K2.
(0,31 J(51

Using the change of variable w = ¢,(z) = ﬁ, we get

I0):= // = (11— t)z|P‘f( 1= (t12— t)z) ’pd’”(z)

— )4
- // e "ol dmn)
& (D)
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The image of the unit disc, ¢;(D) = {w € D : |[w — 3=4[ < 7}, is an open disc

with the interval (— 2 -, 1) as diameter. We separate ¢;(D) 1nto

Aoz{we@(n);\wi‘ <t}

1—t
and
A~:{we¢(D)-2j*14<’w+L’<21 }
] ne 1—t 1—tl =" 1=¢tJ°
for 1 < j < N, where 2N "1 |1+—|<2Niandthus,
1
3.1 2N = —.
(3.1) ;

If % < t < 1, then the disc ¢;(D) is covered by Ag U A;. In this case, it is trivial to
see that - =< |w + 1| in ¢ (D). Hence, I(t) < C || f||},. In case t = 1, obviously,
I(t) = || f||%,- Therefore,

Ky < CJ|fl]ar-

Nowlet 0 < t < % Trying to estimate I(¢), we get that if N > 2, then the sets
Ag, Ay, ..., Ay_; are included in |z| < % Using that | f(w)| < C|| fllar, if |w| < %,
we get [[, < CP2I)P=2||f||}, for j = 0,...,N — 2. Also, for j = N — 1, N, we

]

get [, < C@I0P~*| fl|},- Hence,

N-2

I(t) < cP{Z(zP LI + —{ @ N+ @ LIl

j=0

If1 < p <2 from(3.1),1(t) < { =S +C* P} ||f]|h, < & P||f|\Apand

Ky < *u(o U fllar-

If p > 2, from (3.1), I(t) < 55— 7 || f||4, implying

1 Z,l
—1 e dult) .
—1) /(] (O f v

K SCmax(

Combining the estimates for K; and K5, we conclude the case p € [1,2) U (2, +00).
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If p = 2, then

1S (]2

//’/01 1—(1 d“(")‘ dm(z)} |£(0)]
//’/01 1—(1 —t)z(f( ( t)z) _f(o)) du(t)‘zdm(z)}%

S{ n+1’/ (= o dute)] Y 11

0)| dm(z)} " du().

/01 // |1—(1—l‘)2|2 ( t)z) 1 ’ m(z} plt)
Now, we set g(z) = £2=19 which implies that llgllaz < C||f|laz- Therefore,

the second term is < f(o.1]{ff¢,(1)) lg(w)|? dm(w)} du(t) < Cu(0, 11| 42, from

which we find

+00
Isunlle < o{ 3 s [ o= orauo] Ll
0,1]
Finally, the case p = +00 is obvious. ]

Now, we consider S, = H,,: AP — AP as a bounded operator and try to find the
necessary conditions on p. To do this we formally define the operator

. 1—t¢ tz+1—t tz
5@ = [ gy [ 10w e o} o

tz+1—t
- /(071] %(tz +Zl —t /0 f(C)dC) ap(t).

Proposition 3.4 Let 1 < p < +oco and p be a finite positive Borel measure on (0, 1].
Then the operator S;,: AP — AP is bounded if and only if p satisfies

1 ’ 1
1 4 o7 _2
1S5 llap—ar =< {/ (/ —du(t)) rdr}” +/ 70 du(t) < +o.
o Moy ttr ©0,1]

In particular, if 2 < p < 400, then S, is bounded on AP for all finite positive fi.

Proof Ifp = +oo, we see easily, by distinguishing the cases [tz + 1 — t| > 1 and

|tz + 1 —t| < 1, that the absolute value of the integrand in the formula for S, ( 2
is less than C HfHAoo Therefore, [|S;,(f)[|as~ < Cp(0, 1] f|la= and thus,

100,11 < |85 lase s < Cpa(0, 1],
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where the estimate from below we get from f = 1.
Let1 < p < +ooand f € AP. Then

(3.2) 1S5 (Hlar < {//D‘/(O’i] ’pdm(z)} ’ n {//D‘/(M ‘pdm(z)}%

=L +h.

Now

e f e [ s )

and, denoting the inner integral by J(¢) and with w = ¢4(z) =tz + 1 — t, we get

o= [[ (2 [ oac) | amon

Since ; < t < 1, the disc ¢,(D) intersects the disc {|w| < 1} and we consider the
sets Ag = {W € (D) : |w] < %} and A; = ¢,(D) \ Ay. Then

J(e) = 192 / / s / / — Jo®) + i (8).
Ao Ay

If [w| < 2, then |f(w)| < C||f|l4» and thus the integrand in Jo(t) is < C || f]|ar
implying Jo(t) < CPP=2||f||,. Also,

sy <cne [[ (][] +1501) " dmo
< crr? / / wie / g FOWIP ) dm(w) + P2 £,
A 0

1
<cnrt [ ([[ironp dmon) axs e,
0 Ay

and, since [ [\, [f(w)[Pdm(w) < CP ||f||5,72% we find J,(r) < CrtP=2| f||%,. Thus,

J(t) < CPeP=2| f||h,, for 1 <t <1, and finally, I, < C pu(, 11| 1| ar-
Next, working with I, we get
(3.3)

< {//D‘/(OH/Ol_tf(c)dgdu(t)")dm(z)}‘1’
A E [ o) auto)” dmiz)}
tz+1—t 1
+{//D]/(O]ddz(mzl_t/1 FQdC) dpto)|” dm(z)}

=1 + 1 + 115.
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To estimate I3, after using Minkowski’s inequality we set

W) = / / | %(# /1 tz:l_tf@)dc) " amc)

L oo
ool
) 1 1—1

— p
P2 // =22 )] o
(D) tw

1 1
gCPtH{/O (/[br(D)|f(/\w+(1—)\)(l—t))|Pdm(w)>pd/\}p

+CPeP 2| fI%

1 1
:cptH{/ (// @) dm@) " xFax} "+ cre 7|,
0 D(1—t;)t)

p—2 % 1 2 P
<crt ID(L— s A0)[P A7 dA [If]15,
t2
0

p
dm(w)

1
p
coro 2 [t} Il + el
<P £

Thus, I;3 < Cfo 1] %d/,l,(t)HfHAp. To estimate I;; and I;, we use the well-
known f(¢) = ffD (17%)2 dm(w), which gives

1—t
3.4 d d
(3.4) [ soac - / / F0 L ),

After trivial calculations, Ly < Cp(0, 11| f]l ae-
Ifp’ = ~=, then from (3.4) we also have

we {1 o] Lm0} Il
S ———r
L (] i) rar} s

IN
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Combining all estimates we get

1 L
(3.5) ||SZ||AP*>AP SC[{/O (/( ]ﬁdﬂ(t)) TdT}P +/(01] tI*E du(t):|

Assume, conversely, that S* AP — AP is bounded and consider first p > 2. We
change (3.2) to [|S;(f)[|ar > I —Land (3.3) to I; > I;; — I, — I13. Choosing f = 1,
we see that p(0,1] < ||Su||AP_>AP This, together with all other estimates, implies
I <C|S; ||Ap_,AprHAp In view of (3.4) and duality, we now have

// \/ ]1_<1 5 0| dmw)} " < IS L

Restricting D to a Stolz-angle of opening, say 7, with vertex at 1, we get

{/01(/( ]md”( )) rdr} ’ < CIIS, il ap—av-

2
dz(l zMO<)‘< -1 which

satisty Sy,(f,) = f(m] t=*du(t) fr. This implies f(ol] pd,u(t) < ||S lap—ar, and
now the inequality [|S%(f)[|a» > I — Iz — I3 — L, through the same argument as
above gives

1 1
o dndt drd” 4+ [ 87 dut) < CIISE | ar—ae-
{/0 (/01] t+r e )) r r} /(071] »dp(t) < C|IS, [lar—ar

The last claim in the statement of the theorem is an immediate consequence of
Comment (ii), below. |

If 1 < p < 2, consider the functions f\(z) =

Comment The quantities in Proposition 3.3 and the “duals” of the quantities in
Proposition 3.4 are, as expected, closely related

(i)  For p = 2, we have through || Jou
(3.6) !

+00

(5l 1

(i) Forl <p<2,

! % 1— 2
(37)  w0,1] gc[{/o (/01] mdu(t)) rdr} /(O’I]t ; du(t)]
1

;1) (0, 1].

dp(t)]| . that

1(1:

}% = {/01(/(0.1] id,u(t)) 2rdr} % + (0, 1].

§Cmax(
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(iii)  Finally, for p > 2,

2 1 1 p 1 _2
p1 - ? 1=
(3.8) lA”t muﬂg{A([;“+/mm)rm} fA”t duu(t)

1 2
< C max .1 / tr N du(r).
(\/P—2 ) ©.1] a

Lemma 3.5 Let y be a finite Borel measure on (0, 1]. If f, g are polynomials, then

/ / S5(F)(g(@ dm(z) = / / FS @@ dm(z).
D D

Proof The proofis a matter of trivial calculations with f(z) = 2, g(z) = 2. [ |

Now, we are in the position to state the following final form of Proposition 3.3.

Theorem 3.6 Let 1 < p < +oo and p be a finite positive Borel measure on (0, 1].
Then H,, = S,,: AP — AP is bounded if and only if the following additional condition
is satisfied:

1 1
1 P 7 _2
| Hul|ap—ar = {/ (/ — d,u(t)) rdr} ! +/ ¢! ” du(t) < +oo.
o Moy ttr (0,1]

Moreover, if 1 < p < +oo and p satisfies the above condition, then the adjoint of
H, =S,: AP — AP is the operator Sj;: AP — AP p' = ﬁ.
Proof (i) Let p = +oo. Then, the condition becomes f(01] %du(t) < +00 and
Proposition 3.3 implies that H,, is bounded on A*°.

Conversely, from H,,(1)(z) = f(O,l] ﬁ du(t), we get
/ L) = i ! du(t) < [|H,|
- = lim - oy p00 -
(0,1] t H x—1- (0,11 1— (1 — t)x H - pila A

Now let 1 < p < +o0o. Then the condition in the statement of the theorem
implies, through (3.6), (3.7), (3.8) and Proposition 3.3, that H, is bounded on A”.
Therefore, it only remains to prove the necessity of the condition and that S}, is the
adjoint of H,. We assume that H, = §,: AP — AP is bounded and we denote

Sl’t: AP" — AP its bounded adjoint. From Lemma 3.5, we have that S7;(f) = SL(f)
for every polynomial f.

(if) Let 1 < p < 2. Lemma 3.5 implies that for each polynomial g(z),

’// 5;(1)(Z)g(—2)dm(2) < N1Su@Nlar < NISullar—arllgllae,
D
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and, since the polynomials are dense in A?, u(0, 1] = [|S5 (D47 < [[Syllar—ar-
Hence, by (3.7) and Proposition 3.4, SZ: AP" — AP is bounded.

Incase 1 < p < 2 the polynomials are dense in A?". Therefore, S, is the adjoint of
H,,, implying that the two operators have the same norm and this subcase is complete,
due to Proposition 3.4.

Now let p = 1. To prove that S, = Sy,

> WE consider the following subcases:

(a) Leté € (0,1] and pt = 01in (0,0). Then the measure y satisfies the necessary
and the sufficient condition for $* to be bounded on A®. Consider an f € A® C A?
and the (C, 1) means on(f) of its Taylor series. Then UN(f)W—>f and therefore,
SL(UN(f))LSZL(f) in A%, Also, on(f) — f, implying S}, (on(f)) — S, (f) in A%,
But, from Lemma 3.5, we get S7; (on(f)) = S//‘(JN(f)), and thus, S;(f) = S/"(f).

L

(8) For arbitrary § € (0, 1] define the measures p; = pi[5,1) and v5 = fi(0,6). From
case (o) we get S;M(f) = S;a(f) and then

15,() = S (Dllase = ISusllar—ar I fllase < Cpa0, 61| flla

and
[S:.(F) = Si (Dllase = 1S5, (Hllace < Cu(0, 6] flace -
Letting § — 0, we find S, f = S, f.

(iii) Let p = 2. Lemma 3.5 implies that for every polynomial f, [|S;(f)[la2 <

1S, /l42— a2 || f || 42- Considering the polynomial fy(z) = 2N f(o-,%] (1—t)""1 du(r)z",
we get from the end of the proof of Proposition 3.4 that

N ) )
(Sl [ ]

< CIS;(f)llaz—az < ClISpllaz— szl fvll a2

N 204
—C||S/,,||A2HA2{Zm’/(O1](1—t)”du(t)‘ } .
n=0 4

Therefore, {Z;\;O L | f(%](l — )" dM(t)| 2} ? < C||S,ll42— 42 and, by Proposition
3.3, S} is bounded on A%. From the density of polynomials in A%, we conclude that
S, is the adjoint of H ,.

(iv) Finally,let2 < p < +00. Let0 < A < % — land

d z - n+A—1\ , /
f,\(Z):d—Zm:nz_;(n‘f'l)( " )Z EAP.

We take the partial sums sy y of the Taylor series of fy for which we know that ||s) y —
fallarr — 0. Since S}, is bounded, we find S;(sxn) = S, (sxn) — S,,(f)) in AP,
Hence, for each z = x € [0, 1) we get Sp(san)(x) — SL(fA)(X)-
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Due to monotone convergence,
+0o0

S = [ {3 <” A 1) (=0 +ma(t = e +0"") bauc)

01~ 5 h

=/ L o).
o1t

Therefore, f(O,l] t% du(t) flx) = SL(fA)(x) for all x € [0,1) and, by analytic
continuation, f(OJJ & du(t) fy = S/(f) . Hence, f(O,l] Fdu(t) < |8l 40 g for
2_
0 <A< 2 —Landthus, [ 17 Yap(t) < S]] ar—ar-
Proposition 3.4 implies now that S}, is bounded on A”', and, through the density
of polynomials in A?’, it is the adjoint of H, = S,,. [ |

Comment One can easily find the exact value of the norm ||H,|[4»—4» in the re-
stricted range 4 < p < +00, using Minkowski’s inequality:

1 llar < /(0,”{//1) (i i) ‘p\l = (1tz— Dt () )

=/{// mmwwmyﬁ*wms/ t2 " dp(n)| 1 ar-
(0,1] (D) (0,1]

In view of the last inequality in the proof of Theorem 3.6, we get

[ Hpllar—ar = / T dpe).
1]

0,

4 BMOA and VMOA

Theorem 4.1  Let u be a finite positive Borel measure on (0, 1]. Then T,, is bounded
on either BMOA or VMOA if and only iff(o_l] log % dp(t) < +oo, and in both cases its

norm is =< f(m] (1+1log ) du(t).

Proof Let f(o ) log Ldu(t) < +oo and f € BMOA. By the growth estimate on f,

1
1 - du(t) <C log—— 4
/(O’” |f(1 =t +12)] dp(t) < /(O’” e Tp——— ()| f1lBMmoa

1
<C log —— dul(t .
B /(0,1] 8 (1 —|z]) w(@®)]| fllBmoa

and hence, T}, f(z) is well defined.
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There exist fi, f, analytic in D with R(f;), R(f) in L, f = fi +ifs + f(0),
£i(0) = £(0) = 0and | fllsmoa < [|[R(f)|z= + [|R(£)]lz + |£(0)]. Obviously,
(T.f;) = T.(R(f;)), whence,

T, fillemoa < C|T,f;(0)] + C|| Tu(R(fi) |1~

<C/( ]‘fj(l_t)‘d‘u(t)+CM(0,1]”%(fj)||Loo
0,1

1
<‘7JQJ](1+*°g;) dp(®)]| fllsnton

Thus, || T, fllsmos < C [ig,, (1 +10g 1) du(®)| fllsmoa-

Now suppose that T, is bounded on BMOA and take f(z) = log %_Z Then
T,.f(0) = f((),l] log + du(t) is finite and f(O,l] log + du(t) < C||T,|lsmoa—Bmoa- Sim-
ilarly, taking f(z) = 1, we find £2(0, 1] < C|| T}, ||MoA—BMOA-

To deal with the case of VMOA, assume f(o,l] log % du(t) < +oo.

From Proposition 2.5, we know that T, maps A, into Ay and, therefore, into
VMOA. Since T}, is bounded on BMOA and A, is dense in VMOA, we get that it
is bounded on VMOA with no larger norm.

For the opposite, we take f.(z) = log € VMOA, and then let ¢ — 0. ]

1
lte—z

Theorem 4.2 Let u be a finite positive Borel measure on (0,1]. Then H, = S, is

bounded on either BMOA or VMOA if and only 1ff d" D < +oo. Moreover in both

du(t)

cases the norm of the operator is < f(o N

Proof Assume f(m 1)« 400 and take f € BMOA. We define g(z) = zf(z) €

t
BMOA and use the decomposmon g = &1 +igy with g; analytic in D, g;(0) = 0 and
llgllBpoa = ||§R(81)HLW (| R(g2)][ o -
Since |1—1=;| < 2|, we see that H,(f)(z) = f( 1]g( 17(t1Z7t)z) d“t(’) is well
defined for every z € D and as in the proof of Theorem 4. 1,

|H,(f)|lemoa < CIH,()(0)| + Cl|zH,(f)||Bmoa

du(t du(t
i )”gHBMOA < C/ N( )
(0,1]

— | flIBmoa-

< Cul0,11|£0)] +C/
(0,1]

Assume H,, is bounded on BMOA, take f(z) = log ﬁ and x € [0,1). Then,

1 1-(1—-tx -
/(0,1] 1 %1 O =H(HX

1
< Clog T XHH#HBMOAHBMO&
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Restricting to (/1 — x, 1], we find f(\/ﬁ I %du(t) < C||Hp||BMoa—BMOa and it
only remains to let x — 1—.

If f(m] w < +00, then from Theorem 2.6 H,, maps Ay into itself. Since A is

dense in VMOA and H,, is bounded on BMOA, we have that it is bounded on VMOA
with no increase in norm.

For the opposite, take f;(z) = log —— € VMOA and let € — 0+. ]

1+e—=z

Theorem 4.3  Let 1 be a finite positive Borel measure on (0,1]. Then A, is bounded
on BMOA if and only if f(o 1 log Ldu(r) < +oo. In this case A, = T, on BMOA.
Exactly the same are true for the space VMOA.

Proof We employ the notation in the proof of Theorem 2.7. We assume f(o 1 log %
du(t) < +o00 and take f € BMOA. It is easy to see that

(4.1) Isx] < C||flIsmoa logn.

In fact, write f = fi +if; + f(0) with f, f, analytic in D, R(f1), R(f,) € L=,
£1(0) = £(0) = 0 and || f[|smoa =< [f(O)] + [ R(fi) ][> + [IR(f2) ||z Then,

s < £+ 3R] + | Ak
k=1 k=1

o+ 15 [ rem@e 2] 1[5 [ wi@e o P
=i+ |3 [ aiwee ] [ 3 [ R

<O+ CURD = + [[R(f2) ||z ) logn < C|| f]|pmoa log 1.

We get ¢, logn < C(k){ f(o 1 log Ldu(t) + log nnkefn;\/;u(o, 11} — 0 from the
: L
estimate that gave us (2.4), and this, together with (4.1), implies

(4.2) CukSn — 0.

From (2.5),

enk = Curi k] < Cnk — Cusr g+ 2C(k)n*! / ) t* du(t)
0,-5)
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and, using (4.1),

N—-1
Z ‘Cn,k - Cn+1,k| |5n|
n=k

N-1 N-1

< C)| f\|BMOA{ > (nk — curra) logn+ > nlogn / o du(t)}
n=k n=k 0,:37)
+00 n

< C(k)HfHBMOA{ nzz:klog T ke t Gk log k

+oo
+/ thnkfl lognx(oﬁL)(t) du(t)}
(0’1] n+l

n=k

+00
1
< C(k)HfHBMOA{ Z - (:) /(0 . t*(1 — )" % du(t) + cex logk

n=k
(4]
+/ thnkfllogndu(t)}
(0,1]

n=k

< 0 llvon{ 0, 11+ e logh + [

1
log — du(t)} < 400.
01 f

Therefore, the series ZZ:;((CWJC — Cps+1,k)Sn coverges and (4.2) together with summa-
tion by parts gives

+oo +oo
(4.3) D cukn = > (Cnk — Cur1 k)Sn — ChiSk—1-
n=k n=k

We shall need the estimates: 3, t"logn < C> %" >} + = < log -

and Y0 nt"logn < & + < log & Taking any p € [0, 1), we have from (4.1)
and the first of these estimates,

oo n
@4) Y (enk — )P sul

n=0 k=0

+o0o
- Z/ {t(l —t+tp)"(1—p) +t”“p”“} dp(t)]s,|
n=0 (0,1]

< C”f”BMOA/ {t(l —p)+t(1 — p)t
©.1]

1 1
log
1—tp

1 o 1
1-p) Er1-p)

+tp+tp } du(t) < +oo.

1—tp
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From (2.5), (4.1) and the second of the estimates,

+oo +00 +oo +oo

n
4. wklsuloF < *(1 = )" R du(r)]s,| p*
@5 D> rudsle _ZZ(k_l)/M (1= 0" du(®)]si|p
k=0 n=k k=1 n=k ’
tp +00
=/ — N (A=t +tp)" —"p") [suldpu(t)
RV
+00
< / 193 n(1 =t + 1) sy dyu(o)
(8} —

<Cllfllion | tof ;1
S MOA 4
’ 01 Lt —=p)

+ ! lo !
(1—p) St(i—p)

} du(t) < +oo.

Finally, from (4.4) and (4.5) we get

+00 400 +oo n +00 +00
Z Z |Cn,k - Cﬂ+1,k||5n|pk S Z Z(Cn,k - Cn+1,k)/0k|5n| +2 Z Z rn,k|5n|pk
k=0 n=k n=0 k=0 k=0 n=k

< +00.

Therefore, using (4.3) and a change of the order of summation,

Z(ch,kan) 2= / > au(1 =t +12)" dplt) = Tu()(2).
k=0 n=k 0,1] ;=

To prove the necessity part of the theorem, consider f(z) = log i and observe
that the first coefficient of A,,(f) is >, 1 o (L= 0)"du(t) = f(o,l] log + du(t).

n=1n
Since we have proved that the condition f(o 1 log % du(t) < +ooimplies A, = T,
on BMOA, we can use Theorem 4.1 to prove that under the same condition A, is
bounded on VMOA.

The necessity is proved by considering f(z) = log H:—_Z and lettinge — 0+. W

5 The Bloch and Little-Bloch Spaces

The proofs of the next two theorems, although they are mildly involved, do not
present any new ideas and it seems better to omit them. They just use the standard
growth estimates of functions in the Bloch space B:

1
/@I ~1eD < Clflls 1f@) < C(logg=rr +1) Il
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Theorem 5.1  Let u be a finite positive Borel measure on (0,1]. Then H, = S, is
bounded on B if and only if

1
HH/J,||B~>B = / ; dﬂ,(t) < +00.
]

)

The same condition is necessary and sufficient for H,, to be bounded on By.

Theorem 5.2 Let 1 be a finite positive Borel measure on (0, 1]. Then T,, is bounded
on both B and By if and only if f(o 1] log + du(t) < +oo. Moreover, in both cases, its

norm is equivalent to fo 1 (1+1log1) du(t).

Theorem 5.3  Let u be a finite positive Borel measure on (0, 1]. Then A, is bounded
on B if and only iff(o 1 log % du(t) < +oo. In this case: A, = T, on B. Exactly the
same are true for the space By.

Proof The proof is identical to the proof of the analogous result for the spaces
BMOA and VMOA, provided we prove that for every f(z) = 31 a,2" € B:

Isu| = |ao + - - - + a,| < C||fl|lglogn.

It is true (see [2]) that for every g(z) = Z:zf) b,z" analytic in D

+00
lim E a,b,r"
r—1—
n=0

where the last norm is defined by [|g||7 = |g(0)| + 5= fol OZﬂ’g’(reie)‘ dodr.

g,

Hence, it is enough to consider the function g(z) = >} 2" = ll_f"; and prove
that ||g]|r < Clogn. This is probably known, but since we have no reference for it,
we present a quick proof.

" 1n9| 1’1|7’ em@ rn+lez n+1)9‘
||g||T<1+—/ / |1_r,6|2 dbdr + — / / e dbdr

=1+A+B.

Now, B = %fol M foﬂ ﬁ dfdr < Cn fol r”(l +log ﬁ) dr < Clogn. Also

(k+1) 22 ‘1 o m6| m9‘
/ /k T d9dr+—/ / e T e
caf [F d@dHC/ [ 'z awir+ €
|1—r |1 —reif] €+’<ZT |2 n
<Clogn+C/ / / ,t|2 dt dbdr

C 1
< — _— <
fClogn+n/0 S TR dtdr < Clogn,
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and the proof is finished. ]

6 The Dirichlet Space
Through the form (f,g). = >, auby, defined for f(z) = > a,z" € D and

n=0
g(z) = Y120 buz" € A? a duality relation between the Dirichlet space D and the
Bergman space A? is introduced. Clearly, |(f,g)«| < || fllp |Ig]la2-

If either H,, is bounded on D or A, is bounded on A2, then

<Hu(f)7g>* = <f7Alt(g)>*7

where the necessary change in the order of summation is justified from

+00 n +o0
> (D cuclanl) 1ol < [1Hu (3 laul") nligle < [1Hullo—ol Flolglle
n=0 k=0 n=0

in the first case and from
+00 +00 +00
SO curlbnl) lad < 1, (3 1bal2") Ll f 1o < Ayl el
k=0 n=k n=0

in the second case. In the same manner we see that the same equality holds if ei-
ther H,, is bounded on A? or A, is bounded on D. From these dualities and from
Theorems 3.2 and 3.6 together with Comment (i) in Section 3, we get

Theorem 6.1  Let (1 be a finite positive Borel measure on (0, 1]. Then,
(1) H, =S, is bounded on D if and only if

1
Hullp—p = / L au(t < +oc.
(0,1]

(2) A, = T, is bounded on D if and only if

+00 1

1 2y 2
A,llp— x{ ‘ 1—-t)"d t‘} < +00.
oo = {3 5] [ = 0ran) x

7 Some Final Comments

It might be interesting to explore the action of Hausdorff and quasi-Hausdorff ma-
trices and their integral analogues on the spaces H?, when 0 < p < 1, and also their
boundedness as operators : H? — H4, when p # q. Besides some conjectures, we
have no positive result in this direction.

For the Lipschitz spaces A,, 0 < a < 1, we are able to prove that H,, is bounded
on A, if and only if f(0,1] t,,% du(t) < +oo and that A, is bounded on A, for all p.
The proofs of these results contain no new ideas or techniques and hence we omit
them.
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