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Part 5. Recurrence Relations

By L. R. Shenton

(Received llth December, 1954).

1. We develop here the recurrence relations for the generalised
C.F.'s introduced in Part 3 (Shenton1 1956). In the main the
discussion will be limited to second order C.F.'s, but results for higher
orders will be given when these are not complicated.

We shall give three forms of recurrence relation, one involving
recurrent determinants, and another corresponding to the even and odd
parts of a Stieltjes C.F. In addition we shall show how to write down
directly the recurrence relations for a second order C.F. being given
the first order C.F. Several numerical examples are given in illus-
tration.

2.0. We consider the C.F. "corresponding"2 to a determined
Stieltjes moment problem, and write

=h h h h ...,z>0, (J)
z + l + 2 + l + ' v 'o

and for the " contracted " form

F(z) = a» _?L_ - ? ! _ (2)
z + c t — z + c z — z + c3 - ...

where a, = b2t b2s+ i, s > 0; ao = bly

b*b*=b,,s>l,

1 We shall refer to the previous four papers on this subject as $1, S2, S3, and S4.
respectively.

2 Stieltjes preferred to write the "corresponding" C.F. in the form

m = ± L ± 1 ,
a,z +o2 + a8z + a, + ...

00

in which case the Stieltjes moment problem is determined if 2as diverges, the o's being

positive.
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168 L. R. SHBNTON

The sth convergent of (1) will be written Xs (z)lw» (2)> a n ( *
the even part x?« (z)/wt, (z), where xo («) = °> Xi(2) = &t» wo (z) = l>
u>, (z) = 2. In the notation of $3 the expression (2) becomes

(3)
A, (po. ao)

where ft = z + ca + l, a, = V«« + i a n d •#« (A» ao) i s a continuant deter-
minant of order s with elements j80, j3,, . . . along the diagonal through
(1, 1) and elements <z0, a,, . . . along the diagonals through (2, 1) and

(1 .2) .
The second order C.F. can be written1

F(zu z.) - f * ^ = 1. i. 6. qo* ' - i ( r i 'P"a- l> (4a)

0

where a, = \/(a8 + i a, + 2). (4b)

P,= (P + c, + i 4- c, + 2) V a»+i.

o* = a,, 5 > 0, a* = 0,

(x + Zj) (x + z2) = x2 + px + q > 0, x> 0.

Similarly the third order C.F. may be expressed as

#(*) - l i s a K*-i(Si>VfPi> a») (5a)

T(*+z2) (X+Z3) - \!J; fl« K, (8o, yo, A,, a,) (5a)

o
where
as — V (as + I a« + 2 °«T'3)>
]8, = (p + c8 + 1 + c< + 2 + c H 3 ) V K T i f l , T 2 ) , (5b)

J
o

+ 2a* f

a* = as, s > 0, a* = 0,

(a; + z j (x + zg) (a; + z3) s x3 + px2 + qx + r> 0, x > 0.

1 Kg(y0, /30, a0) is a determinact of order s with elements 70, ylt along the
diagonal through (1, 1), j80, /Sj.... along the diagonals through (2, 1) and (1, 2),
and a0, a,, ... along the diagonals through (3, 1) and (1, 3). The determinant
/vs(70, /30, ad) is symmetric with elements in five diagonals only, and may be regarded
as a form of generalised continuant. The extension of the notation is obvious.
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2.1 To develop the numerators and denominators of (4a) and
(5a) in terms of recurrent determinants we require the following
lemma.

LEMMA. If Ks['li'a i fi ) is a determinant of order s with elements
\ »i>J\ i

/ , , /2, . . . along the diagonal through (1, 3), gu g along the diagonal
through (1, 2), hlt h2, ... along the diagonal through (1, 1) and so on,
then1

g\,f\

The proof is straightforward. For consider Kg(g0/° , \
\ 'litg1>f1j'

Delete the first and last rows and columns, and use the remaining
array as a pivot.2 The result then follows. We now deduce that

• 1 =

"~\9i'h,9l
2,f2

/o

Applying (6) to the numerator and denominator of (4a) we find

h

/o (6)

(7)

1 A determinant of the form K \ <j0, of order s, with elements /„ , / , , ...

along the first superdiagonal, </0, ;/„ ... along the principal diagonal, h,, h.^ ... along the
first subdiagonal, and so on, will be referred to as a recurrent determinant, or simply a
recurrent. By expanding a recurrent of this form by its last row, it will be seen that it
follows a fourth order recurrence relation. Similarly a recurrent with n subdiagonals
may be shown to follow a recurrence relation of order n + 1.

2 See for example A. C. Aitken, Determinant* and Matrices (fourth edition,
Edinburgh, 1946,), pp. 48-49.
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170 L. R. SHBNTON

where U, = K, (a* a-i \

Y2> P2> 0-2/

pf =Pt,a* = a,,s>0; j8 t 1 =0 , a*

and the recurrents Us, Vs, W, follow the relation

with C/0==l, ^ i = 0, £/, = 0, s < 0 ,

F 1 = l , FsS=j80, V, = 0, 3 < 1 ,

TF2=1, TT3= /S,, JF,= O, 5 < 2 ,

the values of a,, pt, ys being given in (4b).
The sth approximant to F (%, z2) depends upon the six terma

Us, Us + 1, Vs, Vt + i, W,, Ws + 1, each of which follows a recurrence
relation of order four. Hence to advance the approximation process
one stage, it is necessary to evaluate a value of each of Us, V„ Ws,
and this will involve twelve calculations. We shall show in a later
section that \ V,, Wl + i \ and | Us, V3 + 1 \ (or equivalent expressions}
follow recurrence relations of order five, so that there is perhaps an
economy to be gained by this method.

A decreasing sequence of wpj>er bounds may be derived from th&
expression.

o

and it is not difficult to show that the difference between the sth

approximations that arise from (9) and (4a) is

(10)

K* (y0, Po> ao)

it being assumed that q — \p* > 0.
2.2 For third order C.F's we require the following extension of

the lemma:
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(11)
q< (1) rp (O)

rp (0)

where
K+V

The proof depends on pivotal condensation methods and closely
follows that of the lemma. Each determinant in the compound
determinant in (11) is replaced by a compound determinant, using
identities similar to (6). For example

1-1

n f, TM =

We find in this way the relation

go)

a-2

n
t-1

n
;.=o

(12)

it being assumed tha t / j #= 0, A = — 1, 0, 1, . . . , s — 1.
Returning now to (5a) we derive from (12) an expansion for a

third order C.F. in terms of recurrent determinants, namely

dtfj(x)
F (zi, z2. 23) =

(x + %) (a; + z2) (a;+z3)

_ l i B q— 1. 1. 8 . Uo (13)

-where

Yo, <>i> yi> Pi. a i /

y_!»<>o> T o . Po» a o
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172 L. R. SHENTON

(ii) a* = a,, 0* = ft, y* = y,, 5 ^ 0;

« t 1 = a* 2= 1, /S*x= £1 ,= 0, y * , = 0,

a,, ft, y,. S, being given in (5b);

(iii) the recurrenls U,, V3, Ws, X, follow

yj = £f_2y*-l — y*_ 2 af_ 3 ̂ - 2 + S»-2a,-3 a*-i V>- 3~y«-3 a*-3 a,

+ ft-4°j-3as-4a«-5 tt.-o2/i-5 — a,_3as_4 aj_5 a,_6 as_7'

with C/2 = 1 , (7, = ft, E7, = 0, s < 2,

F x = l , F 2 = j80, F , = 0, 5 < 1 ,

T F O = 1 , 1 ^ = 0 , W. = 0,8<0,

It will be seen that each of the elements Us, Vs, Ws, Xs, occurring
in the sth convergent of a third order C.F. follows a sixth order re-
currence relation, so that in setting up approximations to F (z±, z2, z3)
we have to perform in general twenty-four calculations to obtain each
new approximation. Similarly for a C.F. of order n associated with
the function F (zx, zz, . . . , zn), each approximation consists of the
ratio of two nth order determinants, an element of either determinant
consisting of a recurrent which satisfies a recurrence relation of order
2n. In general then each new approximation to F (zly z2, . .., zn) will
involve 2n (n + 1) calculations, followed by the evaluation of two rath

order determinants.1 We shall consider these more general C.F.'s and
the associated recurrence relations in a forthcoming paper.

3. A Fifth Order Recurrence Relation.

3.1 We now establish a recurrence relation for the symmetric
determinant Ks (hlt gu / J . Expand Ks by its last row and column.

1 A referee has indicated to me that the recurrence relation followed by these two-

?ith order determinants will be of order ( ) in general, or a little less owing to the

symmetry involved. Thus for a third order C.F. the numerator and denominator of
the sth convergent will very likely satisfy a recurrence relation of order nineteen.
Even if this recurrence could be found it might well be too complicated to be of much
value, and the method of compound recurrent determinants seems to have a distinct
advantage for C.F.'s of order three or more.
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-2+ ̂ gs-lfs-2K*—j-_hs_i a,-j
Then
K, = ht Z,_x- g]_x

s = 4, 5, . ..,

where

- i g,

and K,.! is the matrix consisting of the elements of Ks_x (hlt glt ft).
For example,

Kt =
h

K A

02

But expanding K* by its last row, we have

Ka = gs Ks_1 — f,-\K,.x, s = 3,4

Eliminating K* from (14) and (15), we find
(15)

r.-*+/.-.£_,£_4fc-i*.-.. (is)
s = 3, 4, . . . , A _ 2 = Jrf_i = 0, A) = 1.

The recurrence relation (16) satisfied by K,{hlt glt /x) is of order five.
By a slight modification of the method employed here it may be
shown that the recurrence relation for the asymmetric determinant

K,(hlt \' jijis of order six, but we do not require it in the present

context.
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There are three interesting special cases:

(a) fj = 0, when (16) reduces to

AS we should expect since K, (hu glt 0) is now a " continuant " type
of determinant.

(b) gj = 0, when (16) becomes

which is the recurrence relation for the product of two " continuants,"
and indeed 1

K2i (h, 0,/x) = Ks (hi /*) Ks (hl\ f*2*),

K»+x (K 0, A) = K-.+1 (A*, / • ) K, (h**,/**),

where h*= A25-i, f*=fzs-u
s s

We shall treat the third example of reducibility in § 4, for it turns
out to have several applications.

3.2 Now applying (16) to (4a) we may write the second order
C.F. as

F(Zl,z2)= U.S. Oo-^i, (17)
. 5 —> 00 VS

s s

where Ks(y0, £0, a0) = vs IT aA, ^ . j (y^ ft, ax) = «, II a;.,

and M ,̂ v, follow the recurrence

where jS1 V a,+1 = j8/, and as, ft, ŷ , as are given in (4b), the initial
values being

uo = O, a1ti1 = l, a1a2u2 = y1, u, = 0, s<0;

vo = l, a1v1 = y0, «j a2 v2 = y0 yi — ^ , v, = 0, s < 0 .

1 The result has been noted by T. Muir, Proe. Edinburgh Math. Soc. ii.(1884), 16-18.
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3.3 As an illustration consider the " J " fraction expansion, con-
vergent for z > 0.

P dxL = . l J?1. a- a* (19)
iox +z z-\r\ — z-\- \— z+ i — z+ I— ...'

where a, = s8 / (16s2 — 4), from which we deduce the second order C.F.
expansion

- ^ - = z - 1 arc t an z"1 = l.i.s. V-l,z + 0, (20>
2 + 22 ,-»•„ Vs

I
where us and vs follow

+ (z 2 +a,_i+a,_ 2 - f ) (ys-->-y,--s)
,-4 + a,_3^.5 l 5 = 3 , 4 , . . . ,

and the initial values are

M, = 0, s < 0 , w o = ° . « i = 1 2 , M2 =

vs = 0,s<0, vo=l, v1 = 4(3z2+l), v2 = 3(6032 + 442+3). (21a).

For example, using (21) it will be found that

f3w3=16(525z4 + 41Oz2+45),

\3v3= 16 (525z6+585z4+ 135z2 + 3),

(-3M4=132,300Z6+153,300Z4 + 41,300Z2+1,800,

"|3t;4=132)300z8+1971400z6+80,640z4+8,10022 + 75.

The expansion indicated in (20)-(21) is not the same (apart from th&
approximations for s = 0, 1) as the even part of the hypergeometric C.F.

where bs = s2 j (4s2 — 1).

4. A Reducible Case of the Fifth Order Recurrence Relation.

4.1 The recurrence relation (16) reduces to a fourth order one
when the C.F. in (2) takes on the special form

F(z\ = ^? al £2 a3 . (22)
2 — z — z — z— •••

Proceeding formally a t first and writing Ks.x {ylt j31( a t ) = T*

K,(y0, Po, a0) = Tt, we find tha t the recurrence for T* and Ts becomes
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y> = (q + «*) y,~i + «,-i (q - p2 + «,-i + <v2) y>-2
- a,_1as_2(q — p2 + a,^ + as_2)ya_z - as^a,_ia,_z(q + aJ_8)y1-4

+ a,_! as_2 a2 a,_4 2/,_3, 3 = 3 ,4 , . . . ,
•? — o

(23)
where g = Zj z2, p = zx + z2, T,= 0, «<0 , T* = 0, s < 0.

Now (23) may be written

*.(»> - o , - i * , - i ( y ) = 0, (24)

where <!>,(«/) = y, — (g + a, — a,_,) ^ _ ! — aJ1_1(2a3_1 — p2 + 2g) y,_2

(25)

— a,_i a,_2 (? + o,_2 — a»-i) 2/,-3 + a*-iaf_3
 a«-3 J/.-4-

But it is easily verified that <i>2 (T) — 0. Hence from (25)

Tt = (g + a, - o,_!) r,_! + a,_! (2a,.! - y2 + 2g) r,_2
(26)

+ o1_1aJ_2(9 + a,-2 —^-1)^-3—ai-ift
J

2_2a«-3?'«-4.

«=2, 3
with 2"o=1. 21, = ?+%, T, = 0,s<0.
Similarly it will be found that

= 0, (27)

where ^ ( T * ) s ^(T*) - 2 n oa.

But since Y2(T*) = 0, it follows that the recurrence for T* is

TT = (S + °. - 01-1)^-1+ «*-i ( 2 o - i - P * ) T*

s = 2 , 3 , . . . , (28)

with T* = o0, T* = 0, s < 0.

4.2 Returning to §2 we observe that in (1) 6, > 0, 5 = 1, 2, . . . .
Hence cs cannot be zero for a Stieltjes C.F. We may ask the question
then as to how the value of as in (22) must be restricted so that for
certain values of z1 and z2 it will be true to assert that

z2 — z1
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We can give at this stage only a partial answer to this question.
First we refer to the theory of the Hamburger moment problem. Let
the expansion in descending powers of z of ^(2) be

F{z) ~ - -j- ~ -j- -̂4 4- . . . (29)
Z ? 9**

and assume that

5 = 0, 1, 2 (30)

Then there exists a unique bounded non-decreasing function >JJ(X) in
X> CO

t h e interval ( -00 , a>) such t h a t 1 [x2ndt/j(x) = fj.2ni, [x2nJr1d>fj(x) = 0.
— x> — 00

All we have to do now is to justify the Parseval expansion for

f {f(x)}*d+(x) where /(r) = {(* + zx) (x + z2)}-',

the argument being similar to that used in §2 of S4. I t turns out
then, using the theorem of M. Riesz (Shohat and Tamarkin, loc. cit.,
p. 62) regarding the solution of a determined Hamburger moment
problem, that under the conditions in (30) we have

T*
a

provided in addition (x+zj (x + z2)>0 for all real x. Again using
(34) and (35) of S4 we can set up a decreasing sequence of upper
bounds, the difference between corresponding sth approximants being

;.=o

II ax/(y*T,), where y^ = Imz.
=o

Secondly it may be possible to justify (31) if we are given a

definite integral for the C.F. in (22) of the form and can
J« x + z

justify the application of Parseval's theorem as in §B of S2. I t would
1 See for example Shohat, J. A. and Tamarkin, J.D., The Problem of Moments, p. 5

and p. 19 (New York : American Mathematical Society, 1943).
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be of some interest to know what are the weakest restrictions on the
a's in (22) to justify a statement similar to (31).

4.2. We now give several examples in illustration.
Example 1. Let

F(z) = tan (Jz-1),

so that (M2n= 2En+1(22»+2-l)/(2n + 2)!,
where Bn is a Bernoulli number and B1 = 1/6, B2 = 1/30 etc. Using
Lambert's C.F.1 for F(z) we have ao=i, a^^es^-i)-1, 5=1, 2 , . . .
Moreover it is easily verified that pW" ~ 1/w, so that (30) is satisfied.
Hence with the appropriate value of as in (26) and (28) we have

sinh y\ . T* (Vi * °. (32)
y± (cosh yl + cos x\ ) ~ '.^YT ' ] +

where x] (x2 + y2 ) — x-,, y1 (x~ +w2)= y,. In particular if x1=3, ^ = 4
1 1 ''I 1 1 1 '

then AT7* =398,499,385,800, AT4 = 19, 896, 118, 681,110 where A"1

= aia3a2a1a0, giving the lower bound 0-020,029,001,243,260, and
using the corresponding upper bound it turns out that the error in
this cannot exceed 1-6 x 10~13.

In a similar way, taking F(z) to be 22—cot (^z"1), so that ao= 1/6,
as = [(4a + 2) (4s + 6 ) ] - \ s = 1, 2, , it may be shown that

sinh y1 T*

yx (cosh y\ - cos x\) " ~ " ' ' 1\ ' Vl

In each case the recurrence relation for Ts is (26) and that for T* is
(28) with the appropriate value of as, a = 0, 1, 2, . . . .

Example 2. I t has been indicated by Stieltjes 2 that
i2 o2 Q2

, Im (2) 4= 0, (34a)

(2) * 0. (34b)

X + 2 Z — Z — 2 — Z — . . .

x cosech (%nx) dx 1 1.2 2.3 3.4
X + Z 2 — 2 — 2 — 2 — . . . '

It may be shown that the Hamburger moment problem is determined
in each case 3, and it follows that for zx = x1 + iyu z2 = xx — iy, ^ =f= 0

1 See for example Perron, O., Die Lehre von den Kettenbriichen, p. 354,
(Berlin, 1913).

* Correspondance d'Hermite et de Stieltjes, p. 360 (Paris, 1905).
3 Compare also Wall, H. S., Continued Fractions, p. 366, Example 2 (New York,

1948). We may also recall that the Hamburger moment problem
00

Hn = I x"e -bvdx, y = \ x \ a, a > 1, 6 > 0, n = 0, 1, 2,... is determined.
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the second order C.F.'s indicated in (31) converge to the corresponding
value of F(z1, z2).

00

Example 3. Let F(z) = f
} x + z'

where g(x) = e~ix'f\/(2TT), with Im (z) =*= 0, so that

F(z) = 1 1 - - . ( 3 5 )
Z — Z — Z — Z — . . .

From P. 3, §B of S2 we can conclude that the second order C.F. con-
verges for yx * 0, and indeed

°f n frrWr 71*
. _r .-j-- 2- = 1.1. s. _ L ,

_ i ^ + Xl J + ^ '->'•" ^*
where

3»» = (a;J + 2 / ^ + 1 ) 2 1 * . ! + 2 (s - 1) (s - 1 + y\ - x\) T?_2

+ (« - 1) (s - 2) (cc2 + y\ - 1) T* - (5 - 1) (a - 2)« (5 - 3) T*

+ 2 ( 5 - 1 ) ! , s = 2,3 (36)

and the recurrence for T, is exactly the same except that the factorial
term is omitted. The initial values are

T* = 0, a < 1, Tx* = 1

T, = 0, s < 0, T0 = l, Tx = x\ + yi + 1 .

A numerical example will be found in §C 4 of S2.

5. 4̂ Recurrence Relation with Even and Odd Parts.

5.1 For the C.F. given in (1) there are recurrence relations
corresponding to the even and odd parts, namely

(37)

The question naturally arises as to whether there is a similar structure
for higher order C.F.'s. We give here the result for a second order C.F.
Starting with the form of the denominator of (4a) given in (30) of S4,
we have, assuming for the moment zx =t= z2»

Ks{y0, ft,, a0) = I u>2,(zi), wZs+2{z2) \ 4- (z2 - z j , (38)
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say. Using (37) we readily find that

&2s = 2/2, + &2,+l &2» *

where y, = w&Jw^).

Similarly if

then ^2,-1 = 2/2,-1 + 62,62,_ii2j_3. (41)

But y2s = y2s_! + b2s t/2s_2 + 62s 0 2 , - i , (42)

where ©2,-1 = ^2,-1 (zi) w2«-2 (22) + ^2,-1 (2
2) ^2,-2 (2i)

Hence 02,-i = (2j + 22)t/2,-2 + 262s_it/2,-3 + 62<,_i62s_202i_3,

and so from (42) we have

+ 62j62s_i(2/2a_2—2/2,-3—6^_2y2,-4).

from which, using (39) and (41), we deduce

— 69^62,-162,-2(21 + z2 + 62i + &»,_! + 62j_2)42s_4

— 62,62,_16s
i_2 6Si_8&2,-5 -f 62,62j_16|j_262,_s62,_4i2,_6. (43)

5.2 Similarly from (37) it follows tha t
2

^25+i = ZiZiVis + 62s+1y2s-i + 62s+1O2s, (44)

where <D2S = z1w2s(z1)w2s-1(zSi) + z2w2s{z2) 10^-1(21)

or <I>2S = (21 + z2)y2s_i + 2z1zib2sy2s^2 + 62,62,-1^2,-2. (45)

Thus
2

2/2S+1 = 2l22y2, + 6os + 1 ( / 2 , - l + 62̂  + 1(2! + 22)j/2s-l + 22,0262J + l62sJ/2,-2

+ b2s+1b2s(y2e-i — 21z8y2,-2 — 62,-12/2,-3). (46)

and so by (39) and (41) it appears that

&2,+ l = 2122Ar2s + 62s+1(21 + 22 + *2»+2 + 62s+1 + 62,)42,_1

A , - i (2 i + 22 + 62s+i + 62i + 62,-1)^2,-3 (47)

In the derivation of the recurrence formulae (43) and (47) it has
been assumed that s is large enough to avoid initial value idiosyn-
crasies. Allowance being made for these we finally have the theorem :
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/ / the Stieltjes moment problem is determined and

F(z) = d>p(x) 6 , 62 63 64 65 b6

0

then l.i.,.g,HmgaBJl">-JH (48)
,_>*, &2a , - > » K, 2,, — 2j

(i) k* and ks follow, for s = 2, 3, . . . ,

z 2 1 ^ 2 * - G

(ii) k* = 0, fc* = k* = 6t) fc* = 0, s<0,

Ao = 1, &, = 2,2:2, &j = V 2 + 6s(Zl + 22 + 63 + 62). fc> = °» S < 0 >

(iii) a, = bs{zi + z2 + bt+1 + bs + 6,-1), ft = &A-8°»-i,

y, = 6A-A-26,-3. 8> = ftA-A-2*»-36*-4»
(iv) (a; + zj (x + z2) > 0 for l a; > 0.
It may be established that the ' odd ' part kfs_x/k2s-.i arises from the
second order C.F. associated with the integral in the expression

lx{x + 2t +

Q (3! + Zjfr + 22)
where xdifi(x) is taken as the weight function. The ' odd' part of the
sequence, unlike that of a Stieltjes C.F., does not in general provide a
set of decreasing upper bounds, but there is a remarkable property
which we now consider.

5.2 We shall prove the following identities :
R 77( 1 ) 77 ( 1 )

U U , » = 0, 1, 2, , . . (49a)

to. - «2,-i = - 2^2'-?'-+1.5 = 1 ,2 , . . . (49b)

where

S = n 6,,

1 It has been assumed throughout that «,="=«„ but it is easily shown that the theorem
still holds if z, =z. and (K + 2 , ) = > 0 for x > 0.
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Introducing the expressions appearing in (30) and (47) of S4 for t3,
we have {z1 #= zt)

bu-r-kh. — Z2)*k?,k<,g_x(tos+1 — t2s) (50)

= | w2*+i(Zi), w2s+2(z2) | Xs — {z1tv2t^(z2)tv2l+2(zi)
—

where

X = 2l£>»+l(2l> 2
2) + 22£Wl(22> 2l) — (21

7 , = 2B2s+2 — ri2s+1(zu z2) — rjis+

2 l , 2
2 ) = X2* + l(2

2)M>2J + 2(2l) - X2« + 2(

Now since 172̂ +1(2, z) = B28+2, the right member of (50) becomes

(22 — 2l){W2J + l ( 2 l )W2i + 2( 2 2)^2 i + l (? l , 2
2 ) + W2s+1(z2)W2s+2(z1)fJ.2s+1(z2, Zj)},

where A ^ + i f o . z2) = X2^-f2(2i)w2<+i(22) — X2*+I(22)W ;2J+2(2 :I) + B2s+2,

and from which (49a) follows after simplification.1 The proof of
(49b) is similar. We now deduce the expansion, valid under the
conditions of the theorem in (48),

j , f — 1V+ 1 /? n<l>TJ w

s = l Ks-lKs

This is the third type of expansion for F(z1, z2), the other two, given
in earlier parts, being

4=0 /e2s'c2i+2
/, M D r7(0)

il ^ J 7 J : ( 5 3 )

where

The expansions in (51)-(53) bear a striking resemblance to those for a
first order C.F., namely

F(z)= S ( ^ ~ ~ (54)

°° 7?
±— (55)

where w, = u>,(z).

1 The results in (49) still hold if z, = z., and we merely introduce the confluent
forms of Is and 77 .
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Under the conditions set down in §2, (55) gives an increasing
sequence (56) a decreasing sequence and (54) an enveloping sequence1,
provided z is real and positive. Correspondingly (52) gives an increasing
sequence and (53) a converging sequence when zt and z2 are complex
conjugates with Im.z14= 0. We can go a little further than this. Suppose
the interval (0, oo ) is " reducible," i.e., it may reduce to a sub-interval
(a, b) if <p(x)=ijt(a) for x<a, a>0, and i/i(x) = t/)(b) for x>b, b > a. Now
using the fact that the zeros of ws(x) are distinct and lie entirely
within2 (— b, —a) and recalling that the degrees of the highest terms
in w2s(x) and w2s+i{x) are s and s + 1 respectively, we easily see that *

u+i > 0» Uis+2 > 0, for z1 < z2 < — b,
(57a)

(i) _T(i)
4s < 0, Uit+3 < 0,

U(H > 0, for z2>zl> —a. (57b)

Hence for z1 < z2 < — b it follows from (49) that {ts} is an increasing
sequence, whereas this is not necessarily so for z2~^z^> — a. Again

suppose z2> 0, z1< — b but z2 > | zx \ . Then V, is clearly positive.
But it is known (see S1, (18)) that

f {x + Zj) (x + z2) ql (x) d<f>(x) = B2s+1(z2 - ztf k2sk2s + 2, (58)

where {q,(x)}iB an orthogonal system with respect to the weight
function (x + zx) (x + z2) d\jt{x). We deduce from (58), since k0 = I,
the inequalities for the even denominators

(z2>0

I
0.

The result given for the odd denominators may be proved in a similar
way. Hence {Q is a decreasing sequence for z2>0, zx<— 6, z2> | «i | .

Lastly suppose zx and z2 > 0. Then Ua)> 0, uf}> 0, and so from (52)
and (53) {Q is an enveloping sequence. A summary of the various
possibilities appears in Table 1.

1 i.e. s2r< F < s2r+1 where sr is the sum of the first r terms of the series.
2 Exceptionally, w23 + 1 (x) always has a zero x = 0.
3 It is assumed now that zx, z. are entirely real.
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TABLE 1.

NATURE OF SERIES FOR SECOND ORDER C.F.

Arguments

zx = 2 2 , I m ( 2 1 )

Z i < — b, z 2 < -

2 2 > 0 , Z X < - b

2j> 0, 22>0.

4 = 0 .

-b.

, 22 ̂  | 2i | .

(51)

C

h
-l

D

E

SERIES

(52)

I

I

D

I

(53)

C
I

D
D

C = Converges, D = Decreases, I = Increases, E = Envelopes.

6. Numerical Illustrations.

„ 7 . „ . . 1 1 1 1 1 c* y/(*x-1 — \) dx
Example 1. F (z) = - - - - = —- — - — ,r w 2 + 1 + 2 + 1 + . . . 27rJ0 X+z

for 2 > 0.
The second order C.F. for F{z, z) = {zy/ {z2 + 4z)}~\ z > 0,

is given by lim /, where

kf = 1, fc* = 1, /fcj = 22, A2 = 22 + 2z + 2,

and ^ , As follow

w2s_1=ziw2s_2 + (22 + 3)w2s_3 — (22 + 3)t«2<t_5 - z2w2s_6 + w2ji_7)

w a t = w 2 i , - i + (22+3)M;2;!-2 — (22+3)u>2,-4— ^2^-5 + ^2«-6 . 3 = 2, 3 , . . . ,

kt = 0, s < 0, fe, = 0,s<0.
From Table 1 the sequence {ts} is enveloping. In particular with 2=1
the limit of the convergents is 1/y/ 5 and the first twenty are shown in
Table 2

TABLE 2.

s

1
2
3
4
5
6
7
8
9
10

1
1
6
11
36
85
235
600
1590
4140

1
5
10
30
74
199
515
1355
3540
9276

t.

1-0
0-2
0-6
0-37
0-49
0-43
0-456
0-443
0-449
0-4463

s

11
12
13
14
15
16
17
18
19
20
00

ks

10866
28416
74431
194821
510096
1335395
3496170
9153025

23963005
62735880

K
2 4 2 7 6

6 3 5 6 5

1 6 6 4 0 5

4 3 5 6 6 5

1 1 4 0 5 7 4

2 9 8 6 0 7 4

7 8 1 7 6 3 0

2 0 4 6 6 8 3 5

5 3 5 8 2 8 5 5

1 4 0 2 8 1 7 5 1

0 - 4 4 7 6

0 - 4 4 7 0

0 - 4 4 7 2 8 8

0 - 4 4 7 1 8 1

0 - 4 4 7 2 2 7

0 - 4 4 7 2 0 8

0 - 4 4 7 2 1 6

0 - 4 4 7 2 1 2 5

0 - 4 4 7 2 1 4 0

0 - 4 4 7 2 1 3 4

0 - 4 4 7 2 1 3 6
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Example 2. F(z) = 1 - _ *

* + 1 + 2 + 1 + '
2 + 1 + 2

f4X_ 1 f4

~ 2 A J

- x)}dx j
z(a; + 2) ' (z>0-

With A = | we consider .F(V2, — V2) = '»m <„

where if = X,/4*, ks = F,/4'> a n ( i t n e recurrence for Xs and y, is

= 2. 3 , . . . ,

with

X1 =4,X2 = 16, 70 = 1, Yx = - 8, 72 = - 30,

x, = 0, s < 0, r , = 0, s < 0.

The sequence { — Q steadily increases to \{\/(2 + \/2) — ^ (2 — y/2)},
and a few values are stated in Table 3.

TABLE 3.

s

1
2
3
4
5
6
7

-*.

0-5
0-53
0-537
0-5396
0-5408
0-5411
0-54U6

8
9
10
11
12
13
00

'*

0-541186
0541193
0-541195
0-5411958
0-54119602
0-54119608
0-54119610

Example 3. From

Flz) = 1

' z2 _ ( - l + 3 + 1 + 2 + 1 +Z+ 1 + • • •

= _J_ f e_J?l * a > 0, 2 > 0,
r(a)J x + 2 '

o

we derive the C.F. for F(iz, — iz) which we write

= 1. i. s. (t2t), 2 * 0 ,
r2 -J- 7.2

where k, and i , follow
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2w>2*-2 + («—!) (2a + 3s — 4)u;2,_3

— (s — 1) (5 — 2) (a + s — 2) (a + 3s — 5)w2,_5

- (s - 1) (a - 2) [a + s - 2) (a + s - 3)2*u;2,_c

+ (« - 1) (« - 2)«(« - 3) (o + a - 2 ) (o + « - 3)wSf_7,

_! + (a + s — 1) (a + 3« — 2)w2,_2

— (s — 1) (a + 3 — 1) (a + s — 2) (2a + 3s - 4) w^-i

- (s - 1) (s - 2) (a + 5 - 1) (a + s - 2)w2)_6

+ ( s - l ) ( « - 2 ) ( a + « - 1) (a + s - 2 ) 2 ( a + s -

s = 2, 3,
with

=0, ft* = *£ = 1, *o

= 0, ft, = 0 for s < 0.

o(o

The sequence {t2s} is increasing and{f2s+1} is convergent. In particular
the coefficients in the recurrence relations for O(l, 1) are set out in
Table 4, and they are to be read off from the penultimate row
upwards. Thus, suppose we have found the values of ks for
s = 1, 2, 3 and 4; then from the column for s = 5 we see that

jfc5 = l.ft4 + 14&3 + O.k2 — 20.*! — 4fc0 + O.k _!, and similarly for ft* .

TABLE 4.
RECUKEENCE COEFFICIENTS FOR 0(1, 1).

i
1

s

0
0
2
1

2

0
0
4
1

3

0
- 8
0
10
1

4

0
_4

-20
0
14|
1

5

24
-12
— 84

0
24
1

6

72
— 36
— 144

0
30
1

7

432
-72
-360

0
44
1

8

864
-144
-528

0
52
1

9

2880
-240
— 1040

0
70
1

10

4800
-400
-1400

0
80
1

11

12000
-600
— 2400

0
102
1

12

18000
-900

— 3060
0

114
1

13

A sequence of decreasing upper bounds is made available from

z 2 O(l , 2 ) = 1 - 2O(3,z)

using the appropriate second order C.F. arising from

^ , o x l 3 1 4 2 5 3 6 4 7

The corresponding multipliers in the recurrence formulae are, when
z2 = i, 22 = — i , those in Table 5.
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TABLE 5.
RECURRENCE COEFFICIENTS FOR 0 ( 3 , 1).

s

12
1

2

8
1

3

-96
0
28
1

4

-24
— 56

0
22
1

5

480
—40
-440

0
50
1

6

240
-120
-300

0
42
1

7

360 2160
-180, -360
-1260 -936

0 0
78 68
1 ' 1

81 9

15120
-504
-2856

0
112
1

10

10080
-840
-2240

0
100
1

11

47040 33600
-1120 -1680
_5600 —4560

o; o
152 j 138
1 1

12; 13

120960
— 2160
-9936

0
198
1

14

Proceeding in this way we are led to the approximations given in
Table 6, which also includes similar ones for 0(1, 2).

TABLE 6.

UPPER AND LOWER BOUNDS FOR O(l, 1) and O (1, 2).

s

4
8
12
16
20
24

O(l, 1)

(1)
0-52
0-612
0-6199
0-6200
0-6204
0-6209

(2)
0-74
0-653
0-6284
0-6227
0-6217
0-6216

4
8
12
16
20

(1)
0-196
0-1992
0-19931
0-19946
0-19950

,2)
"t

o

0-205
0-1998
0-19954
0-19953
0-19952

(1) and (2) refer to lower and upper bounds respectively.

It will be noticed that the rate of convergence for 0(1 , 1) is rather slow,
and that after 24 terms we can only assert that 0-6209<O(l,l)<0-6216.
For 0(1 , 2) the situation is better and twenty terms give accuracy in
the fourth decimal place. Of course we could determine another
set of upper bounds using (10), merely adding s\ s\/{ztk2,} to t2s:
however, there seems to be little improvement introduced in this way.
According to Ser (1938) the values of the integrals are 0(1, l)=0-62145,
O(l, 2) =0-199510.

7. Conclusion.

We intend to develop on another occasion the expansion of
generalised C.F.'s using the compound determinants of § 2, each
element of these determinants being a recurrent. We shall give two
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types of recurrence formulae, and show that the evaluation of the
oonvergents of a generalised C.F. of any order can be made a practical
proposition.

I would like to put on record my appreciation of some stimulating
remarks, and criticisms, of a referee.
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