
As pointed out by the author in the preface, this book is a sequel to a previous text by Rainer Spehlmann entitled “Evoked Potential Primer”. The book follows the proper format and builds upon Dr. Spehlmann’s text. The emphasis is clearly on evoked potential methodology and utility as these apply to current clinical practice. As such it will be of interest to both beginning and experienced practitioners in the field.

Strengths of the book include a comprehensive discussion of technical aspects of stimulation and recording parameters. Discussion of methods of activating particular components of the auditory, visual or somatosensory inputs are particularly thorough. Clinical correlations with central lesions are presented in phenomenologic fashion and are comprehensive.

The text correctly identifies the current practice of using evoked potentials primarily for monitoring brain function in the operating room setting. This reviewer believes that the tendency to avoid neurophysiologic examination of peripheral (including proximal nerves and dermatomes) and central structures in neurologic syndromes has been overdone, driven largely by financial pressures from insurance carriers and not based on vigorous cost-benefit comparison with imaging methods. A discussion of the differences and complementary aspects of neurophysiologic and imaging (MRI and PET scanning) data would have been helpful to counter balance this deficiency in modern practice.

A specific deficiency in the text is an inadequate discussion of source localization problems and methods to address these. This area is one in which knowledge is expanding at a very rapid rate. One would anticipate that developments in analysis of surface recorded voltage and magnetic fields will define an important part of the future of clinical neurophysiology. This deficiency, although important, does not detract from the overall quality and usefulness of this text, which I would rate as very high.

John T. Murphy, Barrie, Ontario

This little book, available in both hardcover and softcover editions, is a series of four lectures delivered in June, 1992 in Pisa, Italy, by Professor Dale Purves, a distinguished developmental neurobiologist who has devoted his career to studying postnatal brain growth, correlations with synaptic development and functional inputs that modify them. One might regard this book as a series of essays and includes a list of references, though the latter is far from a complete bibliography.

The principal hypothesis defended by the author is that postnatal brain growth is modulated by the differential metabolic and electrical activity of its component parts, the “glow and grow” theory, to explain the fourfold increase in cerebral volume after birth in both the human and the rat, this increase being mainly in the neuropil. Functional activity modulates this neuropil growth to stabilize or to help select useful connections. Professor Purves asserts that the brain is constructed by the gradual accretion of circuitry rather than by the selection of circuitry from initial excess. It is this latter point upon which I and many developmental neurobiologists do not share his view. He does acknowledge that there is a physiological deletion of transient excess axonal collaterals and synapses, but he depreciates the importance of this “pruning” in the fetal and postnatal brain and regards it as a minor detail. The contrary view is that pruning is the major developmental process that converts diffuse, generalized projections into selective, precise connections to subserve specific functions. Dr. Purves introduces this “contrary view of brain development” by the statement “Every good argument needs a foil”. His selection of references also deletes numerous important papers that provide strong scientific support for the role of selective deletion in the development of specificity of brain function.

A second hypothesis defended in this book is that experience permanently alters neuronal circuitry, thereby storing information which becomes expressed as memory, learning and behaviour. This hypothesis was first proposed by the psychologist Donald Hebb in 1949 and was subsequently advanced by many other psychologists and, regrettably, by many pseudoscientists with sociological views of “enhanced” or “impoverished” human environments, which in turn damaged its credibility and impaired objective research in the scientific community.

The first lecture is on “brain maps” in which the author presents evidence from his work and that of other investigators in which he shows that regional brain growth is in relation to the functional importance of various parts more than in relation to the actual anatomical size of a particular part of the body represented, i.e., the vibrissae of the rat and the hands and face of the human having a disproportionately large area of sensory and motor cortex regulating them, the now classical “humonculus” of neuroanatomical texts. Lecture 2, “modules”, explores the vertical columnar organization of cortical units, introduced with the history of the developmental concept from the morphological studies of Golgi (1874) and Lorente de Nó (1922), to the electrophysiological studies of Mountcastle (1950s) to the discovery of ocular dominance columns by Hubel and Wiesel (1960s through 1980s) and somatosensory dominance columns by Woolsey (1950s through 1970s) to Purves’ own work (1980s) on the histochemical demonstration of such dominance columns as “barrels” in the cortex. Though his own experimental work is solid, he then depreciates it in my mind by making a ridiculous analogy between cortical barrel organization and the alternating stripes of zebras and patches of giraffes in the fur of these animals. While this analogy is appealing in its simplicity, the well established embryological origin of gene expression in dermatomal segments that cause such distinctive fur patterns have nothing to do with the ontogenesis of the brain.

Lecture 3, “trophic interactions” addresses the synaptic organization of the developing brain and classical patterns of convergence and divergence. The work of Hubel and Wiesel in the organization of the visual system is greatly admired by Purves and is heavily cited. The influence of trophic factors in the growth of neurites, terminal axonal sprouting and synaptogenesis also are emphasized and, in my view, appropriately so. Lecture 4, “activity”, is a functional integration of the neuroanatomical and neurophysiological aspects of developing discussed in earlier chapters. Purves discusses his own histochemical demonstration of oxidative enzymatic activity and also the microvascularity of barrels within the cerebral...
cortex. He addresses the neuromuscular junction in comparison to central axodendritic connections as well.

This small volume of essays is as important from the historical perspective in developmental neuroscience as from the perspective of the career scientific contributions of the author and his interpretation of them. It is well written and easily comprehensible to clinical neurologists, concise, interesting, and I recommend it to paediatric neurologists in particular, though with the caution that not all of the views put forth by the author are accepted as presented by all developmental neurobiologists.

Harvey B. Sar raising Seattle, Washington

MAGNETIC RESONANCE IN EPILEPSY. 1994. By Ruben I. Kuzniecky and Graeme D. Jackson. Published by Raven Press. 361 pages. $143.00

This book is a new addition to the armamentarium of books on Magnetic Resonance Imaging, and fills a unique niche concentrating on the application of Magnetic Resonance to Epilepsy.

The book has been divided by the authors into 3 sections: 1) Basic principles (of epilepsy, magnetic resonance, and neuroimaging of epilepsy, including the role of Single photon computed tomography and positron emission tomography). 2) Structural Neuroimaging (including chapters on brain anatomy written by Henri Duvernoy and disorders of neuronal migration and organization written by A. James Barkovich, as well as specific neuroimaging of epilepsy by region and in conjunction with specific syndromes (predominantly stroke, and infection). 3) New techniques and applications, including spectroscopy, high resolution imaging and functional MRI. The final chapter of the book, by Jean Aicardi, summarizes the current state of MRI in epilepsy.

Overall, the book is well written and illustrated, as well as extensively referenced. The images and line drawings are mostly of excellent quality, and reflect current state of the art imaging. The various planes of imaging are depicted by both MR images, anatomic images and line drawings, and give an excellent approach to brain anatomy. The section on neuropsychological applications deals mainly with nonmagnetic electrodes and stereotactic localization; no mention is made of intraoperative MRI (either in this section or in the section on new applications and techniques). It does however, cover the postoperative appearance of the brain fairly well.

The chapter on spectroscopy, includes the basic theory of spectroscopy. The various spectroscopic techniques are explained in detail, and the differences between the various nuclei used and the problems associated with each are dealt with reasonably well. The chapters on ultra high field (4.1 T) imaging (for both high resolution as well as functional MRI) show the potential for these to produce not only high resolution images but also accurate mapping of areas of brain activation. The images in this section are of excellent quality, especially given the rapid developments in this area in the last year.

The book will appeal to a broad range of clinicians – neuroradiologists, neurosurgeons and neurologists, and even neuropathologists. It is easy to read for the most part (the section on the physics of spectroscopy is perhaps the only exception to this, reflecting the complexity of the subject). Sections from it will no doubt soon need updating because of the volume of new data (such as those on functional imaging, and intraoperative applications), but the chapters on imaging, epilepsy terminology, and correlative neuroanatomy will remain an invaluable addition to the library of neuroradiologists and radiologists with a special interest in epilepsy.

D.H. Lee,
London, Ontario

This manual is the latest edition of the spiral bound "pocket" manual designed to aid in the diagnosis and treatment of neurologic conditions. The manual is written as a tool for the non-neurologist involved in the primary care of neurologic patients. Like most general neurology texts this manual is multi-authored with the contributions of various experts being coordinated by an editor.

The book contains 17 chapters divided into two sections with the first section being symptom oriented and providing approaches to the common problems of coma, headache, intellectual dysfunction, dizziness, backache, epilepsy, brain death and the persistent vegetative state. The second section is organized by disease etiology (infectious disease, trauma, demyelinating disease, neoplastic disease, stroke, toxic and metabolic disease) or by anatomy (peripheral nerve and muscle, basal ganglia). In addition, a chapter on psychiatric conditions as well as one on the medical complications of chronic neurologic disease are included in the second section. Each disease is described in terms of its clinical presentation, the use of special diagnostic tests, and therapeutic options. The information is presented in concise paragraphs, lists, or tables allowing for easy quick-reference. While the manual attempts to be comprehensive, this varies considerably from chapter to chapter. For example, the chapter on intellectual decline includes descriptions of rare illnesses, such as Marchiafava-Bignami disease, while the chapter on stroke does not cover fundamental topics such as arterial dissection or vasculitis causing stroke. The clinical descriptions of diseases are succinct but occasionally important diagnostic information is left out. An example of this is the clinical description of neurosyphilis which does not include Argyll Robertson or tonic pupils. Practical information is provided on the special diagnostic tests available including the limitations of these tests. Most of the manual is dedicated to treatment options and for the most part provides comprehensive practical information. All the standard treatment options including dosages are provided. Side effects and complications are described, including laboratory parameters that need to be followed. An attempt has been made to include the more recent developments in neurologic therapeutics. The new anticonvulsants are introduced but important detail such as felbamate’s potential for causing aplastic anemia is missing. However, sufficient practical information on tacrine, the latest drug released to slow the progression of Alzheimer’s disease, is provided for inexperienced clinicians.

Overall this manual is an excellent resource providing valuable information on the diagnosis and treatment of neurologic conditions. I highly recommend it for internists, neurology residents, and general practitioners involved in the primary care of neurologic patients.

Adrian J. Priestol,
Toronto, Ontario

In recent years, as the diagnosis and treatment of cancer has improved, neurological complications of cancer and of cancer...