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WHAT IS A RESTRICTIVE THEORY?

TOBY MEADOWS

University of California Irvine

Abstract. In providing a good foundation for mathematics, set theorists often aim to develop
the strongest theories possible and avoid those theories that place undue restrictions on the
capacity to possess strength. For example, adding a measurable cardinal to ZFC is thought to
give a stronger theory than adding V = L and the latter is thought to be more restrictive than
the former. The two main proponents of this style of account are Penelope Maddy and John
Steel. In this paper, I’ll offer a third account that is intended to provide a simple analysis of
restrictiveness based on the algebraic concept of retraction in the category of theories. I will
also deliver some results and arguments that suggest some plausible alternative approaches to
analyzing restrictiveness do not live up to their intuitive motivation.

Mmmm, standin’ at the crossroad,
I tried to flag a ride
Standin’ at the crossroad,
I tried to flag a ride
Didn’t nobody seem to know me,
everybody pass me by

Robert Johnson

§1. The canonical example. Recall a well-known fork in the road. You’re using set
theory as a foundation for mathematics and, as a good set theorist, you aim to provide
a strong theory capable of answering some of the many seemingly reasonable questions
left undecided by, say, ZFC . In the course of your travels, you come across a couple
of plausible contenders that you could consider admitting into your foundation: every
set is constructible and there is a measurable cardinal. The first axiom enforces order
on the universe while the latter delivers an object having far reaching consequences
in analysis and beyond. Both axioms are worth taking seriously, but as Dana Scott
perhaps sadly showed, we can only add one of them: ZFC proves that if every set
is constructible, then there are no measurable cardinals. Thus, we should choose one
path over the other. But how? We shall call this the canonical example.

The following observation is frequently deployed at this point. MC can interpret
V = L, but V = L cannot interpretMC .1 In other words,MC can describe an inner
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1 To save a little space, we write: MC for ZFC extended with the statement that there is
a measurable cardinal, and V = L for ZFC extended with the statement that every set is
constructible. In other words, we are omitting to note the background theory ZFC when
describing extensions. This should not cause confusion since, unless stated otherwise, ZFC
will be the background theory throughout this paper.
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68 TOBY MEADOWS

model, known as L, in which all of the axioms of V = L are true, but V = L cannot
do the same forMC on pain of violating Gödel’s second incompleteness theorem. On
(quite roughly) this basis, it has been argued that this tells us that: MC has greater
interpretability power than V = L, and that V = L is restrictive in comparison to
MC .2 In this paper, I want to provide a plausible formal analysis of what we mean
when we say that one theory is restrictive in comparison to another. The motivation
behind my approach is a very simple algebraic idea. Indeed, my goal is to keep the
analysis as simple as possible. I’m not so much aiming to provide the definitive analysis
of restrictiveness as highlight and delimit a very natural tool in this larger project.

Turning to the literature, the project to analyze restrictiveness in set theory has
two major proponents: Penelope Maddy and John Steel. We now discuss some of the
salient points of that work and then contextualize the current paper by drawing out
some strategic differences between this project and those. In final chapters of [14],
we find the development of a formal logical definition—based on interpretability—
that aims to tell us when one theory maximizes over another. It is a tour de force in
philosophy of set theory. It would take us too far afield to provide a full description of
Maddy’s final definition along with the philosophy required to motivate it. However,
a couple of important themes emerge in Maddy’s analysis that aim to cut to the core
of restrictiveness and that warrant further discussion. The first of these is the idea that
one theory is restrictive with respect to another if it is unable to talk about as much
mathematics as the other. In the case of the canonical example, we might think of
V = L as restrictive in comparison to MC since it is not able to talk about the real
number 0#.3 The second (arguably related) idea is that restrictive theories are unable
to match unrestrictive theories. So in the canonical example, we might say that V = L
cannot matchMC in the sense that it cannot interpretMC .4 This is an extremely brief
overview of a huge project; however, we’ll have cause to visit more specific parts of
Maddy’s analysis throughout this paper.5

In [5, 22], Steel provides an argument for accepting large cardinal axioms which leans
on the notion of interpretative power of a theory. For Steel, maximizing interpretative
power “entails maximizing formal consistency strength, but the converse is not true,
as we want our interpretations to preserve meaning.” Steel does not provide a full
description of what it means for an interpretation to preserve meaning, but the obvious
candidates are the kinds of model construction used by set theorists to prove that
various extensions of ZFC are equiconsistent. These constructions come in two main
flavors: inner models and generic extensions. Both approaches deliver models with the
same natural numbers and ordinals: the interpretations differ from their ground models
in being thicker or thinner. It will be important to note that Maddy does not admit
generic extensions into her analysis and thus restricts her attention to inner models.6

Returning to the canonical example, we then see that adopting V = L is restrictive

2 It is also often then said that MC maximizes over V = L; however, this idea will play a
relatively minor role here.

3 More specifically, V = L proves that 0# does not exist.
4 It is important to stress that this gloss is distinct from how Maddy analyzes restrictiveness

in terms of matching. This will be discussed in more detail in Section 3.2.
5 For some criticism of Maddy’s analysis see [8], and for some approaches to its repair see [10].

Our analysis of Maddy’s work will be more coarse-grained here. Rather than building up the
entire definition, we shall be more concerned with its conceptual components.

6 An excellent discussion of this point of difference and its repercussions can be found in [20].
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WHAT IS A RESTRICTIVE THEORY? 69

in comparison to MC since it, “simply prevents us from asking as many questions,
since we are forbidden to ask about the world outside L” [5]. We also note that Steel’s
analysis is (deliberately) informal and thus more of a moving target.

The analysis I aim to provide in this paper will be distinguished from Maddy and
Steel on a number of fronts. First, unlike Maddy but like Steel, I aim to admit generic
extension as being on a par with inner model interpretation. I don’t intend to make
a thorough argument for this admission here beyond noting that this appears to be
the default position among contemporary set theorists. The admission of generic
extensions provides opportunities to enrich the analysis of restrictiveness while adding
some non-trivial technical hurdles that will frequently occupy us throughout this paper.
Unlike Steel but like Maddy, I aim to provide a formal analysis of restrictiveness.
Almost of necessity, this means that my definition will have shortcomings. We shall
discuss these as they emerge; however, my approach will generally be to leave the
analysis alone rather than attempt repair. My reason for this is that I think the simplicity
and naturalness of the solution offered here warrants developing an understanding of
both its capacities and limitations as an analysis of restrictiveness. Unlike Maddy
but probably like Steel, I am going to claim that the ontology these theories appear to
describe is not useful in the analysis of how one theory can talk about more mathematics
than another. Unlike Steel, I am going to argue that meaning preservation is not
particularly useful in the analysis of restrictiveness. Finally, in contrast with one of
Maddy’s themes, I am going to claim that one plausible way of analyzing matching
between theories is too weak to be of any use in comparing theories.

The paper is set out as follows. In Section 2, we describe the basic interpretative
machinery required for comparing theories and then describe our target notion:
retraction. This leads us to a preliminary analysis of restrictiveness that faces some fatal
limitations for our project as described in Section 2.1. In particular, the preliminary
analysis is not able to satisfactorily handle forcing arguments. These results appear to
open up the field up into a messy plurality of different analyses. However, in Section
3, we show a number of analyses weaker than that offered in this paper suffer flaws
that undermine the stories that motivate them. More specifically, we shall show that
there are substantial hurdles for analyses that try to capture the ideas of: one theory
representing more mathematics than another, and one theory being so strong as to be
unmatchable by another. This is a long section and may be best skipped on an initial
reading by those awaiting the exposition of the paper’s proposed approach. This is
developed in Section 4, where we provide an account of restrictiveness based on what
we call generic retraction. The majority of this section is devoted to setting up the basic
theory, demonstrating alignment with intuitive cases, and then applying the theory to
a couple of simple case studies.

§2. The retraction response. The main instrument in our analysis is the theory of
relative interpretability.7 In this paper, we’ll restrict our attention to theories in the
language L∈ of set theory consisting of a single one-place relation symbol ∈. An
interpretation is a translation t from the formulae of the language of set theory to itself,
which is based on definitions giving a domain and interpretation for the membership
relation. More specifically, we have two formulae �t(x) and εt(x) of L∈ and define t

7 See [24] for a detailed discussion.
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recursively on formulae as follows:

x = y t�−→ x = y,

x ∈ y t�−→ εt(x, y),

¬ϕ t�−→ ¬t(ϕ),

ϕ ∧ � t�−→ t(ϕ) ∧ t(�),

∀xϕ t�−→ ∀x(�t(x) → t(ϕ)).

This then gives us our fundamental definition for theory comparison.

Definition 1. For theories T and S, we say that T interprets S if there is some
interpretation t such that for all sentences ϕ of L∈

S � ϕ ⇒ T � t(ϕ).

The underlying mechanism works since t essentially defines an internal model of S
within any model of T. We now use a little category theory to describe this more
formally. For T a theory in L∈, let mod (T ) be the category whose objects are models
Mof T and whose arrows are elementary embeddings j : M → N between them. Then
it can be seen that an interpretation t determines a functor t∗ : mod (T ) → mod (S).
This is done by taking a model M of T and taking the model defined inside M by
�t and εt .8 Let us call the functors determined in this way by interpretations, mod-
functors, and let us abuse notation and write t instead of t∗. We then note the following
fundamental theorem of interpretability.

Theorem 2. Suppose T interprets S via t. Then for all models M of T and sentences ϕ

M |= t(ϕ) ⇔ t(M) |= ϕ.
This semantic and category theoretic approach allows for more intuitive reasoning
about the relationships between theories. For example, we see that T interprets S just
in case there is some mod-functor t : mod (T ) → mod (S). Let us say that T and S are
mutually interpretable if there are interpretations t and s witnessing that T interprets S
and S interprets T. We shall denote this situation by writing t : mod (T ) ↔ mod (S) : s .

This puts us in position to provide the core definition of this paper.

Definition 3. We say that mod (T ) is a retract of mod (S) if there are mod-functors
t : mod (T ) ↔ mod (S) : s witnessing mutual interpretability such that the following
diagram commutes:

mod (S)

mod (T ) mod (T )
idmod (T )

t s

8 More specifically, given a model M of T we define t(M) by letting its domain be {x ∈
M | M |= �t(x)} and its membership relation be {〈x, y〉 ∈M 2 | M |= εt(x, y)}. And when
j : M → N , we let t(j) : t(M) → t(N ) be j restricted to the domain of t(M).
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We say that t is a section and s is a retraction. We shall frequently just say T is a retract
of S.

Of course, this is a very familiar algebraic relationship. It just says that t has a
left inverse. Nonetheless, I think that the simplicity can be a little misleading and it’s
also very easy to forget the names. With this in mind, I’ll attempt a more palpable
description. Suppose that I, Toby, go to a restaurant owned by my friend Simon. It’s
the dead of Winter on a cold night, but it’s toasty warm when I get inside the restaurant.
The waiter sees that I am now overdressed and kindly offers to take my coat into the
care of Simon’s restaurant. I then have a lovely meal with some colleagues and after I
have paid the bill, I ask the waiter to return my coat. Happily, the coat is returned in
exactly the same condition I deposited it. Thus if we squint a little, I am in the position
of the retract, T. I deposit my coat at Simon’s restaurant, S, as though following the t
functor, and then the s functor returns the coat which we see is unchanged since t and
s compose to the identity. Importantly, my ability to enjoy the use of my coat has not
been restricted by Simon’s restaurant. But suppose, I had instead gone to a different
restaurant that is short-staffed and cheap, if not cheerful. Then having deposited my
coat the beginning of the meal, I might find that I am returned a different coat or no
coat at all. Clearly, the former situation is preferable to the latter where something has
been lost.

We now apply this idea to a version of our canonical example. The first thing to note
is that a necessary condition for a retraction between two theories is that those theories
must be mutually interpretable. This rules out a comparison between V = L andMC
and so there could appear to be some restriction in scope. Nonetheless, it is relatively
trivial to generalize our analysis to theories that are not mutually interpretable, but
we defer that until Section 4.2 after some helpful results from Section 3.2 are on
the table. But even in the restricted setting there is also a sense in which it gives us
better information. We aim be able to show that V = L is restrictive with respect to
ZFC alone, i.e., without needing to compare with the stronger axiom that there is
a measurable cardinal. Thus, this method will allow us to see that V = L is itself a
restrictive addition to ZFC .

Theorem 4. (1) V = L is a retract of ZFC .
(2) ZFC is not a retract of V = L, if there is a transitive model of V = L.

Informally, (1) tells us that there is a linguistic procedure via which we can deposit a
model of V = L among the models of ZFC and then have exactly the same model
returned. On the other hand, (2) tells us that there is no uniform way of depositing
the models of ZFC among the models of V = L and ensuring that the same model
is returned. Some information is always lost. The following (quite detailed) proof
outlines a strategy that will recur throughout this paper.

Proof. (1) Let i : mod (V = L) → mod (ZFC ) be the inclusion map and let l :
mod (ZFC ) → mod (V = L) be given by restricting quantifiers to L. Then it is easy to
see that if M is a model of V = L, then

l ◦ i(M) = l(M) = LM = M.
(2) Suppose toward a contradiction that s : mod (ZFC ) ↔ mod (V = L) : t are

mod-functors such that for all models M of ZFC , t ◦ s(M) = M. Using our
assumption, fix the transitive model L� where � is least such that L� |= V = L. Let
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M be a generic extension of L� by a Cohen real. Then M is a transitive model of ZFC
with OrdM = �.

Let N be the transitive collapse of the well-founded part of s(M ). SupposeOrdN <
�. Then s(M ) must be ill-founded since � is least such that L� |= V = L. But then
s(M ) can only define ordinals of length up to �. This is a contradiction since s(M )
must be able to define a well-ordering of length Ordt◦s(M ) = OrdM = �.

SupposeOrdN = �. If s(M ) is ill-founded, then we get a similar contradiction, since
s(M ) can defineOrdt◦s(M ) = �which is impossible. So suppose s(M ) is well-founded.
Then we have

s(M [g]) ∼= L� = N.

But then we have a model s(M ) of V = L that can collapse what it thinks is the well-
founded, extensional and set-like proper class model t ◦ s(M ) of V = L[c], which is
impossible.

SupposeOrdN > �. Then � is definable as a set in s(M ) and so is t ◦ s(M ). But this
means that s(M ) can define a truth predicate, Tr∗, for t ◦ s(M ) ≡M ; thus, we have

M |= ϕ ⇔ s(M ) |= Tr∗�ϕ�,

where �·� is an arithmetic coding of L∈. Moreover, this truth predicate can also be
defined in M, which is impossible. More specifically, we see that for all sentences
ϕ in L∈

M |= ϕ ⇔ t ◦ s(M ) |= ϕ
⇔ s(M ) |= Tr∗�ϕ�
⇔M |= s(Tr∗�ϕ�).

We then note that there is a formula �(x) in L∈ such that �(x) is equivalent to
s(Tr∗(x)) in any �-model. Then �(x) is a truth predicate for M which is definable in
M contradicting Tarski’s theorem.

Beyond the metaphors of deposit and return, the following proposition highlights
the value of retraction in comparing theories.

Proposition 5. (1) If T is a retract of S as witnessed by t : mod (T ) ↔ mod (S) : s ,
then for any T+ ⊇ T , there is some S+ ⊇ S such that t and s witness that T+ is a retract
of S+.

(2) Suppose S can interpret T, but T is not a retract of S. Then there is no ϕ such that
T is a retract of S ∪ {ϕ}.

Informally (1) tells us that the procedure ensuring deposit and return succeeds can
continue to be used no matter how we strengthen the theory making the deposit. On
the other hand, (2) tells us that if something is lost when we try to deposit models
of T in models of S, then there is no sentence we can add to S that will repair the
relationship. Among other things, this tells us that there is no finite extension ofV = L
such that ZFC is a retract of V = L.

Proof. (1) Fix mod-functors t and s witnessing that T is a retract of S. Then given
T+ ⊇ T , we let

S+ = {s(ϕ) | ϕ ∈ T+}.
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Let M be a model of T+, then since M is already a model of T, we see that
s ◦ t(M) = M, so we just need to show that t(M) is a model of S+. To see this
observe that for all ϕ

M |= ϕ ⇔ s ◦ t(M) |= ϕ,
⇔ t(M) |= s(ϕ),

and since M |= T+, we see t(M) |= S+.
(2) Suppose toward a contradiction that T is not a retract of S, but T is a retract

of S ∪ {ϕ} for some ϕ. Then fix mod-functors t : mod (T ) ↔ mod (S ∪ {ϕ}) : s0
witnessing this. Using the assumption that S can interpret T, fix a mod-functor
s1 : mod (S) → mod (T ). Let s be the mod-functor s : mod (S) → mod (T ) obtained
by using s0 in models where ϕ holds, and using s1 where it does not. Then it is easy to
see that t and s witness that T is a retract of S, which is impossible.

This brings us to our first, provisional definition of restrictiveness.9 Let us say that
T is restrictive with respect to S if:

(1) T is a retract of S; but
(2) S is not a retract of T.

Thus,V = L is restrictive with respect toZFC . Beyond the canonical example, we can
see that this approach lines up quite well with what we’d expect from a definition of
restrictiveness. First, we introduce a little notation. Let our axioms for ZFC include
set-induction, the well-ordering theorem and the collection schema.10 LetZFC\{Inf}
be ZFC without the axiom of infinity. Let ZFCfin be ZFC\{Inf} plus the negation
of the axiom of infinity. Let ZFC\{P} be ZFC without the axiom of powerset. Let
ZFCcount be ZFC\{P} plus the statement that every set is countable, ∀x |x| = �.

Proposition 6. Suppose there is a transitive model of ZFC . Then:
(1) ZFCfin is restrictive with respect to ZFC\{Inf}.
(2) ZFCcount is restrictive with respect to ZFC\{P}.

In each of these cases, we consider the addition of an axiom which seem obviously
restrictive: there are no infinite sets and there are no uncountable sets. This is quite
encouraging.

Proof. (1) Let i : mod (ZFCfin) → mod (ZFC\{Inf}) be inclusion map, and letf :
mod (ZFC\{Inf}) → mod (ZFCfin) be functor resulting from restricting quantifiers
to V� . i and f clearly witness a retraction. To see that ZFC\{Inf} is not a retraction
of ZFCfin, suppose toward a contradiction that it is and fix mod-funtors s, t such that

s :mod (ZFC\{Inf}) ↔ mod (ZFCfin) : t,

where t ◦ s(M) = M for all M ∈ mod (ZFC\{Inf}). Let M be a transitive model of
ZFC and thus OrdM > �CK1 . Then s(M ) is a model of ZFCfin. If s(M ) is not an
�-model, then it cannot define any �-models including the �-model t ◦ s(M ) =M ;

9 It is provisional because, as we shall see, it does not accommodate generic extension.
10 The use of these axiom removes some surprising inequivalences.
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so suppose s(M ) is an�-model. Then s(M ) ∼= 〈V�,∈〉 can define an ordinal of length
> �CK1 , which is impossible.11

(2) Let i : mod (ZFCcount) → mod (ZFC\{P}) be the inclusion map, and let
h : mod (ZFC\{P}) → mod (ZFCcount) be the functor resulting from restricting
quantifiers to the hereditarily countable sets. Clearly these functors witness a retraction.
To see that ZFC\{P} is not a retraction of ZFCcount , suppose

s : mod (ZFC\{P}) ↔ mod (ZFCcount) : t,

where t ◦ s(M) = M for all M ∈ mod (ZFC\{P}). Let M be a transitive model of
ZFC . Let N be the result of taking the collapse of s(M ) in M. This is what M thinks
is the well-founded, set-like part of s(M ). Now suppose N is bounded in M and so
N is represented as a set in M. But then N cannot define a well-ordering of length
OrdM = Ordt◦s(M ), which is a contradiction. So suppose N is unbounded in M. The
it can be seen that N thinks that every set in N is countable. But this is impossible. To
see this consider �M1 which is also an element of N. Then we see that there is some
surjection f : � → �M1 in N. But N ⊆M , so M thinks �M1 is countable.

2.1. Hurdles. Taking a little stock, we now have a preliminary analysis of
restrictiveness that lines up well with a number of simple cases that involve what
seems to obviously be a restrictive axiom. However, celebration would be premature
as we have yet to consider an example that uses forcing. The examples above all rely
on models that are defined as submodels of ground models: internal models. Generic
extension, however, allows us to define models that extend beyond ground models using
a parameter that does not exist in the ground model: outer models. As we discussed
above, like Steel, our goal in this paper is to incorporate forcing as a legitimate means
of identifying relations, like restrictiveness, between alternative set theories. This issue
will guide us below.

Our plan for this section is as follows. We shall identify a plausible pair of theories
such that—if we are incorporating generic extensions into our account—they are so
close to each other that neither should be regarded as restrictive with respect to the
other. We then show that our preliminary analysis of restrictiveness fails to recognize
the closeness of their relationship. This leads us to consider the prospects of using a
coarser grained analysis of relationships between theories. From there we discuss one
of our preferred solutions and set up the arguments of Section 3, which aim to show
why weaker relationships are unable to provide the information we want.

Consider the theory extendingZFC with the statement that the universe is a generic
extension of L by a Cohen real. Let us write this as V = L[c]. Let us consider how
we might compare V = L to V = L[c]. Allowing generic extension into the picture, it
seems that these theories are very closely related. To get from a model of V = L[c] to
a model of V = L, we just need to go to its version of L. And to get from a model of
V = L to a model of V = L[c], we just need to take a generic extension of that model
by a Cohen real.12 We’ll look at this in more detail below, but the main point is that
this looks like the ideal test case for generic extension. If an analysis of restrictiveness
is going to successfully incorporate generic extension, then—at a minimum—it will

11 More specifically, the supremum of the arithmetically definable ordinals (indeed Σ1
1 definable

ordinals) is �CK1 . See [15] for details.
12 In general, we’d probably want this model to be countable.
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have to say that V = L and V = L[c] are not restrictive with respect to each other.
Our current account does not show this:

Theorem 7 (Essentially [2]). V = L[c] is not a retract of V = L.13

Very informally, this tells us that we cannot uniformly squeeze the models of V =
L[c] into the models of V = L and then extract them in such a way that we are
guaranteed to recover the model we started with. This way of putting things makes it
sound as though V = L is restrictive with respect to V = L[c]. Thus since our goal is
to incorporate generic extension, we must revise our analysis of restrictiveness. Given
the dependence of our definition on retraction and interpretation, the natural place to
look is among generalizations of these relationships. The following definition outlines
a hierarchy of retraction relationships emerging from [24].

Definition 8. Let theories T and S be mutually interpretable via mod-functors t :
mod (T ) ↔ mod (S) : s . Then we say:

(1) T is a identity-retract of S if M = s ◦ t(M) for all M |= T ;
(2) T is an isomorphism-retract of S if M ∼= s ◦ t(M) for all M |= T ;14

(3) T is an elementary-retract of S if M ≡ s ◦ t(M).

We say that T is faithfully interpreted by S if there is some s : mod (S) → mod (T ) that
is a surjection up to elementary equivalence.15

Clearly, an identity-retract is what we have been calling a retract above. An
isomorphism-retract is then a weakening of ordinary retraction whereby we merely
demand that the mod-functors associated with the retraction take us back to a model
isomorphic to the one we started with, rather than exactly the same one. In mathematical
contexts, we arguably only care about identity of objects up to isomorphism so perhaps
little is lost by using this weaker relationship. Similarly, an elementary-retract occurs
when taking the composition of the mod-functors takes us to a model that is elementary
equivalent to the model we started with. So although we may be in a structurally
distinct model, there is no sentence of our language that can pin down this distinction.
Finally, we include faithful interpretation, which is not a retraction. We’ve defined
it above semantically, but it has an equivalent syntactic form that tells us that S is
able to prove exactly the sentences s(ϕ) where T proved ϕ.16 There is thus a clear
sense in which s allows S to provide an exact—so to speak—simulation of T. For this
reason, it has been thought that the ability to provide a faithful interpretation provides
significant information about the relationship between two theories. We shall argue
against this in Section 3.2. The point of this is that we have now described some coarser-
grained relationships between theories that can be motivated by plausible philosophical

13 We omit the proof as a proof of a stronger claim is provided in Theorem 9.
14 The corresponding isomorphisms for the retractions are known as: definitional equivalence,

isomorphism-congruence and sentential equivalence. It is also customary to include bi-
interpretability which would correspond to the retract where we say T is a bi-retract of
S if there is a formula uniformly defining an isomorphism 	 in all models M of T such
that 	 : M ∼= s ◦ t(M). Our attention will, however, be focused lower down so we leave
bi-retraction aside in this paper.

15 That is, for all M ∈ mod (T ), there is some N ∈ mod (S) such that s(N ) ≡ M.
16 On direction of this equivalence is trivial. The direction from the syntactic to the semantic

definition makes essential use of compactness and consequently fails for stronger logics like
�-logic and beyond.
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considerations. So this then brings us to the question: how and where does our test case
of V = L and V = L[c] fit in this hierarchy of theoretical relationships? The following
theorem answers this question.

Theorem 9. (1) V = L[c] is an elementary-retract of V = L.
(2) V = L[c] is not an isomorphism-retract of V = L, if there is a transitive model of

V = L.

Proof. (1) Let s : mod (V = L[c]) → mod (V = L) be the mod-functor obtained by
restricting quantifiers to L. Clearly s(M) |= V = L for all models M of V = L[c]. In
the other direction, we define the mod-functor t : mod (V = L) → mod (V = L[g]) as
follows. Let M be an arbitrary model of V = L. Let B be the completion of 2<� and
let U be the L-least ultrafilter on B. Working in M we then note that there are definable
internal models V̄, V̄ [G ] and a set G with an elementary embedding iU such that

iU : V ≺ V̄ ⊆ V̄ [G ],

where G is iU (B) generic over V̄ and V̄ [G ] is a generic extension of V̄ by G.17 Let t(M)
be V̄ [G ]. V̄ [G ] satisfies the statement that its universe is a generic extension of V̄ by
a Cohen real. Moreover, V̄ satisfies V = L, so see that t(M) is a model of V = L[c].
Thus, we see that s and t witness mutual interpretability.

We now claim that t ◦ s(M) ≡ M for all models M of V = L[c]. Letting M |=
V = L[c], we see that s(M) = LM and—using the notation from our definition of
t—t ◦ s(M) = (V̄ [G ])L

M
. We then observe that forϕ an arbitrary sentence of L∈ that

M |= ϕ ⇔ LM |= “ �B ϕ”

⇔ (V̄ )L
M |= “ �iU (B) ϕ”

⇔ (V̄ [G ])L
M |= ϕ ⇔ t ◦ s(M) |= ϕ,

where the first and third biconditionals exploit the homogeneity of B.18

(2) Suppose toward a contradiction thatmod (V = L[c]) is a retract ofmod (V = L)
and fix mod-functors i, j such that

j : mod (V = L[c]) ↔ mod (V = L) : i

and i ◦ j(M) ∼= M for all models M of V = L[c]. Let L� be the transitive model of
V = L for least �. Let M be an extension of L� be a Cohen real. Let 
 be the order
type of the well-founded part of j(M ). We show that every possible relation between
� and 
 leads to a contradiction. However, first note that since i ◦ j(M ) is definable
in j(M ), we see that � is definable up to isomorphism in j(M ). Suppose 
 < �. Then
j(M ) must be ill-founded by the minimality of �. But then j(M ) cannot define �:
contradiction. Suppose 
 = �. If j(M ) was ill-founded, then this would imply that
j(M ) could define its well-founded part which is impossible. So suppose j(M ) is
well-founded. Then we see that

j(M ) ∼= L�

17 Details of these constructions and facts used here can be found in [9]. Note that V̄ [G ] is
definable without the parameter G. In fact it is an ultrapower of V B by U.

18 More specifically, the complete theory of a homogeneous forcing is forced by the top element
of that forcing; see Proposition 10.19 in [12].
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and so j(M ) and i ◦ j(M ) have ordinals with the same order type. But this means
we have a model j(M ) of V = L that can collapse what it thinks is the well-founded,
extensional and set-like proper class model i ◦ j(M ) of V = L[c] which is impossible.
Suppose 
 > �. Let �̇ be the j(M )-ordinal which is isomorphic to �, which is definable
in j(M ). Then we see that j(M ) thinks that i ◦ j(M ) is a set and so may define a
truth predicate for i ◦ j(M ) which can also be define in M, contradicting Tarski’s
theorem.

Remark. Note that it is also easily seen by an argument similar to that used in part (1)
of Theorem 4 that s ◦ t(N ) ≡ N for all modelsN ofV = L. Thus,V = L andV = L[c]
are, in fact, sententially equivalent. It is also easy to see that this result generalizes to
arbitrary definable homogeneous forcings.

The result above provides a helpful guide toward solving our main problem. It tells
us that for our purposes, isomorphism-retracts are too strong and that relationships at
or below elementary-retracts are a natural place to investigate. We shall see in Section
4 that elementary retracts also face problems19 but our goal now is to investigate the
hierarchy further in search of the sweet spot for our project.

§3. Things that don’t work. In this section, we’ll argue that going strictly below
the level of elementary-retracts is too coarse-grained to contribute to a plausible
analysis of restrictiveness. Then in Section 4, we’ll take a closer look at elementary-
retracts and their limitations before proposing a more tractable alternative. We’ll argue
for the claim of this section by providing a series of results that demonstrate that
various analyses of restrictiveness using notions weaker than elementary-retraction
fail to live up to their intuitive motivation. In particular, we shall argue for three main
claims. First, maximizing our ability to talk about mathematics is not well tracked by
comparing the isomorphism types of the structures represented in one theory with that
of another. Second, faithful interpretability is so easy to obtain that theories satisfying
this relationship bear little or no intuitively interesting relationship with each other.
And finally, we shall argue that strengthening faithful interpretability by restricting the
class of acceptable models does not help matters. This is a long section that performs an
important role; however, the reader who is more interested in exploring restrictiveness
in the context of generic extensions should be able to safely skip ahead to Section 4.

3.1. More math and isomorphism. In [14], we find a way of analyzing restrictiveness
that is concerned with the ability of a theory to represent mathematics. We might think
of theory T being restrictive in relation to S if theory S is able to talk about more
mathematics than T. This is a very sensible idea which prompts the more difficult
question of how to devise a precise means to ascertain when this relationship holds.
Maddy offers an analysis that aims to track the isomorphism types of structures
represented by theories.

Our informal idea was that ZFC + ‘0# exists’ delivers a new isomor-
phism type because it proves the existence of a structure that is not
isomorphic to anything constructible, that is, to anything in L. ([14, p.
221])

19 In particular, see Problem 29.
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Maddy’s approach is to compare the isomorphism types represented by one theory
with another. But this raises a difficulty. We are trying to compare the syntactic objects
that are theories using the semantic20objects which are the structures represented
by these theories. It is not obvious that there is a clearly right way to do this.21

Maddy deals with this by considering theories where one theory T interprets another
theory S via some mod-functor t. We then ask if it is the case that in all models
M of T, M thinks there is an isomorphism type witnessed in M that is not in its
internal model t(M) of S. If there is, then we are to think that S is restrictive. In
theories extending ZFC , we can simplify the description of this relationship to the
following:22

Definition 10. (Essentially [14]) For theories T and S extendingZFC , S is restrictive in
relation to T if there is a mod-functor t : mod (T ) → mod (S) such that for all M |= T ,
M thinks t(M) is a proper inner model of M; i.e., t(M) � M.23

I’d like to claim that if this analysis fits with its motivation, then the relation of
restrictiveness should be asymmetric. Recall that the S is supposed to be restrictive in
relation to T if T is able to talk about (properly) more mathematics than S. Thus, if
S cannot talk about as much mathematics as T, then it shouldn’t be the case that T
also cannot talk about as much mathematics as S. But there is a problem for this plan.
First recall the following fact.

Fact 11. If V = L[U ] and U is a normal measure on κ, then GCH holds.24

Using this we can then see that:

Proposition 12. ZFC + ∃MC +GCH and ZFC + ∃MC + ¬GCH are mutually
inner model interpretable.25

Proof. Let M be a model of ZFC + ∃MC + ¬GCH . Let κ be the least measurable
cardinal according to M and U be an M-normal ultrafilter on κ. Then by Fact 11,
L[U ]M is an internal model satisfying ZFC +MC +GCH . In the other direction,
let M be a model of ZFC + ∃MC +GCH . First we show that M has a definable
inner model with a definable normal ultrafilter. Working in M, fix the least measurable

20 By semantic here, I just mean nothing deeper than model theoretic.
21 I suspect there are many things one might do. However, here is another seemingly natural

option. For T a theory in L∈, let struc(T ) be the class of structures represented as sets in
models of T. We might then compare struc(T ) and struc(S).

22 This is observed in footnote 17 on page 221 of [14] and discussed in detail in [20]. If an
inner model N is a proper subclass of the universe V, then there is some x ∈ V \N . Then
the transitive closure of {x} ordered by the membership relation is an isomorphism type not
witnessed in N. If V contains an isomorphism type A not witnessed in N, then A can be
coded by a set a ⊆ Ord in such a way that the A can be uniformly recovered in any transitive
model of ZFC containing a. Thus a ∈ V but a cannot be in N.

23 Maddy defines maximization rather than restrictiveness, so this definition has been modified
to fit the thread of the current paper. We also note that Maddy’s notion of inner model
is more liberal than the standard one in that it allows that the model could have merely
inaccessible length. We shall assume the standard definition of inner model here: a transitive
proper class N containing all of the ordinals.

24 See Lemma 19.4 in [11].
25 I thank Joel David Hamkins for pointing this out. An earlier version of this paper used a

much stronger large cardinal assumption that was not required.
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cardinal κ. Recall that for any normal measures U0, U1 on κ, we have L[U0] = L[U1].
Thus, we may define M ∗ in M as L[U ]M , the inner model constructible from any
M-normal measure U on κ.26 And we may also define U ∗ in M as M ∗ ∩U for any
normal measure U on κ. Let j :M ∗ → Ult(M ∗, U ∗) = N be the ultrapower map as
defined inM ∗.

Let P be Add (κ+, κ+++)N , i.e., the set of partial functions from κ+++ to 2 with
cardinality less than κ+ according to N. Since GCH holds inM ∗ and N, we see that
for all i ∈ �

(κ+)M
∗

= (κ+)N ≤ (κ+++)N < j(κ) < ((2κ)+)M
∗

and that

|P|M∗
= |P(P)N |M∗

= (κ+)M
∗
.

We then observe thatM ∗ thinks that P is (κ+)M
∗
-closed. To see this supposef : s → 2

where s ∈ P(κ+++) ∩N with |s | < (κ+)N = (κ+)M
∗
. Now fix an injection g : s → κ

with g ∈ N . Then sinceM ∗ thinks κN ⊆ N , we see that f ◦ g–1 ∈ N and so f ∈ N .
We then claim that a P-generic g for N exists in M ∗. To see this we work in M ∗.

Let 〈Aα〉α∈κ+ be an enumeration of the maximal anti-chains of P from N. Note
that this enumeration will not be in N. Let p0 be an arbitrary element of P. Let
pα+1 be some p ≤ pα with pα+1 ∈ Aα . And let p =

⋃
α< pα when α is a limit. This

construction is well-defined since there are (κ+)M
∗

many anti-chains in P and M ∗

thinks that P is (κ+)M
∗

closed. Let g =
⋃
α<2κ pα . Let g∗ be the L[U ∗]-least such

generic.
Finally, we observe thatN [g∗] is a definable inner model ofM ∗ that satisfies ¬GCH

since in N [g∗] we have 2(κ+) = (κ+)++. Moreover, it is clear that g∗ adds no new
subsets of κ to N and so U ∗ is still a normal measure on κ in N [g∗] as required.

The upshot of this is that if one analyzes the idea of “more mathematics” as the
ability to provide more isomorphism types, and one analyzes more isomorphism types
as providing proper inner model interpretations, then we end up with a more than
relation which is not asymmetric. I think this is a significant problem for this approach
to analyzing what “more mathematics” means. I think the correct diagnosis for why this
problem emerges is the mismatch of syntactic and semantic objects used in undertaking
this analysis. I must note, however, that Maddy takes a different tack and builds
asymmetry into the relation by saying that a theory T is properly restrictive with respect
to theory S if T is restrictive with respect to S and S is not restrictive with respect to
T.27 This certainly obtains an asymmetric relation but for the reasons outlined above,
I think this fix is too ad hoc for the problem to hand.

3.2. Matching is cheap. In this section, I am going to use a sequence of examples
to show that three related ideas for analyzing restrictiveness are ineffective. The first of
these is motivated by our remarks above that isomorphism-retraction appears to be too
fine-grained to be useful here. However, there are still many relationships to explore

26 The reason we go in to L[U ]M is to ensure that the measure is definable.
27 I’ve taken the liberty of translating maximization talk with restrictiveness talk, however, this

definition can be found at the top of page 222 in [14].
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below this. In particular, we might consider faithful interpretability as a benchmark
and thus avoid the retraction hierarchy altogether. Recall, the following proposition:

Proposition 13. T faithfully interprets S iff there is some translation t such that for
all ϕ ∈ LS

S � ϕ ⇔ T � t(ϕ).

Informally, we see that T provides an exact simulation of S using the translation
t. We might wonder if we could use this to make a story about restrictiveness that is
analogous to our analysis via retraction. For example, we might be tempted to say that
when T faithfully interprets S, it is able to represent the information of S without loss
(or gain). This could be construed as analogous to when we know that S is a retract
of T, we know that T is able to take the models of S into models of T and return them
without loss.28 I aim to show that faithful interpretability is too weak to be of any real
assistance for our project.

The second idea is based on the thought that a restrictive theory S might be so weak
in comparison to some theory T that it cannot even be strengthened to match theory
T in the sense of, say, providing an interpretation of it. In the context of retraction, a
couple of salient results in this area occur in Proposition 5. More generally, I suspect
the motivation behind this idea lies in the hierarchy theorems of computability theory
and descriptive set theory.

For example, one might observe that faithful interpretation is essentially another
way of saying that there is a particular kind of 1-reduction of the interpreted theory
to the interpreting theory. And if we move over to the context of computability, we see
that there are sets of naturals A,B ⊆ � such that A is not 1-reducible to B and further
no strengthening A∗ ⊆ A is 1-reducible to B either.29 If this kind of example could
be generalized to theories, we would have a theory T than cannot faithfully interpret
S and such that T cannot even be extended to do so. In such a situation, we might
say that T cannot match S. Something like this idea appears in Maddy’s definition of
strong maximization.30

T ′ strongly maximizes over T iff
(i) T ′ inconsistently maximizes over T, and
(ii) there is no consistent T ′′ extending T that properly maximizes

over T ′. ([14, p. 224])

I won’t attempt to explain each of the components of this definition, but rather direct
attention to clause (ii) where we find something very like matching. We are demanding
that T cannot be extended to match T ′.31

We shall defer exposition of the third idea until we are ready for it. Our goal is to now
demonstrate that in the context of faithful interpretations the ability for one theory to

28 Another reason that such an analogy might come to mind is that when S is a retract of T, it
follows that T faithfully interprets S. In particular, the mod-functor t : mod (T ) → mod (S)
in an elementary retract is a surjection up to elementary equivalence.

29 More specifically, let A be the set of computable reals and let B = �\A.
30 We retain the maximization language here since we are merely highlighting a plausible link

between this idea and the literature.
31 I must also say that while Maddy is deploying something like what I have called matching,

the examples below should not be construed as a direct response to her definitions.
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match one another is all but trivial. In order to set this up, however, we start with a
proof of a toy proposition that will provide a template for the main lemmas that follow
in this section. In essence, it shows that matching is cheap. However, inspection of at
least the toy claim below will also reveal something of how weak the relationship can
be between one theory and another that faithfully interprets it. While the conditions on
this proposition are somewhat technical, they are also quite easy to satisfy. Moreover,
it’s the punchline that is important.32

Proposition 14. Suppose: S and T are theories extending ZFC ; for all reals x ∈ R,
there is an �-model M of S with x ∈ M; S proves that T is consistent; and S is generic
invariant under set forcing. Then S faithfully interprets T.

Proof. Our goal is to show there is an interpretation s : mod (S) → mod (T ) which is
a surjection up to elementary equivalence. It is convenient to first verify the surjectivity
part of the claim. Let N be a model of T and x ∈ R code N . Then fix an�-model M of
S with x ∈ M and without loss of generality, suppose M is countable. We now define
s by working in M. Given that S proves the consistency of T and S extends ZFC , we
can perform the completeness proof inside M. Recall Henkin’s method of extending T
to a maximal consistent set of sentences in which every existential sentence is witnessed
by a constant symbol. We let the Henkin tree be the result of following this procedure
except that when we come to a sentence ϕ where both it and its negation are consistent
with what we have added so far, we avoid choosing and rather fork into one branch
for ϕ and one for ¬ϕ. Since M is an �-model, it is easy to see that every infinite path
through the tree allows us to define a model of T. Moreover, every complete theory
extending T occurs as a branch in the tree; thus, up to elementary equivalence every
model of T is definable from a branch in this tree. To define a particular branch we
use the continuum pattern between, say, ℵ0 and ℵ� . Call this s(M). Note that there is
no reason to think s(M) ≡ N ; however, since x ∈ M we may define a forcing in M
that modifies the continuum pattern such that a branch defining N is determined. And
since M is countable, we may let M[G ] be the corresponding generic extension which
is still a model of T. Then s(M[G ]) ≡ N as required. This verifies that s is a surjection
that is possibly partial.

To see that s is defined on every model M of S, note that the definitions involved
in the interpretation, s, can be articulated in any model of S. So suppose M is an
arbitrary model of S. By our assumption and the completeness theorem, M thinks
there is a model of T. This means that M will think that the body of its Henkin tree
is nonempty and thus a path through the body of this tree will be selected by M. This
is t(M). Then it can be seen—regardless of whether M is an �-model or not—that
t(M) is a model of T, as required.

The following fact is much sharper and requires a more technical proof. Nonetheless,
the underlying idea is much the same. We shall use it to provide our first piece of evidence
that the ability to provide faithful interpretation does not tell us much.

32 It is, however, worth noting that the assumptions of Proposition 14 are noticeably stronger
than that of Linström’s Fact 15 in that the former assumes that S can outrightly prove
the consistency of T and we assume that S has many models. Indeed, this may suggest an
alternative approach—not investigated here—where we insist that the interpretation must be
procured by a very weak theory like say, ACA0.
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Fact 15. (Lindström) Suppose S and T are consistent theories extending ZFC ; for
every finite Δ ⊆ T , S proves Δ is consistent; and for all ϕ ∈ Σ0

1 if ϕ then S � ϕ (i.e., S is
Σ0

1-sound ). Then S faithfully interprets T.33

We then put this straight to work to highlight what might appear to be a surprisingly
close relationship between V = L andMC .

Proposition 16. Suppose there is a measurable cardinal. ThenV = L can be extended
to a consistent theory S which faithfully interpretsMC .

Proof. By Fact 15, it suffices to find a consistent theory S extending V = L such
that S proves that every finite subset ofMC is consistent and S is Σ0

1 sound. Let S be

V = L ∪ {Con(Δ) | Δ is a finite subset ofMC}.
Clearly S proves all the finite subsets ofMC are consistent, and since consistency is

implied by Σ0
1-soundness, it suffices to show that S is Σ0

1-sound. For this it suffices to
show that S has a transitive model. To see this letκ be the least inaccessible cardinal and
note that Lκ is a transitive model of V = L. So to show that Lκ is a transitive model
of S, it suffices to that it is true in Lκ that every finite subset ofMC is consistent. Now
letting Δ be such a set, we see by reflection that there is some Vα in which Δ is satisfied.
Thus, Δ is consistent and by an easy application of Lévy–Shoenfield absoluteness we
see that Lκ also says that Δ is consistent. Thus Lκ is a transitive model of S.

This proof is easily generalised to give us the following:

Lemma 17. Suppose that T ⊇ ZFC is true and that T proves that there is a transitive
model of V = L. Then V = L can be extended to faithfully interpret T.

The upshot of this is that faithful interpretations are just too easy to obtain. If the
story above about matching were to work, then it should not be the case that V = L
can be extended to matchMC . As such, it could seem prudent at this point to abandon
faithful interpretations and move higher up the interpretability hierarchy. This is what
we aim to do; however, there still remain some plausible ways to explore the space
between faithful interpretation and elementary retraction. Moreover, when we look
to the proof of our toy Proposition 14, we see that there is something very arbitrary
about the models delivered by the interpretation described. For example, the models
will generally be ill-founded.

This motivates our third idea. Rather than using arbitrary models and inter-
pretations, we might demand that interpretations of better quality are employed.
For example, it might seem reasonable to not be concerned with what happens
in interpretations that provide the wrong version of the natural numbers or are,
say, ill-founded. Something like this idea is perhaps present in Steel when he talks
about interpretative power being constrained to use interpretations that “preserve
meaning” [4]. We also see this when Maddy introduces fair interpretations in response
to problematic examples proposed by John Steel and Tony Martin.34

33 This is Theorem 5 and Corollary 9(b) in Chapter 6 of [13]. It is not the strongest versions
available, but its conditions are easy enough to obtain in set theoretic contexts.

34 See the discussion on page 227 of [14]. It would not be too far off to suggest that the examples
in this section are intended to provide general forms of the examples from Martin and Steel
as discussed in Section III.6 of [14].
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3.2.1. Transitive interpretations. We now show that if we restrict to transitive and
even inner models, much the same problem emerges. On this basis, we push back on
our third idea by demonstrating that improving the quality of our interpretations does
not make them substantively more difficult to obtain. As such, this idea also seems
unhelpful in our pursuit of an analysis of restrictiveness. First we consider a restriction
to interpretations that are transitive and so we make the following definition. Given
set theorists’ well-justified penchant for transitive models, this seems like a natural
starting point. Let transMod (T ) be the class of transitive models of T when T is an
L∈-theory.

Definition 18. Suppose S and T are theories in L∈. Let us say that S transitively
interprets T if there is an interpretation s : L∈ → L∈ whose associated mod-functor
ensures that35

s“transMod (S) ⊆ transMod (T ).

If s also ensures that for all ϕ ∈ L∈,

T |=trans ϕ ⇔ S |=trans s(ϕ),

we say that S faithfully transitively interprets T via s, where |=trans is the consequence
relation for transitive models.36

The idea here is that a transitive interpretation is an interpretation that—when
applied in a transitive model—gives rise to another transitive model. Moreover, it is
easily seen that the original model will also be able to ascertain that the defined model
is transitive. As in the general case, the faithful transitive interpretations then ensure
that the translation does not overshoot and prove too much. We then observe there is
a natural strengthening of faithful interpretation that fits well with the proof strategy
of Proposition 14.

Proposition 19. Suppose s : transMod (S) → transMod (T ) is a mod-functor which
is a surjection up to elementary equivalence. Then T faithfully transitively interprets S.37

With this in hand, we may now prove a generalisation of Theorem 14 that will give
us another example like that of Proposition 16. The key difference is that rather than
using the ordinary proof theory of first order logic, we make use of the Lévy–Shoenfield
theorem to provide an analogous “proof” tree for the logic of transitive models.

Theorem 20. Suppose: S and T are theories extending ZFC ; for every real x ∈ R, there
is a transitive model M of S with x ∈M ; S proves that T has a transitive model; and S
is generic invariant under set forcing. Then S faithfully transitively interprets T.

Proof. We aim to define an interpretation s : transMod (S) → transMod (T ) that
is a surjection up to elementary equivalence. We work on surjectivity first. Since S
has a transitive model and proves that T has a transitive model, we see by Shoenfield

35 Another natural option would be to merely demand that the s(M ) is transitive from the
point of view of M. This benefit of this is that it doesn’t require that T has a transitive model
to have a non-trivial interpretations just that there is some model of T . However, given that
we are interested in very strong theories the consistency strength saving don’t seem to make
the extra technicalities worthwhile.

36 That is, T |=trans ϕ iff for all transitive M, ifM |= T , thenM |= ϕ.
37 Unlike in the general case, the converse does not hold.
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absoluteness that there is a transitive model of T. Fix such a model, N. Let N ∗ be a
countable elementary submodel of N and let x ∈ R be a code for N ∗. Then by our
assumption, we may fix a transitive model M of S with x ∈M , which we assume is
countable without any loss of generality.

Working in M, we now define s. Observe that the statement that there is a transitive
model of T is Σ1

2. Thus, there is a Lévy–Shoenfield tree T consisting of pairs of finite
sequences into � and �1 respectively such that for all y ∈ R,38

y codes a transitive model of T ⇔ y ∈ p[T ]

⇔ ∃f : � → �1 〈y,f〉 ∈ [T ].

Now observe that since x ∈M and M is transitive, M can correctly verify that x
is a code for a model of T. Thus working in M, we see that there is some g : � → �1

such 〈x, g〉 ∈ [T ]. To complete the definition of our interpretation it suffices to define a
particular branch through T since we can obtain a transitive model by taking the first
coordinate and collapsing it. To define a path through T we note that we may select a
particular path through T using a function h : � → �1 that chooses a path through T
by using the values of h to choose which way to go when T forks. Such a function can
be defined by consulting a definable �1-sequence of the continuum pattern in M. We
then let s(M ) be the model obtained from the function defined from such a sequence.
In general, s(M ) �≡ N ; however, if we force to change the continuum pattern to obtain
M [G ] in which the function h : � → �1 determining N is definable. Then we have
s(M [G ]) ≡ N whereM [G ] is a model of S, establishing that s is a partial surjection.

Finally, to see that s is defined for all models of T, note that definitions composing
s can be articulated in any transitive model M of S. Let M be such a model. Then by
our assumption M thinks that there is a transitive model of T and by absoluteness,
S is correct about this. Fix such a model N ∈M . Then, N thinks that p[T ] is
nonempty and thus, the model defined from the continuum pattern in M is a transitive
model of T.

We are then able to find a new example where a seemingly restrictive theory is able
to match a theory that might otherwise have appeared out of reach.

Proposition 21. Let S∗ be the theory extendingZFC by saying that there is some real
x ∈ R such that the universe is a set generic extension of L[x], abbreviatedV = L[x,G ].
Then there is some S extending S∗ that faithfully transitively interpretsMC , if some Vα
is a model ofMC .

Proof. Let S be S∗ extended with the statement that there is a transitive model of
MC . Then by Theorem 20, it suffices to show that: (1) for all x ∈ R there is a transitive
model M of S such that x ∈M ; and (2) S is set generic invariant. To see (1), let y ∈ R
and let Vα be a model of MC . Then Lα[y] is a model of ZFC plus the statement
that for some x ∈ R the universe is a (trivial) generic extension of L[x]. Moreover, by
the Lévy–Shoenfield theorem we see that Lα[y] recognizes that there is a (countable)
transitive model ofMC . Thus,Lα[y] is a model of S. For (2), suppose M is a transitive
model of S. Then M = Lα[x,G ] for some α ∈ Ord , x ∈ R and G is P-generic over
Lα for some P ∈ Lα . It then suffices to show that if H is Q-generic over M for some

38 See Theorem 13.14 in [12] and the rest of that chapter for notation. We use T rather than T
do avoid a clash with our preferred variable for theories.
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Q ∈M , thenM [H ] is still a model of T. To see this observe that if H is Q-generic over
Lα[x,G ], then by the iteration lemma we see that G ∗H is P ∗ Q̇-generic over Lα[x]
where Q̇ is such that Q̇G = Q.39

To hammer this home, I must argue that we should intuitively think that saying
the universe is a generic extension of L[x] for some x ∈ R is a restrictive addition to
ZFC . The most obviously restrictive aspect is that a model of V = L[x,G ] thinks the
universe is constructed from two sets. As such, there would seem to be all manner of
objects beyond x and G that are ruled out by such a theory. But we can say more.
Observe thatMC implies that R# exists,40 while on the other hand, it can be seen that
V = L[x,G ] implies that R# does not. As such, we are in an analogous situation to
the comparison between V = L and ZFC . In that case, we saw both Maddy and Steel
remark that V = L was a restrictive theory since it did not allow us to go beyond L
and talk about 0#. Similarly here, we see that V = L[x,G ] is restrictive since it doesn’t
allows us to talk about R#.

Thus, it seems that the restriction to transitive models is also unhelpful for the
purposes of analyzing restrictiveness.41 Nonetheless an inspection of the proof of
Theorem 20 reveals that despite being transitive, the models provided are hardly ideal.
In particular, the models provided by the underlying completeness theorem are all
countable. Thus, while they correctly represent the natural numbers, they do not
correctly calculate a single uncountable ordinal.

3.2.2. Inner model interpretations. An obvious response to the small size of the
transitive models obtained in the previous section is to demand that our interpretations
provide inner models, i.e., transitive classes containing all the ordinals.42 It is not
difficult to define a notion of inner model interpretability; however, we shall make
use of something stronger and arguably better. The reason for this is the difficulties
involved in obtaining proper class models that are also transitive.43 The problem then

39 Note that if we only wanted transitive interpretation rather than faithful transitive
interpretation, then we could let S∗ above just be V = L.

40 That is, there is a non-trivial elementary embedding j : L(R) → L(R).
41 This example is similar to Tony Martin’s “devil’s advocate” example discussed by Maddy (see

page 214 of [14]). It is noted there that if there is a transitive model ofZFC plus 0# exists, then
L satisfies that there is a countable transitive model of ZFC plus 0# exists. Maddy explores
this example’s consequences for maximizing mathematical representations; however, there
are still clear parallels. In the language above, this example shows that theory extending
V = L by the statement that there is a transitive model of ZFC plus 0# exists transitively
interprets ZFC plus 0# exists. The techniques described above allow us to generalize this to
faithful transitive interpretations.

42 See page 182 of [11]. We omit stating the requirement that ZF be satisfied since we’ll be
restricting our attention to models in which ZFC is satisfied.

43 For example, it is possible to generalize the techniques deployed by Lindström in his proof
of Fact 15. In particular, rather than building a model using L∈ expanded with countably
many constant symbols, we expand L∈ with a proper class of constant symbols and then
execute the completeness theorem in this language. Strictly, we also need to ensure that the
identity axioms don’t collapse the model down to a set by adding axioms to ensure that for
all ordinals α, there is some constant cα and for all α < 
 , cα 
= c
 . This can be used to take
an inner model M of ZFC and define what M thinks is an internal model whose domain is
a proper class.
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is that, in general, M will not think that the internal model is transitive and thus it is
not an inner model. Thus, we take a different path.

In essence, our idea is to generalize the proof of Theorem 20 to obtain a countable
transitive model that can be—so to speak—stretched out into an inner model. The
existence of such models requires some large cardinal strength and takes us into the
lower regions of the hierarchy that transcends L. First we define what it means for a
model to be stretchable in the right way.

Definition 22. For theories T extending ZFC , let an iterable model of T be a transitive
model M such thatM = VM

∗
κ for some transitive modelM ∗ of ZF \{P} and κ ∈M ∗

where that there is anM ∗-ultrafilter U on κ such thatM ∗ is iterable by U.

We then see that such models can be stretched out in the manner required for our
application.

Fact 23. If M is an iterable model of T, then there is an inner model of T.

Proof. We show that there is a definable model with the same complete theory as M.
Let M be an iterable model as witnessed byM ∗, κ ∈M ∗ and U. Then by assumption,
Ultα(M ∗, U ) is transitive for all α ∈ Ord . Moreover,

〈〈Ultα(M ∗, U )〉α∈Ord , 〈iα,
〉α≤
∈Ord 〉
forms a directed system. LetM ∗

Ord be the direct limit of this system and we have then
defined an internal model in which the image iOrd (κ) of κ is isomorphic to the ordinals.
This means that transitive collapseMOrd ofM ∗

Ord is only defined up to Ord , an initial
segment ofM ∗

Ord , and this entails that

MOrd = trcoll(M ∗
Ord ) ∼= (ViOrd (κ))

M∗
Ord ≡ (Vκ)M

∗
=M.

Thus, we see that being an iterable model is a stronger property than being an inner
model in that, in general, there will be inner models of some theory extending ZFC
that are not elementary equivalent to any iterable model of that theory. I think the
right way to look at this is to think that iterable models are actually of superior quality
than inner models. To put it a little odd, if we were able to look at the universe of
sets—so to speak—from the outside, then we’d expect the universe to be iterable in
much the same way we’d expect it to be transitive.44 We may then define a notion of
iterable interpretability as follows. First let itMod (T ) be the class of iterable models
of T for some T extending ZFC .

Definition 24. For theories T, S ⊇ ZF , we say that S iterably interprets T if there is an
interpretation s : L∈ → L∈ such that

s“itMod (S) ⊆ itMod (T ).

We say S faithfully iterably interprets T if S iterably interprets T via s and for all
ϕ ∈ L∈

T |=it ϕ ⇔ S |=it s(ϕ),

where |=it is the consequence relation restricted to iterable models.

44 I’m tempted to say that inner model theory provides some evidence for this in its assumption
that the “ordinal” of the universe is frequently assumed to be measurable. For example, see
the introduction to [23].
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The idea here is the natural generalization of Definition 18 to iterable models. We
then obtain a similar result:

Theorem 25. Suppose: S and T are theories extending ZFC ; for every x ∈ R, there is
an iterable model M of S with x ∈M ; S proves that there is an iterable model of T and
that for all x ∈ R, x# exists;45 and S is generic invariant under sufficiently closed set
forcing.46 Then S faithfully iterably interprets T.

The main change here from the proof of Theorem 20 is that we replace the first order
“proof theory” with the Martin–Solovay tree rather than the Lévy–Shoenfield tree and
we assume sufficiently many large cardinals exist to ensure the construction works.

Proof. We aim to define an interpretation s : itMod (S) → itMod (T ) that is a
surjection up to elementary equivalence. First we note that T has an iterable model.
This is because S proves that T has an iterable model and iterable models are correctly
calculate whether models they contain are iterable. Fix such a model, N. We want our
interpretation s to ensure that N ≡ s(M †) for some iterable model M † of S. Let N ∗

be a countable elementary submodel of N and let x ∈ R be a code for N ∗. Note that
by a copy and paste argument, it can be seen that N ∗ remains iterable.47 Then, by our
assumption, we may fix an iterable model M of S with x ∈M .

Working in M, we now define s. First observe that the statement that there is an
iterable model of T is Σ1

3. Let L̃ =
⋃
x∈R
L[x] as defined in M and now work in L̃. Then

using our assumption that every real has a sharp we may define a Martin–Solovay tree
T consisting of pairs of finite sequences from � and � such that for all y ∈ R,

y codes an iterable model of T ⇔ y ∈ p[T ]

⇔ ∃f : � → � 〈y,f〉 ∈ [T ],

where � is the supremum of the ordinals occurring in T .48 Note that since x ∈M
and M is iterable, M can correctly verify that x is a code for an iterable model of
T. This verification is also correctly executed in L̃M . Thus there is some g : � → �
in L̃M such that 〈x, g〉 ∈ [T ]. To complete our definition of s, it suffices to define a
particular branch through T . From such a branch, we can then extract a code and then
collapse it into an iterable model. We then note that a function h : � → � can be used
to pick a path through T by letting it decide what to do at points where the tree forks.
Such a function can be defined by consulting a definable � sequence of the continuum
pattern commencing at the greater of �+ and , where  is the least ordinal such that
M thinks that all -closed posets force S. We let the resultant model be s(M ) of T. Of
course, there is no reason to think that s(M ) ≡ N ; however, since M is invariant under
-closed set forcing, we may force to change the continuum pattern givingM [G ] where
the function h : � → � that yields 〈x, g〉 and thus N. Then since the obvious forcing is
�+ closed we see that [T ] = [T ]M [G ] and so t(M [G ]) ≡ N . This establishes that s is a
(possibly) partial surjection up to elementary equivalence.

45 It would perhaps be more elegant to just say that S proves that for every real x ∈ R there is
an iterable model N of T with x ∈ N . This implies that x# exists for all x ∈ R.

46 By this we mean that S proves there is some  such that if P is -closed, then �P S.
47 A nice explanation of copying constructions—among many other interesting things—can be

found at the top of page 14 in [19].
48 See pages 198–201 of [12] for a detailed description of this tree.
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Finally, to show that s is defined for all models of S, let M be an arbitrary iterable
model of S. By our assumption, we see that M believes that there is an iterable model
N of T. Thus M thinks that its version of p[T ] is non empty and so the model t(M )
defined from the continuum pattern in M is such that M thinks it is iterable. And since
M itself is iterable it is correct in its calculation of this Π1

2 fact about t(M ).

Once again, we are able to obtain an example where an apparently restrictive theory
is able to match a theory that could appear beyond its range.49

Proposition 26. Let S∗ be the theory ZFC plus the statement: ∃x ∈ R∃U, κ such
that U is a normal ultrafilter on κ and V is a κ+-closed generic extension of L[U, x],
abbreviated V = L[U, x,G ]. Then S∗ can be extended to some S that faithfully iterably
interpretsZFC plus there is an extendible cardinal, abbreviatedExt, if some Vα satisfies
Ext.

Proof. Let S be S∗ plus the statement that there is an iterable model of Ext. By
Theorem 25, it suffices to show that: (1) for all x ∈ R, there is an iterable model M of
S with x ∈M ; (2) S proves that for all x ∈ R, x# exists; and (3) S is invariant under
set generic forcing.

For (1), let y ∈ R, Vα satisfy Ext, κ < α be the least measurable cardinal and U
be a normal ultrafilter on κ. Then Lκ[U, y] is a model of ZFC plus the statement
that the universe is a (trivial) generic extension of L[x,U ] for some x ∈ R and
L-normal ultrafilter U by a poset which is vacuously κ+-closed. For (2) we note that S
entails that there is a measurable cardinal and thus that every real x ∈ R has a sharp.
Finally for (3), we note that the finite iteration of κ+-closed forcings give κ+-closed
forcings. Moreover, the result of such forcing ensures that κ remains measurable and
the universe.50

To bring home the point of this example, I need to argue the theory,V = L[U, x,G ],
should intuitively be regarded as restrictive. As above, there is a sense in which we
just can see the restrictiveness of this theory in that a model of V = L[U, x,G ] says
that the universe has been constructed from a mere three sets. Beyond this we also
observe that Ext very easily implies that there is more than one measurable cardinal.
On the other hand, V = L[U, x,G ] implies there is only one measurable cardinal.
Thus, V = L[U, x,G ] does not allow us to talk about normal ultrafilters on multiple
cardinals and so fits our template for identifying intuitive examples of restrictiveness.
Thus, even if we restrict our attention to models that are of a very good quality, faithful
interpretation is just too cheap.

In this section, we investigated some of the upper reaches of what lies beneath
elementary retraction. We’ve argued that for the purposes of analyzing the relative

49 The results above are similar to an example from Steel discussed on pages 226 and 227 in [14].
It is noted there that M2, the canonical inner model with two Woodin cardinals, can provide
an inner model interpretation of ZFC plus there is a supercompact cardinal despite the fact
that M2 thinks there are no supercompact cardinals. The inner models in this case can be
obtained, as above, by obtaining an iterable model and then stretching it. The argument
above then generalizes Maddy’s example to provide faithful iterable interpretation.

50 Note that if we only wanted iterable interpretation and not faithful iterable interpretation,
then we could let S∗ be V = L[U ] above, i.e., the theory extending ZFC with the statement
that there is a measurable cardinalκ and the universe is constructible from a normal ultrafilter
on κ.
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restrictiveness of theories, faithful interpretation—however strengthened—is too easy
to obtain to be of any significance. Even if we allow that our interpretations are
iterable, reasonable assumptions about background large cardinals ensure that what
very plausibly appear to be restrictive theories are able to match anything you can
throw at them. We are now ready to return to elementary-retraction.

§4. Forcing forcing into the picture. Having seen the difficulties involved with strong
faithful interpretations and the attempt to track isomorphisms, the results of Section
2.1 indicate that we should be taking elementary retraction as a serious candidate for
our analysis of restrictiveness. We shall soon see that this path is also fraught but by a
different difficulty. To see this, let us first put forward the obvious definition:

Definition 27. T is elementary restrictive with respect to S if:

• T is an elementary retract of S; but
• S is not an elementary retract of T.

Recalling our canonical example, we are looking for an analysis that confirms that
V = L is restrictive with respect to ZFC . Back at Theorem 4, we learned that V = L
is a retract ofV = L[c], from which it is easily seen that it is also an elementary-retract
of ZFC . We also saw that—in the other direction—V = L is not a retract of ZFC
and thus, by our provisional analysis, we were able to say that V = L was restrictive
with respect toZFC . Perhaps disappointingly, we then saw that this analysis could not
account for the closeness of theories related by generic extension, which provided our
impetus toward elementary-retractions. Given this, it seems reasonable to put forward
the following conjecture.

Conjecture 28. ZFC is not an elementary-retract of V = L.

As far as I know, this question is open. Indeed, I don’t think either of failures
of identity-retraction from Proposition 6 have been shown to fail for elementary-
retractions. To the best of my knowledge there are only two proofs of a failure of
elementary retraction in the literature. The first occurs in [3], where it is shown that
a weak version of ZFfin is not an elementary retract of PA.51 The second occurs in
[25], where it is shown that Robinson arithmetic, Q, is not an elementary retract of any
sequential theory.52 My present level of understanding suggests that neither of these
proofs can be generalized to deal with the conjecture above. The following seems like
the obvious problem in this area to begin work upon:

Problem 29. Is ZFC\{Inf} an elementary-retract of ZFCfin?53

If things were working according to plan, the answer would be negative. To stack the
deck a little suppose there was some very large cardinal κ and some worldly cardinal

51 By a weak form of ZFfin we mean a different theory to that described before Proposition 6.
In particular, we mean our version of ZFfin but with set-induction replaced by the axiom
of foundation. With set induction instead of foundation, the theories are definitionally
equivalent.

52 A theory is sequential if it interprets adjunctive set theory which consists of two axioms:
there is an empty set (∃x∀y y /∈ x), and for any two sets x and y, y can be adjoined to x
(∃z∀u(u ∈ z ↔ u ∈ x ∨ u = y)).

53 Note this is distinct from Proposition 6(1) since there we just showed that ZFC\{Inf} is
not an identity retract of ZFCfin .
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 above it such that V still recognizes that κ has this large cardinal property. Then V
is a model of ZFC\{Inf} but it seems so very unlikely that there are interpretations
that would allow us to define a model of ZFfin in V from which a model elementary
equivalent to V could then be recovered. That said, some of the results of Section 3
also have a surprising feel and the ground here has barely been turned.

With this—rather human—limitation in mind, we shall now offer a different
approach that, more or less, builds generic extension into the story. This kind of
response has certain limitations in that, by its definition, it will be taking for granted
that the two ways of transforming models of set theory are via inner models and forcing.
While this is an adequate representation of actual practice there are no mathematical
results that show this assumption is correct and it is difficult to know what might lie
around the corner.54 Nonetheless and perhaps in accord with these remarks, there is
something a little odd about elementary retraction from a set theoretic point of view.
Obtaining identity up to elementary equivalence is equivalent to obtaining a model
with the same complete theory as the one we started with. Indeed it is not difficult to
see that we may reformulate elementary retraction as follows:

Proposition 30. T is an elementary retract of S if there are interpretations t, s
witnessing the mutual interpretability of T and S which are such that for all complete
theories Γ extending T

s† ◦ t†(Γ) = Γ,

where t†(Γ) = {ϕ | t(ϕ) ∈ Γ} and s† is defined similarly.

In this setting, we see that elementary retraction can be construed as an identity
retraction in the category of complete theories.55 This is quite pleasing; however, we
also see that the techniques of manipulating complete theories are more native to
model theory than set theory. As such, the use of elementary retractions could take us
too far afield from the techniques used by set theorists to compare theories extending
ZFC . Thus, regardless of the outcome for Problem 29, we would still face a choice
between: sentential equivalence, which is a purely interpretative relation; and what we
call generic equivalence, which leans more heavily on set theoretic techniques.

4.1. Generic retraction. We are now ready to put forward the ultimate analysis of
this paper. In essence, we are going to build generic extensions into the machinery of
relative interpretation by brute force. However, before I get to far into the exposition,
I’d like to stress that I think this proposal should be thought of as a kind of prototype
in this project. As we shall see, there will still be limitations and idiosyncrasies on the
road ahead. As such, I think future workers in this area should feel free to dismantle
and rebuild, much in the same way I have done with Maddy and Steel’s work above.

The main problem for dealing with generic extensions using interpretability is that
the outputs of mod-functors have domains that are subsets of their input domains:
they yield internal models. Forcing, on the other hand, does not give internal models.
This is a well-known problem that many would regard as open. But the reason for this

54 In particular, the approach I will offer does not accommodate class forcing or symmetric
extensions, although there are simple ways to generalize the proposal to accommodate them.

55 One category that works here has complete theories as objects and only identity arrows.
Without restricting the functors to being mod-functors determined by interpretations,
notions of retraction would be quite vacuous.
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is not that no plausible solution can be offered, but rather that there are too many
solutions on the table with little clear choice between them. With this in mind, we aim
to offer a simple approach that—while somewhat limited—aims to retain the pleasing
model theoretic intuitions afforded by inner models, by treating generic extensions
as genuine outer models. Moreover, we shall also demand that the models used are
transitive and thus of good quality by the lights of the set theoretic community.

Informally, a generic interpretation will take a countable transitive model M and
some M-generic G and then define an inner model of M [G ] that will be the output
model. In a nutshell, we first move out and then back in. Ideas similar to this have
some precedent in Steel:

The way we interpret set theories today is to think of them as theories
of inner models of generic extensions of models satisfying some large
cardinal hypothesis, and this method has had amazing success. We do
not seem to lose any meaning this way. It is natural then to build on this
approach. [22, p. 165]56

To implement this, we now define generic interpretation.

Definition 31. A generic interpretationi : L∈ → L∈ is given by a pair 〈Pi , ti〉 where Pi
is a term for a definable poset57 and ti is an interpretation from L∈ to L∈ expanded by
the Pi -names V̌ and Ġ58 which is such that for all ϕ ∈ L∈,

i(ϕ) = �Pi
ti(ϕ)

such that Pi forces59 that ti defines a transitive model; i.e.,

�Pi
{x | �ti (x)} is transitive.

With this in hand, we can then define what it means when one theory generically
interprets another. First a little notation: for a theory T in L∈, let ctm(T ) be the set of
countable transitive models of T. Let |=ctm be the consequence relation for countable
transitive models; thus, we write T |=ctm ϕ to mean that for allM ∈ ctm(T ),M |= ϕ.

Definition 32. Let T and S be theories extendingZFC . We say T generically interprets
S if there is a generic translation such that for all ϕ ∈ L∈,

60

S |=ctm ϕ ⇒ T |=ctm i(ϕ).

56 Or for a similar, older example with Tony Martin regarding inner model theory and core
models, “We believe that one day the theory will reach models for all the large cardinal
hypotheses used by set theorists. This will mean that all of the many models of ZFC they
have produced can be built by forcing from core models” [16, p. 2].

57 More specifically, Pi is defined by a formula of L∈, but is more convenient to represent this
with a term.

58 Recall, that V̌ is the class name {x̌ | x ∈ V } and Ġ is {〈p̌, p〉 | p ∈ Pi}. We make this
expansion for a technical reason in the demonstration that generic interpretation is a
transitive relation.

59 It should be noted that the forcing relation is not uniformly definable in any model. However,
we can define the forcing relation for Σn formulae for all n ∈ �. We use this sequence to define
the i translation. This means the translation will not be simply compositional as it is in a
standard relative interpretation.

60 Without loss of generality, we shall assume that Pi has a top element �Pi
.
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Informally, the idea is that we force outward using Pi and then use ti to define a
transitive internal model within the generic extension. We now make this formal by
defining a generic counterpart to the mod-functor for ordinary interpretations. For M
a countable transitive model and P a poset in M, let gen(M,P) be the set of M-generic
filters of P. Now suppose that T generically interprets S via i which is determined by
〈Pi , ti〉. We may then define a gen-functor that takes a countable transitive model M
of T and an M-generic G over Pi and then applies ti toM [G ] to obtain i∗(〈M,G〉).
More formally, i∗ :

∑
M∈ctm(T ) gen(M,Pi) → ctm(S) is such that for allM ∈ ctm(T )

and M-generic G over Pi ,

i∗(〈M,G〉) = ti(M [G ]).

The key difference from an ordinary interpretation is the inclusion of the generic
parameter. As with ordinary interpretations, we shall abuse notation and write i instead
of i∗. We now verify that the existence of a generic functor is indeed equivalent to there
being a generic interpretation.

Lemma 33. Let T and S be theories extending ZFC . Then following are equivalent
where i is determined by 〈Pi , ti〉:

(1) T generically interprets S via i; and
(2) i : ΣM∈ctm(T )gen(M,Pi) → ctm(S).

Proof. (1→2) Suppose M is a countable transitive model of T and G is Pi -generic
over M. By (1), we see that for all ϕ ∈ L∈,

M |= i(ϕ) ⇔M |= “ �Pi
ti(ϕ)”

⇒M [G ] |= ti(ϕ)

⇔ ti(M [G ]) |= ϕ ⇔ i(〈M,G〉) |= ϕ.

Then since by (1)M |= i(ϕ) for all ϕ ∈ S, we see i(〈M,G〉) |= S as required.
(2→1) Suppose T �|=ctm i(ϕ) and fix a countable transitive model M of T such

that M |= ¬i(ϕ). Thus, working in M we see that �Pi
ti(ϕ) and so we may fix some

p ∈ Pi such that p �Pi
ti(¬ϕ). Now let G be Pi -generic over M and such that p ∈

Pi . Then M [G ] |= ti(¬ϕ) and so ti(M [G ]) |= ¬ϕ and by (2) ti(M [G ]) |= S. Thus,
S �|=ctm ϕ.

This sets us up well, but we should still verify that generic interpretation is transitive;
i.e., if T generically interprets S and S generically interprets U, then we want it to be
the case that T generically interprets U. By the previous lemma if suffices to show that:

Lemma 34. Suppose that for theories T0, T1 and T2 extending ZFC there are gen-
functors such that

i0 :
∏

M∈ctm(T0)

gen(M,P0) → ctm(T1) and i1 :
∏

M∈ctm(T1)

gen(M,P1) → ctm(T2).

Then there exists a gen-functor j :
∏
M∈ctm(T0) gen(M,Pj) → ctm(T2).
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Proof. Let M be a countable transitive model of T. Then let G0 be P0-generic over
M and G1 be P1-generic overM [G0].61 Then by our assumptions we see that

t0(M [G0] |= T1 and t1(t0(M [G0])[G1]) |= T2.

We now define j. First we observe that M can define P0-name, Ṗ1, such that whenever
H is P0-generic over M and x ∈ t0(M [H ]),

x ∈ (Ṗ1)H ⇔ t0(M [H ]) |= x ∈ P1.

Thus, M may define Pj = P0 ∗ Ṗ1 and this will be the poset of our interpretation. We
then seen that G0 ∗G1 is an arbitrary P0 ∗ Ṗ1-generic over M. It will then suffice to
show that there is an interpretation tj that allows us to define

t1(t0(M [G0])[G1])

inM [G0 ∗G1] in a uniform manner using only M and G0 ∗G1 as parameters. Recall
that we have access to M and G0 ∗G1 since tj will be a translation into L0(V̌, Ġ).
We then note that G0 and G1 can be defined from G0 ∗G1. Thus we see that
M [G0] and t0(M [G0]) can be defined from M and G0. And then t0(M [G0])[G1] and
t1(t0(M [G0])[G1]) can be defined from t0(M [G0]) and G1, as required.

Thus, we see that generic interpretability is a transitive relation.62 Finally, we are in
a position to define the core notion for our analysis of restriction: generic retraction.

Definition 35. For theories T and S extending ZFC , let us say that T is a generic
retraction of S if T and S are mutually generically interpretable as witnessed by generic
interpretations i and j; i.e.,

i : ΣM∈ctm(T )gen(M,Pi) → ctm(S) and j : ΣM∈ctm(S)gen(M,Pj) → ctm(T ),

and for all M ∈ ctm(T ) there exists a Pi -generic Gi over M and a Pj-generic Gj over
ti(M [Gi ]) such that

M = tj(ti(M [Gi ])[Gj ]).

We say that T and S are generically equivalent if i and j witness that they are generic
retractions of each other.

Informally, the idea here is that we start from a model M of T and then generically
extend and take an inner model of S using i; and then we use j to take a generic
extension and obtain an inner model of T which ends up being identical to M. Here is
an example of generic retraction. Recall that these theories are sententially equivalent
and so V = L[c] is an elementary retraction of V = L.

Proposition 36. V = L[c] is a generic retraction of V = L.

Proof. Let i : ΣM∈ctm(V=L[c])gen(M,Pi) → ctm(V = L) be determined from a
trivial Pi and ti which relativizes all quantifiers to L. Let j : ΣM∈ctm(V=L)gen(M,Pj) →

61 Note that by Pi0 we mean the poset of i0 as defined in M, and Pi1 we mean the poset from i1
as defined inM [G0].

62 It should be noted that in the proof above transitive is not verified by strictly composing
the interpretations as we do with ordinary interpretability. This is because there may be
P1-generics H over t0(M [G0]) that are not generic overM [G1]. Thus such and H could not
play the role of G1 in G0 ∗ G1 in the proof above.
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ctm(V = L[c]) be determined by letting Pj be 〈2<�,⊇〉 and ti be trivial. Then if we
take a countable transitive model M of V = L[c], we see that M = Lα[G ] for some
α < �1 and Cohen real G. We then see that i(〈M,H 〉) = Lα where H is some trivial
Lα-generic. Now we observe that G is Pj generic over i(〈M,H 〉) and so

j(〈i(〈M,H 〉), G) = Lα[G ] =M.

This is what we expected; however, we can also do something with generic retraction
that we could not with sentential retraction by showing an example where it fails. Let
V = L(R) be ZFC extended by the statement that the universe is constructed from
the reals.

Proposition 37. V = L(R) is a generic retraction of ZFC but ZFC is not a generic
retraction of V = L(R), if there is a transitive model of ZFC that thinks it has a proper
class of measurable cardinals.

Proof. To see that V = L(R) is a generic retraction of ZFC , we just observe that
V = L(R) is an identity retraction of ZFC . To see that ZFC is not a generic retract
of V = L(R), suppose toward a contradiction that it is and fix generic interpretations
witnessing this. Let M be a countable transitive model that thinks it has a proper class of
measurable cardinals. Then for any Pj-generic Gj over M we see that N = tj(M [Gj ])
is a model of V = L(R), so we may assume without loss of generality that tj restricts
quantification to L(X ) for some X ⊆ R that is definable in M [Gj ]; thus we have
N = L(X )M [Gj ]. Since M thinks it contains a proper class of measurable cardinals,
so doesM [Gj ]. Let κ be the least of these and fix U ∈M such that M thinks U is a
normal ultrafilter on κ.

It will suffice to show that U /∈ N [H ] for any N-generic H, since then we have
U ∈M but U /∈ N [Gi ] ⊇ ti(tj(M [Gj ])[Gi ]). To see this suppose not and fix H that
witnesses this. We then see that

U ∗ = {Z ⊆ P(κ) ∩N | ∃Y ∈ U Y ⊆ Z} ∈ N [H ]

is a normalN [H ]-ultrafilter. Thus,N [H ] thinks X # exists. But this is impossible since
X forms the reals of N and N is a model of V = L(R).

These results give us a basic theory of generic interpretation and demonstrate some
alignment with our intuitions on these matters. This prompts the penultimate analysis
of restrictiveness for this paper.

Definition 38. We then say that T is generically restrictive with respect to S if:

• T is a generic retraction of S; and
• S is a not generic retraction of T.

Informally speaking, this tells us that while S can deposit its models with T and get
exactly the same model back, there is no uniform means for S to do the same for T : at
least one of the models will come back different.

4.2. Comparing theories that are not mutually interpretable. Up until now we’ve
restricted our analysis of restrictiveness to comparisons between theories that are—in
some sense—mutually interpretable. This has allowed us to focus our attention on
what I believe is the core problem, but it has come at a cost. Among other things, it
means that we are unable to directly address the canonical example comparing V = L
withMC . Fortunately, it’s relatively straightforward to address this.
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Definition 39. Let us say that S is generally restrictive if S generically interprets T, but
T cannot be extended to some T ∗ ⊇ T such that S is a generic retraction of T ∗.

The reader will observe that this is a kind of matching condition, which we know
from Section 3.2 is unhelpful for various versions of faithful interpretation. However,
the increased uniformity in the definition of retraction makes the method feasible. We
also see by Proposition 5(2) that in situations where T and S are mutually generically
interpretable, general restrictiveness essentially reduces to generic restrictiveness.63

To see how this works, let’s consider a couple of examples. First we consider a case
where we don’t expect restrictiveness. Consider the theories MC and EXT . We see
that EXT can interpretMC butMC cannot generically interpret EXT . However, we
don’t think that EXT is restrictive in comparison with MC . And according to the
definition offered here it is not, sinceEXT is an extension ofMC andEXT is clearly a
generic retraction of itself. So far so good. Now let us return to the canonical example:
a case where we expect restrictiveness. The following proposition suffices to verify that
V = L is generically restrictive with respect toMC .

Proposition 40. V = L cannot be extended to some T ∗ such that MC is a generic
retraction of T ∗.

Proof. Suppose not and fix T ∗ ⊇ V = L along with

i : ΣM∈ctm(T∗)gen(M,Pi) → ctm(MC ) and j : ΣM∈ctm(MC )gen(M,Pj) → ctm(T ∗)

witnessing this. It suffices to show that i and j cannot even witness mutual generic
interpretability. To see this fix a countable transitive M0 model of T ∗ and let N0 =
j(〈M0, G0〉) where G0 is Pj-generic over M0. We then note that since N0 thinks that
0# exists but M0 does not, M0 can see that N0 is wrong about what it thinks is 0#.
This entails thatOrdN0 < �M1 < Ord

M0 for otherwiseN0 would make this calculation
correctly. Let M1 = i(〈N0, H0〉) where H0 is N0-generic for its version of Pi . Then
clearly OrdM1 ≤ OrdN0 < OrdM0 . Repeating the back and forth process infinitely
then yields an infinite descending sequence

OrdM0 > OrdM1 > ···
of ordinals, which is impossible.

So as expected V = L is generally restrictive with respect to MC . That’s our
analysis of restrictiveness. We have a formal account of restrictiveness based on a
generalization of relative interpretability that is able to accommodate forcing. Moreover
once understood, the intuitive story about retraction generally makes it quite easy to
assess the relative restrictiveness of theory by mere inspection. I take it that this is
indicative that we are providing an analysis of a very natural mathematical relation
between theories.

However, perhaps the reader is disappointed that after all this work we’ve only
considered the canonical example as positive example of general restrictiveness between
theories that are not mutually generically interpretable. Fortunately, the technique of
the proof above generalizes very widely. Informally speaking, Proposition 40 observes
that two theories cannot mutually interpret each other with transitive unless the
respective interpretations both give models with the same ordinals. Otherwise we’d end

63 There is a slight discrepancy in that Proposition 5(2) only discusses finite extensions.
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up with an infinite descending chain of ordinals. We close the section by considering a
positive case of general restrictiveness emerging from Section 3.2. There we considered
cases where various generalizations of faithful interpretability failed to capture cases
of prima facie restrictiveness. General restrictiveness addresses these cases easily. We
concentrate on the strongest example of this from Section 3.2. Recall that in Proposition
25, we compared the theory EXT with V = L[U, x,G ], which states that the universe
is a set generic extension of L[U, x] where U is a normal ultrafilter and x ∈ R. We
observed thatV = L[U, x,G ] would naturally be regarded as restrictive since it implies
that U# does not exist. Nonetheless, we were able to show that this theory could be
extended to match EXT by providing it with an inner model interpretation.64 We
considered this to be a failure of the matching analysis. In contrast we can see that
V = L[U, x,G ] is in fact generally restrictive with respect to EXT .

Proposition 41. V = L[U, x,G ] is generally restrictive with respect to EXT
supposing that there is a transitive model of V = L[U, x,G ].

Proof. Clearly EXT generically interprets V = L[U, x,G ], but not conversely.
Thus, it will suffice to show that no T ∗ ⊇ V = L[U, x,G ] generically interprets
EXT . Suppose toward a contradiction that there is some generic interpretation
i : ΣM∈ctm(T∗)gen(M,Pi) → ctm(EXT ). Let M = Lα[W,y,H ] for α least such that
Lα[W,y,H ] |= ϕ where W is a normal ultrafilter according to Lα[W,y,H ], y ∈ R
and H is Lα[W,y,H ]-generic. Our trailing assumption in the statement of the
proposition ensures that a structure exists. Now let J be (Pi)M -generic over M. Then
i(〈M,J 〉) |= EXT . But this is impossible: there is no way of forcing and taking an
inner model from M to obtain a model with an extendible cardinal.65

4.3. Some limitations. In this final section, we consider a couple of applications of
the analysis above that highlight some limitations of the approach while also giving us a
clearer picture of the way theories are connected by generic retraction. Our first example
takes us out of the controlled laboratory conditions above and explores a classic
equiconsistency proof that exploits forcing while providing very natural interpretations

64 Moreover, the interpretation provided was faithful when used on iterable models.
65 It’s worth noting that theories like V = L[U, x,G ] can often still be extended to mutually

interpret theories with very large cardinals. For example, let V = L[x] be the theory
extending ZFC with the statement that every set is constructible from some real. Despite
appearances this theory can be extended to a theory that mutually generically interprets
MC . To see this let T be the extension of V = L[x] by the statement that there is some M
such that Ψ(M ) where Ψ(M ) says that M is a countable transitive model of ZFC\{P} that
thinks there is a measurable cardinal and which is such that L(M ) is a top extension of M.
To see thatMC inner model interprets T we supposeMC and define a generic interpretation
of T. Let κ be the least measurable cardinal and α be the least �-fixed point greater than
κ. Then Vα is a model of ZFC\{P} that thinks there is a measurable cardinal. Moreover
L(Vα) is clearly a top extension of Vα . Now let G be Col(�, {Vα})-generic. Then L(Vα)[G ]
is a generic interpretation that thinks Ψ(M ) holds. Moreover, it can be seen that there is
some x ∈ R ∩ L(Vα)[G ] from which G can be defined in L(Vα)[G ], and thus L(Vα)[G ]
also satisfies that V = L[x]. In the other direction, we suppose T and define a generic
interpretation of MC . First fix M of minimal rank such that Ψ(M ). Then L(M ) |=MC
but we have no definition of M. To address this work in M and let U be a normal ultrafilter.
ThenL[U ]L(M ) |=MC . Moreover,L[U ]L(M ) is definable since for anyM∗ of minimal rank
and M∗-normal ultrafilter U∗, we have L[U∗] = L[U ]. Nonetheless, MC is not a generic
retract of T.
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between the theories in question. As such, we might be tempted to think such theories
are not restrictive with respect to each other. We shall see that this is not the case on our
analysis and then argue that this is the result we should expect. Our second example
considers a more bizarre instance of restrictiveness between theories which does not
line up with the informal idea of restrictiveness employed with regard to set theory. We
then provide a simple means of patching the problem and discuss some implications
of this move for the project as a whole.

Example 1. Our first example is a classic equiconsistency that compares two
theories and makes essential use of forcing to do so. The interpretations used deploy
generic extension and inner models and are good candidates for being meaning
preserving in the sense that Steel employs [5, 22]. Let Inacc denote the theoryZFC plus
the statement that an inaccessible cardinal exists. Let ZF +DC + PSP be the theory
ZF plus dependent choice and the statement that every set of reals has the perfect set
property; i.e., every set of reals A is either countable or contains a perfect subset. In
other words, every uncountable set of reals contains a nonempty closed set with no
isolated points. We then recall the following theorem:

Theorem 42. (Specker) (1) ZF +DC + PSP interprets the Inacc via the translation

ϕ
l�−→ ϕL.

(2) (Solovay) Inacc interprets ZF +DC + PSP via the generic translation deter-
mined by collapsing the least inaccessible and then going to its version of L(R).66

This is a comparatively simple equiconsistency result. So how does our analysis
of restrictiveness stand up here? The interpretations used above seem very natural in
that they preserve features like the natural numbers and ordinals. As such, one might
be tempted to think of these theories as, in some sense, equivalent. Indeed, I think
something like this is a common intuition among some set theorists. However despite
this, under the interpretations described above, it’s quite clear that neither theory will
be a generic retraction of the other. In essence, this is because both interpretations rely
on clearly restrictive inner model interpretations: L and L(R). As such, it is possible
with sufficient large cardinal strength to have a model of either theory that—so to
speak—contains something too big to be crammed into the inner model in question.
Thus, according to our analysis these theories are generically restrictive with respect
to each other! This could seem disappointing; however, I think in this case such an
attitude is mistaken. Our analysis of restrictiveness is simply more fine-grained that the
intuition that ZF +DC + PSP and Inacc are, in some sense, equivalent. There will
be many contexts where one theory is as good as the other; however, it is also easy to
see that the interpretations used are restrictive and this is exactly what our analysis is
detecting.67

Despite this apparent limitation, we can also say a little more about this example.
While ZF +DC + PSP and Inacc are generically restrictive with respect to each
other, an inspection of the proof of Theorem 42 and the interpretations involved

66 Proofs of both of these can be found in [12] as Theorems 11.6 and 11.1.
67 Of course, a competitor analysis of restrictiveness could perhaps do better here and find a

different sweet spot. However, such an analysis should also be sufficiently simple that we can
identify the idea that motivates it. I don’t think it will suffice to merely patch the current
approach.
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reveals that—underneath the hood—we are really identifying a very close connection
between two different but nonetheless similar theories.

Theorem 43. Let PSPmin be the theory, ZFC plus the statements:

(1) V is the result of collapsing all the L-cardinals below �1;
(2) PSPL(R) and ¬(PSPL(R))L[G ] for any L-generic G collapsing any proper initial

segment of �1.

Then there are generic interpretations witnessing that PSPmin and V = L+ Inacc are
generic retractions of each other; i.e., they are generically equivalent.

The idea behind the theory PSPmin is to find a way of stating that the universe is
formed by collapsing L below �1 and ensuring that if we had collapsed less than this,
then the perfect set property would have failed. This allows us to go back and forth.

Proof. We use the interpretations described in Theorem 42. Let i : ΣM∈ctm(PSPmin)
gen(M,Pi) → ctm(V = L+ Inacc) be determined by a trivial poset and the inter-
pretation relativising all quantifiers to L. Let j : ΣM∈ctm(V=L+Inacc)gen(M,Pj) →
ctm(PSPmin) be determined by the poset Col(�,< κ) where κ is the least inaccessible
cardinal and the interpretation that restricts quantifies to L(R).

Let M be a countable transitive model ofPSPmin. Then i(〈M,G〉) = LM . Moreover,
M = LM [H ] where H is Col(�,< �M1 ) generic over LM . Note that this implies that
M satisfies V = L(R). Then it can be seen via Specker’s result that �M1 is inaccessible
in LM and that there are no LM -inaccessibles below �1. Thus H is LM -generic over
Col(�,< κ) where κ = �M1 is whatLM believes is the least inaccessible cardinal. Thus
j(LM,H ) =M as required. Let M be a countable transitive model of V = L+ Inacc
and let G be Col(�,< κ)-generic over M where κ is the least inaccessible cardinal of
M. It can then be seen that M [G ] satisfies V = L(R), so relativising the quantifiers
ofM [G ] to L(R) just gives usM [G ] again. In other words j(〈M,G〉) =M [G ]. Now
using i, we go to LM [G ] which is of course M as required.

Informally, this tells that although V = L+ Inacc and ZF +DC + PSP are not
generic retracts of each other there are slight modifications of those theories that are,
in fact, generically equivalent. I think the right way to look at this is to observe that the
classical result doesn’t reveal a particularly strong connection between these theories.
The obvious generic interpretations lead to some loss of information. Nonetheless,
those interpretations do reveal a very deep connection between the modified versions. I
submit this is evidence that generic retraction is a natural benchmark for the registering
of deep connection between strong set theories.

That all said, looking at the modified theories, a further worry might emerge. It is
easy to see that revised theories are themselves restrictive in relation to other theories.
For example, both of the theories discussed in Proposition 43 are restrictive with respect
to the theoryMC . In essence, this is because both theories describe universes that are
constructible from a particular set. So although the revised theories are no longer
restrictive with respect to each other, they are restrictive with respect to the standard
yardstick of interpretative power: the large cardinal hierarchy. However, there is a
further natural response to this kind of restrictiveness that emerges from inner model
theory: there is a hierarchy of inner models that accommodate larger large cardinals
and are thus able to transcend particular levels of restrictiveness. More specifically, an
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inspection of the proofs of Theorem 42 reveals that the following conditions on L were
sufficient for the proof of Theorem 43 to go through:

(1) The definition of L can be relativized to particular reals x ∈ R to obtain L[x].
(2) For all x ∈ R, L[x] is generic invariant (i.e., L[x]V = L[x]V [G ] whenever G is

set-generic over V).
(3) For all x ∈ R, L[x] |= CH .

This motivates the following definition.

Definition 44. Suppose S[x] is a class term for class model as defined by a formula
�S(y, x) of L∈ where x is some set. We say that S is a stable interpretation if S[x] is
generic invariant and CHS[x] holds for all x ∈ R.

Using this, we can generalize Proposition 43 substantially. First for stable
interpretations S, let PSPSmin be the theory that generalizes PSPmin to S; i.e., we extend
ZFC by the statements that: the universe is the collapse of all S-cardinals below �1;
PSPL(R) and for all S-generic G that collapse an initial segment of �1, (PSPL(R))S[G ]

does not hold. Now let KDJ be the Dodd–Jensen core model, L[U ] be the canonical
inner model of a cardinal that is measurable, and let Mn be the canonical model of
n-Woodin cardinals.68 Each of these class terms denotes a stable interpretation. For
stable interpretations, let us write V = S for the theory extending ZFC by saying
that every set is in S. Let us write ∀x x#∃ for the statement that every set’s # exists.
Let us write ∃MC for the statement that there is a measurable cardinal. And let us
write ∃nWC to mean that there are n many Woodin cardinals. With this we can then
obtain:

Proposition 45. (1) PSPK
DJ

min + ∀x x#∃ is generically equivalent with V = KDJ +
∀x x#∃.

(2) PSPL[U ]
min + ∃MC is generically equivalent with V = L[U ] + ∃MC .

(3) PSPMn
min + ∃nWC is generically equivalent with V = Mn + ∃nWC .

Thus we see that the close connection between these theories is preserved as we move
up the large cardinal hierarchy using canonical inner models. Note, however, that each
of these models also comes with an anti-large cardinal assumption, which will also be
restrictive in the sense described in this paper. For example if V = KDJ there are no
measurable cardinals, and if V = L[U ] there are no Woodin cardinals. Thus, we seem
to be limited to using obviously restrictive theories when we look for close connections
between theories generalising Proposition 43. The move that allows us to escape from
one level of restrictiveness seems to introduce a new level of restrictiveness. Woodin’s
work on the ultimate L program might be used to provide a response to this problem
[26]. The notion of a weak extender model for � is supercompact is intended to generalize
the canonical model L[U ] for a measurable cardinal to the case of a supercompact
cardinal. If such interpretations exist then the following theorem tells us that there is
an important sense in which they are compatible with just about any large cardinal
assumption.

68 For definitions of KDJ and L[U ] see Chapter 17 of [6], and for a definition of Mn see
Chapter 19 of the same book.
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Theorem 46. [26] Suppose that N is a weak extender model, for �, is supercompact and
� > � is a cardinal in N. Suppose that

j : VN�+1 → VN�+1

is a non-trivial elementary embedding such that � ≤ cp(j). Then j ∈ N .

For a contrast, observe that assuming 0# exists, there is a non-trivial elementary
embedding j : L�1 → L�1 ; however, j cannot be in L. This kind of restrictiveness is
avoided by weak extender models. For example, if there is a huge cardinal κ above a
supercompact cardinal �, then the theorem above implies that a weak extender model
N for � being supercompact will also satisfy that κ is huge cardinal.69 With this in mind
we can offer a generalization of Proposition 43 that essentially would not rule out any
large cardinal hypotheses. Suppose N is a class term for a stable interpretation that is
also a weak extender model for its least supercompact cardinal being supercompact.
Then V = N with the statement that there is a huge cardinal is generically equivalent
to PSPNmin plus there is a huge cardinal. Moreover, if such models exist then there
appears to be no limit to the large cardinal strength that can be added in the place of
the already aptly named huge cardinals.

Nonetheless, we should note that this response is still a kind of patch solution.
While we regain a means of ascending through the consistency strength hierarchy, we
are not really avoiding restrictiveness according to the analysis offered in this paper.
Just because the weak extender models (and other inner models) absorb large cardinal
strength from the ambient universe, this does not mean that we can use forcing to get
back to that ambient universe once we have gone inside. I think the right way to look at
this is to say that this is indeed a patch solution, albeit a very natural one. By adopting
it, we are taking seriously the idea that the only important structures are those that can
be obtained by forcing out from canonical inner models of large cardinal axioms. This
is a common idea in inner model theory and it provides a very clean way of organizing
extensions ofZFC . However, it is also clear that some models of the theories, which are
obtained by forcing from inner models, will be excluded by this perspective. The virtue
of our analysis of restrictiveness is that it isolates exactly which models are missing:
the information loss.70

Let’s close this discussion by reviewing the upshot of the example. We have taken
a prototypical example of an equiconsistency proof involving forcing and asked
whether and how it fits our proposed analysis of restrictiveness. We saw that while
the analysis is too fine-grained to capture an equivalence between these theories, an
inspection of the proof and the interpretations gave rise to modified theories that were
generically equivalent. We might think of these theories as providing a means to cut
away the loose information that could be lost in translation. Nonetheless, even these
modified interpretations were restrictive in relation to large cardinal assumptions, but
by generalizing the inner model interpretations used in that proof we were able to
regain the relationship with theories of stronger interpretability power.

69 This follows from Theorem 3.17 in [26]. A definition of huge cardinal can be found on page
331 in [12].

70 The more difficult question then is: how important are those lost models?
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Example 2. Our second example concerns a counterintuitive case where a version
of our analysis indicates restrictiveness. Like the former example, this will reveal more
about the limits of our analysis, although in this case we’ll offer a different kind of
patch. Rather than modifying the theories, we’ll provide a novel notion of retraction.
In particular, we shall see that our analysis says that the axiom of extensionality
is restrictive! We first explain how this works and then provide some commentary.
Despite the sense of oddity in this result, we shall see that this example yields some
useful methodological insights for the further pursuit of this kind of project. Let
ZFC\{Ext} be ZFC without the axiom of extensionality.

Proposition 47. (1) (essentially [21]) ZFC is an isomorphism-retraction of
ZFC\{Ext}.71

(2)ZFC\{Ext} is not an isomorphism retract ofZFC in the category of well-founded
models, if there is a transitive model of ZFC .

Note that we are not using generic retraction here. We do this for a simpler
presentation. I don’t believe the addition of generic extensions into the machinery
will block this; however, forcing without the axiom of extensionality will introduce
some non-trivial difficulties that will merely obscure our point.72

Proof. Let i : mod (ZFC ) → mod (ZFC\{Ext}) be the identity interpretation.
Let j : mod (ZFC\{Ext}) → mod (ZFC ) be defined through a short sequence of
definitions as follows. First let x ∼ y if x and y have the same elements. Let I (x)
hold if the members of x are closed under ∼; i.e., whenever y ∈ x and z ∼ y, we have
z ∈ x. Finally, let H (x) hold if x’s members are closed under ∼ and there is superset
y of x whose members z are subsets of y and such that the members of z are closed
under ∼.73 We then let the domain of the j interpretation be given by H (x) and we
interpret = as ∼ while preserving the ∈-relation.74 It can then be seen that whenever
M is a model ofZFC , j ◦ i(M) ∼= M. Thus we have an isomorphism retraction.75 To
see that ZFC\{Ext} is not a retract of ZFC . Suppose not and fix

s : mod (ZFC\{Ext}) ↔ mod (ZFC ) : t

witnessing this. Now let M be a countable transitive model ofZFC . Generate a model
N of ZFC\{Ext} from M be adding ℵ1 many new elements that have no N-elements,

71 Note that the formulation of ZFC used in [21] does not support this result; however, since
we have been using the axiom schema of collection rather than replacement the result does
go through.

72 See [7] for some development of ZFC\{Ext}.
73 More formally, H (x) iff I (x) and there is some y ⊇ x such that for all z ∈ x, z ⊆ y and
I (y).

74 Note this is a quotient interpretation in that its domain consists of equivalence classes of
the ground model. In contexts extending ZFC we have no need for quotients since the
equivalence classes can be replaced by the set elements from those classes that have least
rank. This cannot be done in the absence of extensionality, since there may be more than one
set of those elements.

75 Note that we don’t get j ◦ i(M) = M since the domain of j(N ) for any model of
ZFC\{Ext} consists of equivalence classes. j(i(M)) then consists of singleton classes from
the domain of M rather than the elements themselves. The isomorphism between M and
j ◦ i(M) is uniformly definable across all models M of ZFC .
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i.e., empty sets.76 Then since we have restricted our attention to well-founded models
it can be seen that s(N ) ∼=M but then there is no way that s(N ) can define N since
s(N ) is countable but N is not.77

Informally, a model of ZFC\{Ext} can have any number of different sets that have
the same members. If we transform this into a model in which extensionality holds,
then these different sets will be identified and there will be no way to recover their
distinction. This could appear counterintuitive. Assuming for the sake of argument
that there is something restrictive about extensionality, we are probably unlikely to
think that it is restrictive in the same way that V = L is. There is something to this
though it seems extremely unlikely that there could be some version of 0# for the
axiom of extensionality. However, I also think this is a little misleading. The analysis
of restrictiveness offered in this paper captures a very natural notion thereof. Moreover,
it is clear from the proof above that the axiom of extensionality fits this analysis very
well. If we were to blindly deploy our analysis as a tool for axiom selection, then this
result would be an obvious bug. I’d prefer to think of it as a feature. We are learning
that while our analysis can provide an intuitive understanding of restrictiveness, this
cannot be all that is at stake when we come to choose between different extensions of
ZFC .

Nonetheless as with the previous example, a plausible response can also be provided.
Recalling the interpretation hierarchy described in Definition 8, we saw how to obtain
coarser grained notions of equivalence by weakening the relationship that we demand
holds between the initial model and the model we obtain by interpreting forth and back.
In that spirit, we might wonder if there is a model-theoretic relation that can neutralize
the effect highlighted above. The following definition provides such a relation.78

Definition 48. Suppose M = 〈M,∈M〉 and N = 〈N,∈N 〉 are models of L∈. A relation
R ⊆M ×N is a bisimulation if:

(1) whenever x ∈M y and yRy∗ then there is some xRx∗ such that x∗ ∈N y
∗; and

(2) whenever x∗ ∈N y
∗ and yRy∗, then there is some xRx∗ such that x ∈M y.

Let us say that M and N are bisimulatable if there is a bisimulation R ⊆M ×N such
that the domain of R is M and the range of R is N.

A little loosely, if we have a bisimulation between two models, then we are saying
that for any element of one model there is a corresponding element of the other model
such that they both have the same transitive closure structure if we ignore the fact that
some pairs of sets can have the same members. This can also be made sense of in a
game theoretic context. We might imagine that player II claims that M and N are
bisimulatable while I claims they are not. I thus starts play with a challenge by putting
forward an element m0 of say, M, they hope to show has no counterpart in N . II

76 The easiest way to do this is to generate a model of ZFA with ℵ1 many atoms. See Lemma
15.47 in [11]. We then treat each of the atoms as alternative versions of the empty set.

77 There is also no way to recover N with a generic extension.
78 I think the first set-theoretic application of this occurs in [1]; however, we are putting it to

quite a different use here. We might also think of this as being a generalization of categorical
equivalence that works on directed graphs where the edge relation is not necessarily transitive.
This is relevant since similar issues can be observed in the relationship between set theory
and strong versions of category theory [17, 18].
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then responds by playing an element n0 of N that they hope to show is a counterpart.
I then challenges this by playing an M-element m1 of m0 and then II responds with
an N -element n1 of n0. Play then continues with player I winning just in case II gets
to a position where they can no longer move. It can then be seen that M and N are
bisimulatable just in case player II has a winning strategy in this game. This allows
us to form a new notion of retraction that is immune to the effects of extensionality
failure.

Definition 49. Let T, S be theories in L∈ and suppose t : mod (T ) ↔ mod (S) : s
witness that they are mutually interpretable. We say that T is a bisimulation-retract of
S if for all models M of T, s ◦ t(M) is bisimulatable with M. We say T is bisimulation
equivalent if t and s witness that T is a bisimulation retract of S and S is a bisimulation
retract of T.

With this notion of retraction, it can then be seen that ZFC is no longer restrictive
with respect to ZFC\{Ext}.

Proposition 50. ZFC\{Ext} is bisimulation equivalent to ZFC .

Thus, we see that there is a method of glossing away the counterintuitive result
described above. If we use a more generous notion of equivalence between models,
then the restrictive effect of extensionality seems to wash away. This seems like a good
thing; however, I think it also warrants a few remarks. The response we’ve offered above
might be challenged on the basis that it seems to put a finger on the scales. We obtained
a result we didn’t much like and then looked for the nearest instrument we could deploy
to ignore it. With that said, it probably sounds less like a good thing. However, rather
than attempt to decide this issue, I think it is a better to draw a methodological lesson.
Given two theories that we have reason to think share some plausible connection,
we should do whatever it takes to formally isolate that connection. This may mean
considering modifying the theories we compare—as in our first example, or developing
new positions in the interpretability hierarchy—as in the second example, or something
else entirely. When this method works, we inevitably learn two things. In one direction,
we learn more about the nature of the connection between the two theories. In the
other, these results yield valuable insights as to the boundaries upon interpretation as
a tool for theory comparison. I believe that pursuing this line of attack further provides
the right methodology for better understanding what we mean when we say a theory
is restrictive or that two theories are equivalent.

Concluding remarks. In this paper, I’ve offered a formal analysis of what it means
for one theory to be restrictive in relation to another. The account is based on the
algebraic notion of retraction in the category of theories. Informally speaking, a theory
T is restrictive with respect to S if there is a uniform means of depositing the models
of T among the models of S and recovering them, but there is no corresponding
means for models of S: information is lost. Moreover, the account offered in Section 4
provides a way of accommodating contemporary set-theoretic practice by putting
generic extension on an equal footing with inner model constructions. Evidence
pushing us in the direction of this approach was then provided in Section 3, where
we showed that some seemingly plausible weakenings of our approach did not live up
to the goals of their motivating stories. The analysis offered in this paper was then
tested on some simple examples that illuminated more about what can be expected
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from a retraction analysis of restrictiveness among theories. I think these results are
merely a beginning.
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