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FINITENESS OF ENTIRE FUNCTIONS SHARING

A FINITE SET

HIROTAKA FUJIMOTO

Abstract. For a finite set S = {a1, . . . , aq}, consider the polynomial PS(w) =

(w−a1)(w−a2) · · · (w−aq) and assume that P ′

S(w) has distinct k zeros. Sup-

pose that PS(w) is a uniqueness polynomial for entire functions, namely that,

for any nonconstant entire functions φ and ψ, the equality PS(φ) = cPS(ψ)

implies φ = ψ, where c is a nonzero constant which possibly depends on

φ and ψ. Then, under the condition q > k + 2, we prove that, for any

given nonconstant entire function g, there exist at most (2q−2)/(q − k − 2)

nonconstant entire functions f with f∗(S) = g∗(S), where f∗(S) denotes the

pull-back of S considered as a divisor. Moreover, we give some sufficient con-

ditions of uniqueness polynomials for entire functions.

§1. Introduction

A finite subset S of C is called a uniqueness range set for meromorphic

functions (or entire functions) if f ∗(S) = g∗(S) implies f = g for arbitrary

nonconstant meromorphic functions (or entire functions) f and g on C,

where f ∗(S) and g∗(S) denote the pull-backs of S considered as a divisor,

namely, the inverse images of S counted with multiplicities by f and g

respectively. For S := {a1, a2, . . . , aq}, we consider the polynomial

(1) PS(w) := (w − a1)(w − a2) · · · (w − aq).

We call a nonconstant monic polynomial P (w) a uniqueness polyno-

mial for meromorphic functions (or entire functions) if, for any nonconstant

meromorphic functions (or entire functions) φ and ψ on C, the equation

P (φ) = cP (ψ) implies φ = ψ, where c is a nonzero constant which possibly

depends on φ and ψ. Obviously, if S is a uniqueness range set for meromor-

phic functions (or entire functions), then PS(w) is a uniqueness polynomial

for meromorphic functions (or entire functions).
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Assume that P ′
S(w) has k distinct zeros e` with multiplicities q` (1 ≤

` ≤ k). In [1], the author gave some sufficient conditions for uniqueness

range set under the condition

(H) PS(e`) 6= PS(em) for 1 ≤ ` < m ≤ k.

Main results in [1] are stated as follows.

Theorem 1.1. Let S be a finite subset of C such that PS(w) is

a uniqueness polynomial for meromorphic functions (or entire functions)

which satisfies the above condition (H). Assume that k ≥ 3, or k = 2 and

min{q1, q2} ≥ 2. If q > 2k+6 (or q > 2k+2), then S is a uniqueness range

set for meromorphic functions (or entire functions).

We now introduce the following definition.

Definition 1.2. A finite subset S of C is called a finiteness range set

for entire functions if, for any given nonconstant entire function g, there

exist only finitely many nonconstant entire functions f such that f ∗(S) =

g∗(S).

The purpose of this paper is to give some sufficient conditions for a

finiteness range set for entire functions. The main result is stated as follows.

Theorem 1.3. Take a finite set S = {a1, a2, . . . , aq} and assume that,

for the polynomial PS(w) defined by (1), P ′
S(w) has distinct k zeros. If

PS(w) is a uniqueness polynomial for entire functions and q > k+2, then S

is a finiteness range set for entire functions. More precisely, for an arbitrar-

ily given nonconstant entire function g, there exist at most (2q−2)/(q−k−2)

entire functions f such that f ∗(S) = g∗(S).

The poof of Theorem 1.3 is given in the next section.

We give some sufficient conditions for uniqueness polynomials for entire

functions in the last section. For example, the polynomial

P (w) = w5 +
5

2
w4 +

5

3
w3 + c

(

c 6= 0,
1

6
,

1

12

)

is a uniqueness polynomial for entire functions (cf. Theorem 3.4) which

satisfies the condition q = 5 > k + 2 = 4, and so the set of zeros of P (w)

gives a finiteness range set for entire functions consisting of 5 values. In
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fact, P (w) has no multiple zero by the condition c 6= 0, 1/6, and P ′(w)

has two distinct zeros satisfying the conditions of Theorem 3.4. It is a very

interesting problem to ask if there are smaller finiteness range sets for entire

functions.

The author thanks Professor K. Yamanoi for many valuable comments

on this paper.

§2. Proof of Main Theorem

We first introduce some notations. By a divisor we mean a map ν :

C → Z such that the set {z; ν(z) 6= 0} has no accumulation point. The

counting function N(r, ν) of a divisor ν is defined by

N(r, ν) =

∫ r

0





∑

0<|z|≤t

ν(z)





dt

t
+ ν(0) log r,

and set N̄(r, ν) := N(r,min{ν, 1}).

In the following, a meromorphic function means a meromorphic function

defined on C. For a nonconstant meromorphic function f and another

meromorphic function (possibly, a constant) α, we define the divisor να
f by

να
f (z) :=

{

0 if f − α does not vanish at z
m if f − α has a zero of multiplicity m at z,

and ν∞f := ν0
1/f . As usual, by T (r, f) and m(r, f) we denote the order func-

tion and proximity function of f respectively, and S(r, f) means a function

of r satisfying the condition

S(r, f) = o(T (r, f)) ‖,

where the notation ‖ means that the inequality holds for every positive

number r excluding a measurable set E with
∫

E dr < +∞.

The main tool for the proof of Theorem 1.3 is the truncated second

main theorem for moving targets, which was proved by K. Yamanoi. A

particular case of his result [3, Theorem 1] is stated as follows.

Theorem 2.1. Let f be a nonconstant meromorphic function and let

α1, . . . , αq be mutually distinct meromorphic functions with f 6= αi (1 ≤ i ≤

q). Then, for every ε > 0, there exists a positive constant C(ε) such that

(q − 2 − ε)T (r, f) ≤

q
∑

i=1

N̄(r, ναi

f ) + C(ε)

(

q
∑

i=1

T (r, αi)

)

+O(1)
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for any positive number r excluding some set E ⊂ (1,+∞) with
∫

E d log log r < +∞.

We now give the following;

Definition 2.2. Let f be a nonconstant meromorphic function on C.

A meromorphic function α(6= f) is called a small function with respect to f

if T (r, α) = S(r, f).

As an immediate consequence of Theorem 2.1, we have the following.

Theorem 2.3. Let f be a nonconstant meromorphic function and let

α1, α2, . . . , αq be mutually distinct small functions with respect to f . Then,

for every ε > 0,

(q − 2 − ε)T (r, f) ≤

q
∑

j=1

N̄(r, ν
αj

f ) +O(1)

for any positive number r excluding some set E ⊂ (1,+∞) with
∫

E d log log r

< +∞.

Now, we start the proof of Theorem 1.3. Assume that, for some N with

N > (2q − 2)/(q − k − 2), there exists a nonconstant entire function g such

that f∗j (S) = g∗(S) for mutually distinct N nonconstant entire functions

fj (1 ≤ j ≤ N), where we set g = f1. As in §1, for S = {a1, . . . , aq}, we

consider the polynomial PS(w) defined by (1). By assumption, we can find

entire functions αj such that

(2) PS(g) = eαjPS(fj) (1 ≤ j ≤ N).

In this situation, we can show the following.

(2.4) There are some positive numbers K1,K2 such that

K1T (r, g) ≤ T (r, fj) ≤ K2T (r, g)‖.

In fact, by the second main theorem and f−1
j (S) = g−1(S),

(q − 1)T (r, g) ≤

q
∑

i=1

N̄(r, νai
g ) + S(r, g)

=

q
∑

i=1

N̄(r, νai

fj
) + S(r, g) ≤ qT (r, fj) + o(T (r, g))‖,
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whence T (r, g) = O(T (r, fj)) ‖ and, similarly, T (r, fj) = O(T (r, g)) ‖.

By (2.4), a small function with respect to g is also a small function with

respect to any fj.

We take the logarithmic derivatives of the identities (2) and get

(3)
P ′

S(g)g′

PS(g)
= α′

j +
P ′

S(fj)f
′
j

PS(fj)
.

Set ϕj := P ′
S(fj)f

′
j/PS(fj) and ϕ = ϕ1. Then, we have the following asser-

tion.

(2.5) There exist some positive numbers K1,K2 such that

K1T (r, g) ≤ T (r, ϕj) ≤ K2T (r, g)‖ (1 ≤ j ≤ N).

In fact, we get T (r, ϕj) = O(T (r, g))‖ by using the logarithmic deriva-

tive lemma. On the other hand, the second main theorem gives

(q − 1)T (r, g) ≤

q
∑

i=1

N̄(r, νai
g ) + S(r, g)(4)

≤ N(r, ν∞ϕj
) + S(r, g) ≤ T (r, ϕj) + S(r, g).

(2.6) Each function α′
j is a small function with respect to ϕ.

In fact, by the logarithmic derivative lemma, we have

m(r, ϕj) = S(r, PS(fj)) = S(r, fj) = S(r, ϕ),

and so the identity (3) gives

T (r, α′
j) = m(r, α′

j) ≤ m(r, ϕ) +m(r, ϕj) +O(1) = S(r, ϕ).

(2.7) The functions α′
j are mutually distinct.

To see this, we assume that α′
i = α′

j for some distinct i and j. Then,

there is a constant c0 with αi = αj + c0 and hence

ec0PS(fi) = eαi−αjPS(fi) = PS(fj).

This contradicts the assumption that PS(w) is a uniqueness polynomial for

entire functions.
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We now apply Theorem 2.3 to the function ϕ and small functions α′
j

with respect to ϕ to show that, for any ε with 0 < ε < N − 2,

(N − 2 − ε)T (r, ϕ) ≤

N
∑

j=1

N̄(r, ν
α′

j
ϕ ) +O(1)

for any positive number r excluding a set E ⊂ (1,+∞) with
∫

E d log log r <

+∞.

By (3) we have

N̄(r, ν
α′

j
ϕ ) = N̄(r, ν0

ϕj
) ≤ N̄(r, ν0

f ′

j
) +

k
∑

`=1

N̄(r, νe`

fj
),

where e1, e2, . . . , ek are all of distinct zeros of P ′
S(w). On the other hand, it

holds that N̄(r, νe`

fj
) ≤ T (r, fj) +O(1) and

N̄(r, ν0
f ′

j
) ≤ T (r, f ′j) +O(1) = m(r, f ′j) +O(1)

≤ m(r, fj) +m(r, f ′j/fj) +O(1) ≤ T (r, fj) + S(r, fj).

Therefore,

N
∑

i=1

N̄(r, ν
α′

i
ϕ ) ≤ (k + 1)

N
∑

j=1

(T (r, fj) + S(r, fj)) .

Since (q−1)T (r, fj) ≤ T (r, ϕ)+S(r, g) by the same reasoning as in deriving

(4), we have

(N − 2 − ε)(q − 1)T (r, fj) ≤ (N − 2 − ε)T (r, ϕ) + S(r, g)

≤

N
∑

i=1

N̄(r, ν
α′

i
ϕ ) + S̃(r, g)

≤ (k + 1)
N
∑

i=1

T (r, fi) + S̃(r, g),

where S̃(r, g) denotes a term satisfying the condition that S̃(r, g) = o(T (r, g))+

O(1) for any positive number r excluding a set E ⊂ (1,+∞) with
∫

E d log log r <

+∞. Summing up these inequalities, we obtain

(N − 2 − ε)(q − 1)
N
∑

j=1

T (r, fj) ≤ N(k + 1)
N
∑

j=1

T (r, fj) + S̃(r, g).
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Dividing each term of this inequality by
∑N

j=1 T (r, fj) and letting r → +∞

outside some measurable set E(⊂ (1,+∞) with
∫

E d log log r < +∞, we

obtain

(N − 2 − ε)(q − 1) ≤ N(k + 1).

Since we can take an arbitrarily small positive number ε, we can conclude

(N − 2)(q − 1) ≤ N(k + 1) and hence

N ≤
2q − 2

q − k − 2
.

This contradicts the assumption. The proof of Theorem 1.3 is completed.

§3. Uniqueness polynomials for entire functions

We first discuss uniqueness polynomials for meromorphic functions (or

entire functions) in a broad sense, which are defined as follows.

Definition 3.1. A nonconstant monic polynomial P (w) is called a

uniqueness polynomial for meromorphic functions (or entire functions) in a

broad sense if P (f) = P (g) implies f = g for two nonconstant meromorphic

functions (or entire functions) f and g.

In [2], the author gave some sufficient conditions of uniqueness polyno-

mials for meromorphic functions in a broad sense. Here, we study unique-

ness polynomials for entire functions in a broad sense.

Theorem 3.2. Let P (w) be a nonconstant monic polynomial without

multiple zeros such that P ′(w) has distinct k zeros e1, e2, . . . , ek with multi-

plicities q1, q2, . . . , qk, respectively, and suppose that P (w) satisfies the con-

dition (H). If k ≥ 2 and q := deg(P ) ≥ 4, then P (w) is a uniqueness

polynomial for entire functions in a broad sense.

Proof. Assume that there exist distinct entire functions f and g with

P (f) = P (g). Consider the polynomial Q(z, w) := (P (z) − P (w))/(z − w)

in z, w and the associated homogeneous polynomial

Q∗(u0, u1, u2) := uq−1
0 Q

(

u1

u0
,
u2

u0

)

in u0, u1, u2, where q = deg P . Define the algebraic curve

V : Q∗(u0, u1, u2) = 0
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in P 2(C). As was shown in [2], V is irreducible. Consider the holomorphic

map Φ := (1 : f : g) : C → P 2(C). Obviously, the image of Φ is included

in V and omits the set V ∩ {u0 = 0}. Let µ : Ṽ → V be the normalization

of V . Then, µ−1(V ∩ {u0 = 0}) consists of at least q− 1 points, because we

can write

V : (uq−1
1 + uq−2

1 u2 + · · · + uq−1
2 ) + u0R(u0, u1, u2) = 0

with a homogeneous polynomial R(u0, u1, u2) of degree q − 2 and the first

term is factorized into distinct q− 1 linear functions. Therefore, the associ-

ated map Φ̃ : C → Ṽ with Φ = µ · Φ̃ omits ≥ q − 1 points. Since q − 1 ≥ 3

by the assumption, the universal covering surface of Ṽ \ µ−1({u0 = 0}) is

biholomorphic to the unit disc in the complex plane. Therefore, the map

Φ̃, and so Φ, is a constant. This contradicts the assumption. The proof of

Theorem 3.2 is completed.

Now, we inquire into uniqueness polynomials.

In [1], the author gave the following sufficient condition of uniqueness

polynomials.

Theorem 3.3. Let P (w) be a monic polynomial without multiple zeros

such that P ′(w) = q
∏k

`=1(w − e`)
q` and assume that P (w) satisfies the

condition (H). If k ≥ 4 and

P (e1) + P (e2) + · · · + P (ek) 6= 0,

then P (w) is a uniqueness polynomial for meromorphic functions.

As was shown in [1], any polynomial P (w) with k = 1 is not a uniqueness

polynomials for entire functions. We now study uniqueness polynomials for

entire functions in the cases k = 2 and k = 3.

For the case k = 2, we have the following.

Theorem 3.4. Let P (w) be a monic polynomial without multiple zeros

such that P ′(w) = q(w − e1)
q1(w − e2)

q2 (e1 6= e2). If q ≥ 4 and P (e1) 6=

±P (e2), then P (w) is a uniqueness polynomial for entire functions.

For the case k = 3, we can prove the following.

https://doi.org/10.1017/S0027763000025769 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025769


FINITENESS OF ENTIRE FUNCTIONS SHARING A FINITE SET 119

Theorem 3.5. Let P (w) be a monic polynomial without multiple zero

such that P ′(w) has distinct three zeros e1, e2, e3 with multiplicities q1, q2, q3,

respectively, and suppose that P (w) satisfies the conditions (H). Here, we

choose indices so that q1 ≤ q2 ≤ q3. Then, P (w) is a uniqueness polynomial

for entire functions except the cases

(i) q1 = q2 = q3 = 1,

(ii) q1 = 1, q2 = q3 ≥ 2 and P (e2) + P (e3) = 0 and

(iii) q1 = q2 = q3 ≥ 2 and P (e1) + P (e2) + P (e3) = 0.

For the proof of Theorems 3.4 and 3.5, we show the following.

Lemma 3.6. Let P (w) be a monic polynomial without multiple zeros

such that P ′(w) = q
∏k

`=1(w − e`)
q`. Assume that P (w) satisfies the condi-

tion (H) and that there exist distinct nonconstant entire functions f, g such

that P (f) = cP (g) for a constant c 6= 0, 1. Set

Λ := {(`,m);P (e`) = cP (em)}.

Then,

(i) If (`0,m) 6∈ Λ for any m or if (m′, `0) 6∈ Λ for any m′, then q`0 = 1.

(ii) If (`,m) ∈ Λ, then q` = qm.

Proof. Changing indices and exchanging the roles of f and g if necesary,

we may assume that (1,m) 6∈ Λ (1 ≤ m ≤ k) for the proof of (i), and that

(1, 2) ∈ Λ and q2 ≤ q1 for the proof of (ii). Consider the polynomials

Q(w) := P (w) − P (e1), Q
∗(w) := cP (w) − P (e1)

and denote all distinct zeros of Q(w) and of Q∗(w) by α1, . . . , αM and

by β1, . . . , βN , respectively, where we may set α1 = e1 and, furthermore,

β1 = e2 if (1, 2) ∈ Λ. For convenience sake, we set q∗ := 0 if (1,m) 6∈ Λ for

any m(1 ≤ m ≤ k), and q∗ := q2 if (1, 2) ∈ Λ. As is easily seen, α1 is a

zero of Q(w) with multiplicity q1 +1, and the other αi’s are its simple zeros

because P (w) has no multiple zero and satisfis the condition (H). Similarly,

β1 is a zero of Q∗(w) with multiplicity q∗+1 and the other βj ’s are its simple

zeros. Therefore, M = q − q1, N = q − q∗. Now, we apply the second main

theorem to obtain

(N − 1)T (r, g) ≤
N
∑

j=1

N̄(r, ν
βj
g ) + S(r, g).
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On the other hand, if g(z0) = βj for some z0, then P (f(z0)) = cP (g(z0)) =

cP (βj) = P (e1) and so f(z0) = αi for some i. Therefore,

(5)
N
∑

j=1

N̄(r, ν
βj
g ) ≤

M
∑

i=1

N̄(r, ναi

f ) ≤MT (r, f) + S(r, g).

Since P (f) = cP (g) implies

qT (r, f) = T (r, P (f)) +O(1) = T (r, P (g)) +O(1) = qT (r, g) +O(1),

we can conclude

(N − 1)T (r, g) ≤MT (r, g) + S(r, g).

By dividing this inequality by T (r, g) and letting r → +∞ outside a set E

with
∫

E dr < +∞, we see N − 1 ≤M , namely, q − q∗ − 1 ≤ q − q1. For the

proof of (i), we recall q∗ = 0 and get q1 ≤ 1, which is the desired conclusion.

For the proof of (ii), we recall q∗ = q2. Then, we have (q2 ≤)q1 ≤ q2 +1.

Now, assume that q1 6= q2, whence q1 = q2 + 1. Here, for any point z0
with f(z0) = α1(= e1), we claim that ν0

g′(z0) ≥ 2. In this case, since

Q∗(g(z0)) = cP (g(z0))−P (e1) = cP (g(z0))−P (f(z0)) = 0, we have different

kinds of two cases (a) g(z0) = β1(= e2) and (b) g(z0) = βj for j ≥ 2. We

first consider the case (a). Observe the identity P ′(f)f ′ = cP ′(g)g′ obtained

from P (f) = cP (g). Comparing the order of zeros z0 of both sides, we obtain

(q1 + 1)νe1

f − 1 = (q2 + 1)νe2

g − 1 at z0. Since q2 < q1, we have νe1

f < νe2

g .

Then,

νe1

f = (q1 + 1)νe1

f − q1ν
e1

f = (q2 + 1)νe2

g − q1ν
e1

f = q1(ν
e2

g − νe1

f )

at z0. This implies νe2

g > νe1

f ≥ q1 > q2 ≥ 1 and so ν0
g′ ≥ 2 at z0. We next

consider the case (b). In this case, P ′(g(z0)) 6= 0, because Q∗(ej) 6= 0 for

j > 2 by the condition (H) and (1, 2) ∈ Λ. Therefore, ν0
g′ = (q1+1)νe1

f −1 ≥ 2

at z0. In any case, ν0
g′(z0) ≥ 2. This implies that min(να1

f , 1) ≤ (1/2)ν0
g′ at

z0. Therefore, we can replace the first inequality of (5) by

N
∑

j=1

N̄(r, ν
βj
g ) ≤

1

2
N(r, ν0

g′) +
M
∑

i=2

N̄(r, ναi

f ),

and we have

(N − 1)T (r, g) ≤

(

1

2
+ (M − 1)

)

T (r, f) + S(r, g),
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because N(r, ν0
g′) ≤ T (r, g) + S(r, g) = T (r, f) + S(r, g). This implies that

q − q2 ≤ q − q1 + 1/2 and so q1 ≤ q2 + 1/2, which is a contradiction. The

proof of the assertion (ii) is completed.

We now start the proofs of Theorems 3.4 and 3.5. By Theorem 3.2, the

given polynomial P (w) is a uniqueness polynomial for entire functions in a

broad sense. Assume that P (w) is not a uniqueness polynomial for entire

functions. Then, we can apply Lemma 3.6.

Proof of Theorem 3.4. By the assumption, we see max(q1, q2) ≥ 2, say

q2 ≥ 2. By Lemma 3.6, (i), there is some ` with (2, `) ∈ Λ. Then, we

have necessarily ` = 1 because c 6= 1, and hence q1 = q2 ≥ 2 by Lemma

3.6, (ii). We again apply Lemma 3.6, (i) to see (1, 2) ∈ Λ. Therefore, we

have P (e1)/P (e2) = P (e2)/P (e1) = c. This implies P (e1) = ±P (e2), which

contradicts the assumption.

Proof of Theorem 3.5. Consider the case where q1 = q2 = 1. We may

assume q3 ≥ 2, because otherwise we have the excluded case (i). Then,

by Lemma 3.6, (i), there exists some ` with (3, `) ∈ Λ, which contradicts

Lemma 3.6, (ii) because q3 6= qm for m = 1, 2. Next, consider the case where

q1 = 1 and q2 ≥ 2. Then, there are indices `,m such that (2, `), (3,m) ∈ Λ

by Lemma 3.6, (i). Here, we have necessarily ` = 3, m = 2 and q2 = q3
by Lemma 3.6, (ii). In this case, P (e2)/P (e3) = P (e3)/P (e2) = c, which

implies the excluded case (ii). Lastly, consider the case where q1 ≥ 2.

Then, by the assumption and Lemma 3.6, (i), there are indices `1, `2, `3
with (1, `1), (2, `2), (3, `3) ∈ Λ. In this case, (`1, `2, `3) is a permutation of

(1, 2, 3) such that `m 6= m for every m by the condition (H). We then have

q1 = q2 = q3 and

P (e1)

P (e`1)
=
P (e2)

P (e`2)
=

P (e3)

P (e`3)
= c(6= 1)

by Lemma 3.6, (ii). We easily have P (e1) + P (e2) + P (e3) = 0. The proof

of Theorem 3.5 is completed.
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