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DIFFUSION-SCALE TIGHTNESS OF INVARIANT
DISTRIBUTIONS OF A LARGE-SCALE
FLEXIBLE SERVICE SYSTEM
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Abstract

A large-scale service system with multiple customer classes and multiple server pools is
considered, with the mean service time depending both on the customer class and server
pool. The allowed activities (routeing choices) form a tree (in the graph with vertices
being both customer classes and server pools). We study the behavior of the system
under a leaf activity priority (LAP) policy, introduced by Stolyar and Yudovina (2012).
An asymptotic regime is considered, where the arrival rate of customers and number
of servers in each pool tend to ∞ in proportion to a scaling parameter r , while the
overall system load remains strictly subcritical. We prove tightness of diffusion-scaled
(centered at the equilibrium point and scaled down by r−1/2) invariant distributions. As a
consequence, we obtain a limit interchange result: the limit of diffusion-scaled invariant
distributions is equal to the invariant distribution of the limiting diffusion process.
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1. Introduction

Large-scale heterogeneous flexible service systems naturally arise as models of large call/
contact centers [1], [8], large computer farms (used in network cloud data centers), etc. More
specifically, in this paper we consider a service system with multiple customer and server types
(or classes), where the arrival rate of class-i customers is�i , the service rate of a class-i customer
by a type-j server is μij , and the server pool j size (the number of type-j servers) is Bj . It is
important that the service rate μij in general depends on both the customer type i and server
type j . Customers waiting for service are queued, and they cannot leave the system before their
service is complete. The system is ‘large scale’ in the sense that the input rates�i and pool sizes
Bj are large. More precisely, we will consider the ‘many-server’ asymptotic regime, in which
the arrival rates �i and pool sizes Bj scale up to ∞ in proportion to a scaling parameter r , i.e.
�i = λir and Bj = βj r , while the service rates μij remain constant. Furthermore, in this
paper we assume that the (appropriately defined) system capacity exceeds the (appropriately
defined) traffic load by O(r), i.e. the system is strictly subcritically loaded. (This is different
from the Halfin–Whitt many-server regime, in which the capacity exceeds the load byO(

√
r).)
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If, under a given control policy, the system is stable, i.e. roughly speaking, it has a stationary
distribution such that the queues are stochastically bounded, then the average number of
occupied servers in a stationary regime is, of course, O(r). A ‘good’ control policy would
keep the steady-state system state within O(

√
r) of its equilibrium point, which depends on

the system parameters and on the policy itself. More precisely, this means that the sequence
(in r) of the system stationary distributions, centered at the equilibrium point and scaled down
by r−1/2, is tight. We will refer to this property as the r1/2-scale, or diffusion-scale, tightness
(of invariant distributions).

Typically, it is easy to construct a policy to ensure the diffusion-scale tightness, if the system
parameters λi and μij are known in advance. (It is natural to assume that pool sizes are
available to any control policy.) In this case the equilibrium point can be computed in advance,
and then the appropriate fractions of each input flow routed to the appropriate server pools.
(See the discussion in [17].) It is much more challenging to establish this property for ‘blind’
policies, which do not ‘know’ parameters λi and μij . In fact, as shown in [17], under a very
natural largest-queue, freest-server load balancing (LQFSLB) algorithm (which is a special
case of the queue-and-idleness ratio (QIR) policy in [9]), the diffusion-scale tightness does
not hold in general. The LQFSLB algorithm assumes that the set of allowed ‘activities’ (ij)
(those with μij > 0) is known (while the actual μij values may not be) and forms a tree in the
graph with vertices being customer and server types—let us refer to this as the tree assumption;
otherwise, the LQFSLB algorithm is blind.

Another example of a blind policy (which also requires the tree assumption) is the leaf
activity priority (LAP) algorithm, introduced in [16]. (The LAP policy is formally defined
in Section 2, and its features and assumptions, including the tree assumption, are discussed
in Section 2.4.) It was shown in [16], that the LAP policy ensures r1/2+ε-scale tightness of
invariant distributions for any ε > 0.

1.1. Main result and contributions

In this paper we prove that, in fact, the diffusion-scale (i.e. r1/2-scale) tightness of invariant
distributions holds under the LAP algorithm. We use the weaker, r1/2+ε-scale tightness result
given in [16] as a starting point, and make an additional step to obtain the diffusion-scale
tightness from it. This additional step is nontrivial and is not a simple extension of the technique
in [16]. More specifically, to establish the r1/2+ε-scale tightness in [16], it suffices to work with
the process under several fluid scalings (‘standard’ fluid scaling for the many-server regime,
as well as hydrodynamic and local-fluid scalings). In this paper, to prove the diffusion-scale
tightness, we also need to work with the process under diffusion scaling. Informally speaking,
the major technical challenge here is in showing that the diffusion-scaled process is uniformly
close to the corresponding limiting diffusion process on time intervals of the length increasing
with r , namely, O(log r) long intervals.

The diffusion-scale tightness under the LAP policy in turn implies a limit interchange
property: the limit of (diffusion-scaled) invariant distributions is equal to the invariant
distribution of the limit (diffusion) process. Proving this limit interchange in a many-server
regime is very challenging, especially for general models with multiple customer and server
classes; this is due to the difficulty of establishing the diffusion-scale tightness.

Perhaps more important than establishing the tightness and limit interchange specifically
for the LAP policy, is the fact that our technique seems quite generic, and may apply to other
policies and/or other many-server models. Speaking very informally, combining the results
and proofs in [16] and this paper gives technical ‘blocks’ which allow one to establish the
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diffusion-scale tightness, providing the following two properties hold:

(a) global stability on the fluid-scale (r-scale), i.e. convergence of fluid-scaled trajectories
to the equilibrium point (plus an additional, related property);

(b) local stability of the linear system in the neighborhood of the equilibrium point, i.e. the
drift matrix of the limiting diffusion process has all eigenvalues with negative real parts.

Given properties (a) and (b), our approach is to show tightness in several steps, on the
increasingly fine scales: fluid (r), then r1/2+ε, then the diffusion (r1/2) scale. We will make
this discussion more specific in Section 5.

The distinctive feature of this approach, as opposed to most of the previous results on the
diffusion-scale tightness for many-server models (see [6], [7], and [17]) is that it does not rely
on a single common Lyapunov function. (Finding/constructing a common Lyapunov function
is usually a difficult task, especially for the models with multiple server pools, like the model
in this paper.) We remind the reader that in this paper we consider a system under strictly
subcritical load, and parts of our analysis do use this assumption.

1.2. Brief literature review

A general overview of many-server models, results, and applications to call centers can be
found in [1] and [8]. For control policies for general models, with multiple customer and server
types, including blind policies, see, e.g. [2], [9], [14], [15], [16], [17], [18], and the references
therein. Overviews of diffusion-scale tightness (and limit interchange) results for single-pool
models in the many-server Halfin–Whitt regime can be found in, e.g., in [5], [6], and [7]. The
diffusion-scale tightness for the LQFSLB policy, with the tree assumption and, additionally,
assuming that the service rate (if nonzero) depends only on the server type, was proved in [17].
The results in [6], [7], and [17] use a common Lyapunov function; however, [5] does not use
a Lyapunov function — it relies instead on a sample-path monotonicity/majorization property
for a single-pool system under the first-come–first-served discipline.

1.3. Layout of the rest of the paper

The model and the main result are given in Sections 2 and 3, respectively. Section 4 contains
the proofs. In Section 5 we discuss the results and technique.

2. The model

The model we consider is same as that in [16]. To improve the self-containment of this
paper, we repeat the necessary definitions in this section.

2.1. The model and the static planning problem

Consider the system in which there are I customer classes, labeled 1, 2, . . . , I , and J server
pools, labeled 1, 2, . . . , J . (Servers within pool j are referred to as class-j servers. Also,
throughout this paper, the terms ‘class’ and ‘type’ are used interchangeably.) The sets of
customer classes and server pools will be denoted by I and J, respectively. We will use the
indices i and i′ to refer to customer classes, and j and j ′ to refer to server pools.

We are interested in the scaling properties of the system as it grows large. Namely, we
consider a sequence of systems indexed by a scaling parameter r . As r grows, the arrival rates
and the sizes of the service pools, but not the speed of service, increase. Specifically, in the
rth system, customers of type i enter the system as a Poisson process of rate λir , while the j th
server pool has βj r individual servers. (All λi and βj are positive parameters.) Customers may
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be accepted for service immediately upon arrival, or enter a queue; there is a separate queue
for each customer type. Customers do not abandon the system. When a customer of type i is
accepted for service by a server in pool j , the service time is exponential of rateμij ; the service
rate depends both on the customer type and the server type, but not on the scaling parameter r .
If customers of type i cannot be served by servers of class j , the service rate is μij = 0.

Remark 2.1. Strictly speaking, the quantity βj r may not be an integer, so we should define
the number of servers in pool j as, say, �βj r�. However, the change is not substantial, and will
only unnecessarily complicate the notation.

Consider the following static planning problem (SPP):

min
λ◦
ij ,ρ

ρ, (2.1a)

subject to

λ◦
ij ≥ 0 for all i, j,

∑
j

λ◦
ij = λi for all i, and

∑
i

λ◦
ij

βjμij
≤ ρ for all j.

(2.1b)

Throughout this paper, we will suppose that the following two assumptions about the solution
to the SPP (2.1) hold.

Assumption 2.1. (Complete resource pooling.) The SPP (2.1) has a unique optimal solution
{λ◦
ij , i ∈ I, j ∈ J}, ρ. Define the basic activities to be the pairs, or edges, (ij), for which

λ◦
ij > 0. Let E be the set of basic activities. Furthermore, we assume that the unique optimal

solution is such that E forms a tree in the (undirected) graph with vertices set I ∪ J.

Assumption 2.2. (Strictly subcritical load.) The optimal solution to (2.1) has ρ < 1.

Remark 2.2. Assumption 2.1 is the complete resource pooling (CRP) condition, which holds
‘generically’ in a certain sense; see [15, Theorem 2.2]. Assumption 2.2 is essential for the main
result of the paper.

We assume that the basic activity tree is known in advance, and restrict our attention to the
basic activities only. Namely, we assume that a type-i customer service in pool j is allowed
only if (ij) ∈ E . (Equivalently, we can a priori assume that E is the set of all possible
activities, i.e. μij = 0 when (ij) 
∈ E , and E is a tree. In this case CRP requires that all feasible
activities are basic.) For a customer type i, let S(i) = {j : (ij) ∈ E}; for a server type j , let
C(j) = {i : (ij) ∈ E}.
2.2. The LAP policy

We analyze the performance of the following policy, which we call the LAP policy. The first
step in its definition is the assignment of priorities to customer classes and activities.

Consider the basic activity tree, and assign priorities to the edges as follows. First, we assign
priorities to customer classes by iterating the following procedure:

(1) pick a leaf of the tree;

(2) if it is a customer class (rather than a server class), assign to it the highest priority that
has not yet been assigned;

(3) remove the leaf from the tree.
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Without loss of generality, we assume that the customer classes are numbered in order of
priority (with 1 being highest). We now assign priorities to the edges of the basic activity tree
by iterating the following procedure:

(1) pick the highest-priority customer class;

(2) if this customer class is a leaf, pick the edge going out of it, assign to this edge the highest
priority that has not yet been assigned, and remove the edge together with the customer
class;

(3) if this customer class is not a leaf then pick any edge from it to a server class leaf (such
necessarily exists), assign to this edge the highest priority that has not yet been assigned,
and remove the edge.

It is not hard to verify that this algorithm will successfully assign priorities to all the edges;
it suffices to check that at any time the highest remaining priority customer class will have at
most one outgoing edge to a nonleaf server class.

Remark 2.3. This algorithm does not produce a unique assignment of priorities, neither for
the customer classes nor for the activities, because there may be multiple options for picking
a next leaf or edge to remove in the corresponding procedures. This is not a problem, because
our results hold for any such assignment. Different priority assignments may correspond to
different equilibrium points (defined below in Section 2.3); once we have picked a particular
priority assignment, there is a (unique) corresponding equilibrium point, and we will be showing
steady-state tightness around that point. Furthermore, the flexibility in assigning priorities may
be a useful feature in practice. For example, it is easy to specialize the above priority assignment
procedure so that the lowest priority is given to any a priori picked activity.

We will write (ij) < (i′j ′) to mean that activity (ij) has higher priority than activity (i′j ′).
It follows from the priority assignment algorithm that i < i′ (customer class i has higher priority
than i′) implies that (ij) < (i′j ′). In particular, if j = j ′, we have (ij) < (i′j) if and only if
i < i′. Without loss of generality, we will assume that the server classes are numbered so that
the lowest-priority activity is (IJ ).

Now we define the LAP policy itself. The policy consists of two parts: routeing and
scheduling. ‘Routeing’ determines the destination of an arriving customer if it sees available
servers of several different types. ‘Scheduling’ determines which waiting customer a server
picks if it sees customers of several different types waiting in the queue.

Routeing. An arriving customer of type i picks an unoccupied server in the pool j ∈ S(i) such
that (ij) ≤ (ij ′) for all j ′ ∈ S(i) with idle servers. If no server pools in S(i) have idle
servers, the customer queues.

Scheduling. A server of type j upon completing a service picks the customer from the queue
of type i ∈ C(j) such that i ≤ i′ for all i′ ∈ S(i) with Qi′ > 0. If no customer types in
C(j) have queues, the server remains idle.

We introduce the following notation (for the system with scaling parameter r): �rij (t), the
number of servers of type j serving customers of type i at time t ;Qr

i (t), the number of customers
of type i waiting for service at time t .

Given that the system operates under the LAP policy, the process ((�rij (t), (ij) ∈ E),(Qr
i (t),

i ∈ I)), t ≥ 0, is a Markov process with countable state space.
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There are some obvious relations between system variables, which hold for each process
realization: for example, for any j ∈ S(i) and any time t , either Qr

i (t) = 0 or
∑
i′ �

r
i′j (t) =

βj r; and so on.

2.3. LAP equilibrium point

Informally speaking, the equilibrium point ((ψ∗
ij , (ij) ∈ E), (q∗

i , i ∈ I)) is the desired
operating point for the (fluid-scaled) vector ((�rij /r, (ij) ∈ E), (Qr

i /r, i ∈ I)) of occupancies
and queue lengths under the LAP policy. The formal definition is given below.

Let us recursively define the quantities λij ≥ 0, which have the meaning of routeing rates,
scaled down by a factor 1/r . (These λij are not equal to the λ◦

ij which comprise the optimal
solution to the SPP (2.1).) For the activity (1j)with the highest priority, define either λ1j = λ1
andψ∗

1j = λ1/μ1j , orψ∗
1j = βj and λ1j = βjμ1j , according to whichever is smaller. Replace

λ1 by λ1 − λ1j and βj by βj −ψ∗
1j , and remove the edge (1j) from the tree. We now proceed

similarly with the remaining activities.
Formally, set

λij = min

(
λi −

∑
{j ′ : (ij ′)<(ij)}

λij ′ , μij

(
βj −

∑
i′<i

λi′j
μi′j

))
.

Since the definition is in terms of higher-priority activities, this defines the (λij , (ij) ∈ E)
uniquely. The LAP equilibrium point is defined to be the vector

((ψ∗
ij , (ij) ∈ E), (q∗

i , i ∈ I))

given by

ψ∗
ij = λij

μij
, q∗

i = 0 for all (ij) ∈ E , i ∈ I.

Clearly, by the above construction, we have

λi =
∑
j

λij =
∑
j

μijψ
∗
ij , i ∈ I,

∑
i

ψ∗
ij ≤ βj , j ∈ J.

To avoid trivial complications, throughout this paper we make the following assumption.

Assumption 2.3. If the (ψij , (ij) ∈ E) are such thatψij ≥ 0, λi = ∑
j μijψij , and

∑
i ψij ≤

βj for all j , then ψij > 0 for all (ij) ∈ E .

This assumption implies, in particular, that, for the equilibrium point, we must haveψ∗
ij > 0

for all (ij) ∈ E and, moreover,
∑
i ψ

∗
ij = βj for all j < J and

∑
i ψ

∗
iJ < βJ .

Assumption 2.3 means that the system needs to employ (on average) all the activities in E in
order to be able to handle the load. It holds, for example, whenever ρ is sufficiently close to 1.

Remark 2.4. Assumption 2.3 is technical. Our main result, the diffusion-scale tightness in
Theorem 3.1, can be proved without it by following the approach presented in this paper.
But, it simplifies the statements and proofs of many auxiliary results, and, thus, substantially
improves the exposition.
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2.4. Discussion of the LAP policy features and assumptions

The starting point in the definition of the LAP policy is a fixed set of allowed activities E ,
and the assumption that it forms a tree. How the tree E is determined is, in a sense, a secondary
question. For example, the structure of the system itself may be such that the set of all possible
activities is a tree E . If not, E can be computed as a set of basic activities of the SPP (2.1).
Solving the SPP (2.1), of course, requires knowledge of the parameters λi and μij . Note,
however, that, typically (in the sense specified in [15, Theorem 2.2]), a small perturbation in
the parameters λi and μij , while changing the SPP solution, will not change the set of basic
activities. Therefore, computing E by solving the SSP (2.1) does not require exact knowledge
of the system parameters, and, in many cases, approximate knowledge of the parameters may
well be enough to find the ‘correct’ set E .

A typical solution of the SPP (2.1) is such that the set of basic activities E forms a forest
(graph without cycles), not necessarily a tree (which is a connected forest); moreover, within
each tree component of the forest the CRP condition will hold. (Again, see [15, Theorem 2.2].)
In this case, the LAP algorithm can be applied to each of the tree components separately.

Finally, we emphasize that while the objective of the SPP (2.1) is load balancing, the LAP
algorithm does not try to balance the load of the server pools. (Hence, the values of λij
that define the equilibrium point in Section 2.3 are not equal to the values λ◦

ij solving (2.1).)
Instead of balancing the load, the LAP algorithm greedily tries to ‘pack’ customers into pools
according to activity priorities. As a result, the equilibrium point is such that some of the
pools are completely ‘packed’, while other pools (exactly one under the simplifying technical
assumption, Assumption 2.3) have a nonzero fraction of idle servers.

2.5. Basic notation

The vector (ξi, i ∈ I), where ξ can be any symbol, is often written as (ξi); similarly,
(ξj , j ∈ J) = (ξj ) and (ξij , (ij) ∈ E) = (ξij ). Furthermore, we often use the notation (ηij , ξi)
to mean ((ηij , (ij) ∈ E), (ξi, i ∈ I)), and similar notation as well. Unless specified otherwise,∑
i ξij = ∑

i∈C(j)ξij and
∑
j ξij = ∑

j∈S(i)ξij . For functions (or random processes) (ξ(t),
t ≥ 0), we often write ξ(·). (And similarly for functions with domains different from [0,∞).)
So, for example, (ξi(·)) signifies ((ξi(t), i ∈ I), t ≥ 0).

In the Euclidean space R
d (with appropriate dimension d), |x| denotes the standard Euclidean

norm of vector x; the symbol ‘→’ denotes ordinary convergence; we simply write 0 for a zero
vector. We always consider the Borel σ -algebra on R

d when it is viewed as a measurable
space. The symbol ‘

w−→’ denotes weak convergence of probability distributions. We use ‘w.p.1’
to mean ‘with probability 1’. We will consider a sequence of systems indexed by scaling
parameter r increasing to ∞, and will use the abbreviation ‘w.p.1-l.r’ as shorthand for ‘w.p.1
for all sufficiently large r’.

We denote by dist[ξ ] the distribution of a random element ξ , and by inv[ξ(·)] the stationary
distribution of a Markov process ξ(·) (it will be unique in all cases that we consider).

3. Main result

It was shown in [16, Theorem 10] that, if the system under the LAP policy is strictly
subcritically loaded, i.e. ρ < 1, then, for all large r, the Markov process (�rij (·),Qr

i (·)) is
positive recurrent, has unique stationary distribution inv[(�rij (·),Qr

i (·))] and, moreover, the
sequence of stationary distributions is tight on the scale r1/2+ε with any ε > 0. In this paper
we strengthen this result by showing that the invariant distributions are, in fact, tight on the
diffusion (r1/2) scale. This is, of course, the strongest possible tightness result for the system
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and the asymptotic regime in this paper. As a consequence, we obtain a limit interchange result:
the limit of diffusion-scaled invariant distributions is equal to the invariant distribution of the
limiting diffusion process.

Denote by Zrj (t) = ∑
i �

r
ij (t)− r

∑
i ψ

∗
ij the ‘idleness’ of pool j . Recall that, for each

j < J ,
∑
i ψ

∗
ij = βj and, therefore, Zrj (t) ≤ 0. Let L′ be the linear mapping (defined in [16,

Section 5.2]), which takes a vector (ξi) with real components into the vector (ηij ), uniquely
solving ∑

j

ηij = ξi for all i,
∑
i

ηij = 0, j < J. (3.1)

Theorem 3.1. Consider the sequence of systems under the LAP policy, in the scaling regime
and under the assumptions specified in Section 2, with ρ < 1. Then the sequence of diffusion-
scaled stationary distributions, inv[r−1/2(�rij (·)− ψ∗

ij r,Q
r
i (·))], is tight. Moreover,

inv[r−1/2(�rij (·)− ψ∗
ij r)] w−→ inv[(�̆ij (·))] as r → ∞, (3.2)

where (�̆ij (·)) is the diffusion process, defined by the stochastic differential equation

d(�̆ij (t)) = L′ d(
√
λiB

(a)
i (t))−L′ d

(∑
j

√
μijψ

∗
ijB

(s)
ij (t)

)
−L′

(∑
j

μij �̆ij (t)

)
dt, (3.3)

with all B(a)i (·) and B(s)ij (·) being independent standard Brownian motions. For any ν > 0,

inv[r−ν((Qr
i (·)), (Zrj (·), j < J ))] w−→ dist[0] as r → ∞, (3.4)

where dist[0] is the Dirac measure concentrated at the zero vector.

Remark 3.1. From (3.4) it follows that the distributions of all queue lengths, and of the
idlenesses in pools j 
= J , are tight on the scale rν for any ν > 0. As we will see, this fact
is an ‘ingredient’ of the proof of diffusion-scale tightness and (3.2). Also, it is not surprising,
and is a consequence of the priority discipline and (for the queues) of the strict subcriticality,
ρ < 1. As discussed in Section 2.4, the LAP policy tries to ‘pack’ server pools according to the
activity priority order. As a result, when the idleness in a pool j 
= J is nonzero then, roughly
speaking, the arrival rate into the pool exceeds the departure rate by a factor greater than 1;
similarly, the departure rate from any nonzero queue exceeds the arrival rate by a factor greater
than 1. Therefore, it is natural to expect that an even stronger property than (3.4) holds, namely
the sequence of unscaled stationary distributions inv[((Qr

i (·)), (Zrj (·), j < J ))] is tight. In
this paper we do not pursue the proof of this fact, because establishing diffusion-scale tightness
and (3.2) are our main goals.

4. Proof of Theorem 3.1

In the rest of the paper we will use the following additional notation for the system variables.
For a system with parameter r , let Xri (t) = ∑

j �
r
ij (t)+Qr

i (t) be the total number of type-i
customers in the system at time t ; let Ari (t) be the total number of type-i customer exogenous
arrivals into the system in the interval [0, t]; letDrij (t) be the total number of type-i customers
that completed the service in pool j (and departed the system) in the interval [0, t]; finally, we
will use the short notation F r(t) = (�rij (t)− ψ∗

ij r,Q
r
i (t)).
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We can, and do, assume that a random realization of the system with parameter r is
determined by its initial state and realizations of ‘driving’ unit-rate, mutually independent,
Poisson processes 
(a)i (·), i ∈ I, and 
(s)ij (·), (ij) ∈ E , as follows:

Ari (t) = 

(a)
i (λirt), Drij (t) = 


(s)
ij

(
μij

∫ t

0
�rij (u) du

)
;

the driving Poisson processes are common for all r . It is easy to see that, given the LAP
policy, with probability 1, the realizations of these driving processes (along with the initial
state) uniquely define the system process realization.

Finally, the diffusion-scaled variables are defined as

(�̂rij (t), Q̂
r
i (t)) = r−1/2(�rij (t)− ψ∗

ij r,Q
r
i (t)),

X̂ri (t) = r−1/2[Xri (t)−
∑
j

ψ∗
ij r], Ẑrj (t) = r−1/2Zrj (t).

Throughout this section, we will use the following strong approximation of Poisson
processes; see, e.g. [3, Chapters 1 and 2].

Proposition 4.1. A unit-rate Poisson process
(·) and a standard Brownian motionW(·) can
be constructed on a common probability space in such a way that the following holds for some
fixed positive constants C1, C2, C3: for all T > 1 and all u ≥ 0,

P

(
sup

0≤t≤T
|
(t)− t −W(t)| ≥ C1 log T + u

)
≤ C2e−C3u.

We will also need the following form of a functional strong law of large numbers for a
Poisson process. It is obtained using standard large deviation estimates, e.g. analogously to the
approach followed in the proof of [13, Lemma 4.3].

Proposition 4.2. For a unit-rate Poisson process 
(·), the following holds with probability 1.
For any ν ∈ (0, 1) and any c > 1, uniformly in t1, t2 ∈ [0, rc] such that t2 − t1 ≥ rν ,


(t2)−
(t1)

t2 − t1
→ 1 as r → ∞.

Throughout this paper, we will use Proposition 4.2 with arbitrary fixed c > 1: this ensures
that, for any fixed T > 0, the interval [0, T r log r] is contained within [0, rc] for all large r .
Proposition 4.2, in particular, immediately implies the following upper bound on the rate at
which system variables can change. There exists C > 0 such that, for any ν ∈ (0, 1) and any
α > 0, w.p.1-l.r, uniformly in t1, t2 ∈ [0, rc−1] such that t2 − t1 ≥ αrν/r ,

max
t∈[t1,t2]

|Qr
i (t)−Qr

i (t1)| < C(t2 − t1)r for all i, (4.1)

and similarly for �rij (·) for all (ij), Zrj (·) for all j , and F r(·). Indeed, in a system with
parameter r , the customer arrival and departure events occur, ‘at most’, as




([∑
i

λi +
(∑

j

βj

)
max
(ij)

μij

]
r

)
,

where 
(·) is a unit-rate Poisson process; therefore, the condition t2 − t1 ≥ αrν/r in the rth
system guarantees that the interval [t1, t2] corresponds to at least an O([t2 − t1]r) = O(rν)

long time interval for 
(·), and then Proposition 4.2 applies.
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Lemma 4.1. There exists T > 0 such that, for any ε ∈ (0, 1
2 ), the following holds. For any

δ > 0, there exists a sufficiently largeC7 > 0 such that, uniformly on all sufficiently large r and
all |F r(0)| ≤ g(r) = r1/2+ε, the probability of |F r(t)| ≤ C7r

1/2 occurring within [0, εT log r]
is at least 1 − δ.

Proof. The proof is by contradiction. If the lemma does not hold then there exists a function
g∗(r) such that g∗(r)/r1/2 ↑ ∞ and the probability of starting from |F r(0)| ≤ g(r) and not
hitting |F r(t)| ≤ g∗(r)within time εT log r does not vanish. We will prove that it has to vanish,
thus establishing a contradiction.

Define h(r) = |F r(0)|. We now specify the choice of T . We note that all the results in
Sections 5.2–5.3 of [16], concerning hydrodynamic and local-fluid limits, hold as is for any
function h(r) such that h(r)/r1/2 → ∞. (The condition h(r) ≥ r1/2+ε was used in [16]
only when the results of Sections 5.2–5.3 therein were applied.) Then, by Corollary 25 and
Condition (23) of [16], we can, and do, choose a sufficiently largeT > 0 such that the conditions

max
t∈[0,T ] |


(a)
i (λirt)− λirt | ≤ δ2h(r) for all i, (4.2)

and similarly for
(s)ij for all (ij), with sufficiently small fixed δ2 > 0, guarantee that condition
g(r) ≥ h(r) = |F r(0)| ≥ g∗(r) implies that |F r | decreases at least by a factor K > 1 in
[0, T ]. Let us see how the probability of (4.2) depends on h(r), or, more conveniently, on
h1(r) = h(r)/r1/2. (Note that h1(r) ↑ ∞ when h(r) ≥ g∗(r).)

Now we will use Proposition 4.1. In its statement let us replace 
 with 
(a)i , and t with
λirt , and T with λirT , and make u a function of r , say u = r1/4. Then, with probability at
least 1 − C2e−C3r

1/4
,

P

{
max
t∈[0,T ] |


(a)
i (λirt)− λirt | ≤ max

t∈[0,T ] |W(λirt)| + C1 log(λirT )+ r1/4
}

≥ 1 − C2e−C3r
1/4
,

where C1, C2, and C3 are universal constants (from the statement of Proposition 4.1). Next,
observe that (W(λirt)/h(r), t ≥ 0), where W(·) is a standard Brownian motion, is equal in
distribution to (

√
λiW(t)/h1(r), t ≥ 0). Therefore,

P

{
max
t∈[0,T ] |W(λirt)| ≤ 1

2δ2h(r)
}

≥ 1 − C4e−C5(h1(r))
2
,

where the positive constants C4 and C5 depend on δ2 and T (and the system parameters).
We conclude that the probability of (4.2) is lower bounded by

1 − C2e−C3r
1/4 − C4e−C5(h1(r))

2
.

Define

pi = P{|F r(t)| ≤ g∗(r) for some t ∈ [0, iT ] | |F r(0)| ≤ Kig∗(r)}, i = 0, 1, 2, . . . .

We can write, for any i ≥ 1,

pi ≥
[

1 − C2e−C3r
1/4 − C4 exp

{
−C5K

2i
(
g∗(r)
r1/2

)2}]
pi−1.
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We are interested in pk with k = ε log r , which is lower bounded as

pk ≥
k∏
i=1

[
1 − C2e−C3r

1/4 − C4 exp

{
−C5K

2i g∗(r)2

r

}]

≥ 1 −
k∑
i=1

[
C2e−C3r

1/4 + C4 exp

{
−C5K

2i g∗(r)2

r

}]
.

The sum vanishes as r → ∞, and so is 1 − pk .

The key part for the remainder of the proof of Theorem 3.1 is to show that, informally
speaking, if the process ‘hits’ the set {|F r | ≤ C7r

1/2} anywhere within [0, εT log r] then it
stays ‘on the r1/2-scale’ at time εT log r as well. To achieve this, we will exploit the closeness
of the diffusion-scaled process to the diffusion limit on a εT log r long interval (i.e. with length
increasing with r), when ε is small enough. This will be formalized in Lemma 4.3 below, but
to apply it we require an additional step, given by the following lemma.

Lemma 4.2. There exist T8 > 0 and C8 > 0 such that the following holds. For any fixed
C9 > 0, δ9 > 0, and ν9 ∈ (0, 1

2 ), uniformly on initial states |F r(0)| ≤ C9r
1/2, as r → ∞,

P

{
max

t∈[0,T8C9r−1/2]
|F r(t)| ≤ C8C9r

1/2
}

→ 1, (4.3)

P{there exists t ∈ [0, T8C9r
−1/2] : |(Qr

i (t))| + |(Zrj (t), j < J )| ≤ δ9r
ν9} → 1. (4.4)

We will use this lemma (and Lemma 4.4 below) with 0 < ν9 <
1
4 .

Proof of Lemma 4.2. Let us first discuss the basic intuition behind the result, which is
extremely simple, and will be useful not only for this proof, but also for some other proofs
in this paper. Within a fixed O(r−1/2) time, F r(t) can change at most by O(r1/2) (see
(4.1)) and, therefore, for all (ij), �rij (t)/[ψ∗

ij r] ≈ 1 holds. Now, consider the highest-
priority activity (1j). Suppose that customer class 1 is a leaf. Then there must exist at
least one other activity (ij), associated with the same pool j . The arrival rate of type-1
customers is λ1r = μ1jψ

∗
1j r , while the total service completion rate at pool j is at least

μ1j�
r
1j (t)+ μij�

r
ij (t) ≈ μ1jψ

∗
1j r+μijψ∗

ij r = λ1r + μijψ
∗
ij r . This means that, since a type-

1 customer has the highest priority at pool j , the queueQr
1(t), when nonzero, ‘drains’ at a rate

of at least O(r), ‘hits’ the rν9 -scale within O(r−1/2) time and ‘stays there’. Now suppose
that customer class 1 is not a leaf. Then pool j must be a leaf, i.e. it serves type-1 customers
exclusively, ψ∗

1j = βj , and there must be at least one other activity (1m), associated with
type-1 customers, implying that λ1 ≥ μ1jψ

∗
1j + μ1mψ

∗
1m > μ1jβj . The difference between

a type-1 arrival rate and the rate at which type-1 customers are served by pool j is at least
[λ1 −μ1jβj ]r = O(r). This means that the idleness |Zrj (t)|, when nonzero, decreases at a rate
of at least O(r), ‘hits’ rν-scale within O(r−1/2) time and ‘stays there’. We ‘remove’ activity
(1j) from the activity tree. The argument proceeds by considering all activities (ij) in sequence,
from the highest to lowest priority; at each step eitherQr

i (t) orZrj (t) is ‘eliminated’, depending
on i or j , respectively, being a leaf of the current activity tree. The exception is when j = J is
the pool serving the lowest-priority activity (IJ ): in this case ZrJ (t) is not eliminated. We now
proceed with a sketch of a formal argument; details can be easily ‘recovered’ by the reader.

The proof of (4.3) is an immediate consequence of (4.1). Indeed, for any T8 > 0, w.p.1-l.r,
the value of |F r(t)− F r(0)| with t ∈ [0, T8C9r

−1/2] is upper bounded by CT8C9r
1/2. So, for

any chosen T8, we can choose C8 > 1 + CT8.
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Property (4.3), in particular, means that, for any fixed T8 > 0, w.p.1, for any (ij) ∈ E ,
uniformly in t ∈ [0, T8C9r

−1/2], we have

�rij (t)

[ψ∗
ij r]

→ 1. (4.5)

To prove (4.4), we consider and ‘eliminate’ activities one by one, in the order of their
priority. The choice of T8 will be made later; for now, it is a fixed constant, and we consider
the process on the interval [0, T8C9r

−1/2]. We start with the highest-priority activity (1j).
Suppose first that customer class-1 is a leaf of the activity tree. (In this case, C(j) necessarily
contains at least one customer class in addition to 1.) Consider any 0 < C1 <

∑
i 
=1 μijψ

∗
ij .

Then, for any δ > 0, there exists a sufficiently small δ1 > 0, such that, w.p.1-l.r, uniformly in
t ∈ [0, T8C9r

−1/2], conditionQr
1(t) ≥ δrν9 implies thatQr

1(t+δ1r
ν9/r)−Qr

1(t) < −C1δ1r
ν9

(because all departures from pool j are replaced by class 1 customers from the queue), and,
for any Qr

1(t), we have (by (4.1)) maxτ∈[0,δ1r
ν9/r]Qr

1(t + τ) < Qr
1(t)+ Cδ1r

ν9 . This means
that, w.p.1.,

max
t∈[T ′,T8C9r−1/2]

Qr
1(t) ≤ (δ + Cδ1)r

ν9 ,

where T ′ = 2(1/C1)C9r
−1/2. Note that this holds for any δ and the corresponding δ1, both of

which can be chosen arbitrarily small. We conclude that, w.p.1.,

max
t∈[T ′,T8C9r−1/2]

Qr
1(t)

rν9
→ 0. (4.6)

This means, in particular, that in [T ′, T8C9r
−1/2] the number of exogenous class-1 arrivals

matches the number of class-1 customers entering service, up to o(rν9) quantities. Formally,
the following holds. Denote by �rij (t1, t2) the number of type-i customers that enter service
in pool j in the time interval (t1, t2]. For any fixed δ1 > 0, w.p.1, uniformly in t1, t2 ∈
[T ′, T8C9r

−1/2] such that t2 − t1 ≥ δ1r
ν9/r ,

�r1j (t1, t2)

[λ1r(t2 − t1)] → 1. (4.7)

Finally, note that, again by (4.1), w.p.1-l.r, at time T ′, |F r | is at most by a constant factor
(depending on C1) greater than C9r

1/2. Our conclusions about the (1j) activity can be
informally summarized as follows: within a time T ′ = 2(1/C1)C9r

−1/2, proportional to
C9r

−1/2, the value of Qr
1(t)/r

ν9 ‘drains to 0’ and ‘stays there’ (in the sense of (4.6)) until
the end of the interval [0, T8C9r

−1/2]; moreover, on the interval [T ′, T8C9r
−1/2], the rate at

which server pool j ‘takes’ type-1 customers is ‘equal’ (in the sense of (4.7)) to their arrival
rate λ1r . Therefore, from time T ′ on, we can ‘eliminate’ and ‘ignore’ activity (1j) in the sense
that we know that the rate at which pool j can take for service customers of types other than 1
is ‘at least’ [∑i 
=1 μijψ

∗
ij ]r . More precisely, if we denote by Sr(
=1),j (t1, t2) the number of

times on the interval (t1, t2] when a service completion by a server in pool j was not followed
(either immediately or after some idle period) by taking a type-1 customer for service, then the
following holds: for any fixed δ1 > 0, w.p.1, uniformly in t1, t2 ∈ [T ′, T8C9r

−1/2] such that
t2 − t1 ≥ δ1r

ν9/r ,
Sr(
=1),j (t1, t2)

[∑i 
=1 μijψ
∗
ij ]r(t2 − t1)

→ 1. (4.8)
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Moreover, |F r(T ′)| is at most by a constant factor greater than C9r
1/2, which is the upper

bound on |F r(0)|.
Now suppose that customer class 1 is not a leaf. Then necessarily poll j is a leaf and j < J .

In this case, by looking at the evolution of idleness Zrj (t), and using similar arguments, we can
show that, again, within a time proportional to C9r

−1/2, let us call it T ′′, the value of Zrj (t)/r
ν9

‘drains to 0’ and ‘stays there’ (in the sense analogous to (4.6)) until the end of the interval
[0, T8C9r

−1/2]; this in turn means that the rate at which type-1 customers will enter pool j
on the interval [T ′′, T8C9r

−1/2] will be ‘equal’ (in the sense analogous to (4.7)) to μ1jβj r .
And again, w.p.1-l.r, |F r(T ′′)| is at most by a constant factor greater than C9r

1/2. Therefore,
from time T ′′ on, we can ‘eliminate’ activity (1j) in the sense that we can ‘ignore’ pool j
and ‘assume’ that the arrival rate of type-1 customers in the rest of the system is ‘equal’ to
λ1r − μ1jβj r . (The latter is in the sense analogous to (4.8), but where we count the type-1
arrivals that were not taken for service on the corresponding interval (t1, t2].)

We can proceed to ‘eliminate’ the second highest-priority activity, and so on. The total
time for all scaled queues Qr

i (t)/r
ν9 and all idlenesses Zrj (t)/r

ν9 , j < J , to ‘drain to 0’ will
be proportional to C9r

−1/2, say T ′
8C9r

−1/2. We then choose T8 > T ′
8. We omit further details,

except to emphasize again that property (4.4) does not include ‘idleness’ ZrJ for the pool J
serving the lowest-priority activity (IJ ).

Lemma 4.3. Let T > 0 be fixed. For a sufficiently small ε > 0, the following holds. For any
fixedC11 > 0, δ9 > 0, and ν9 ∈ (0, 1

4 ), uniformly on initial states satisfying |F r(0)| ≤ C11r
1/2

and |(Qr
i (0))| + |(Zrj (0), j < J )| ≤ δ9r

ν9 ,

max
t∈[0,εT log r] |(�̂

r
ij (t))− (�̆rij (t))| �⇒ 0, (4.9)

where (�̆rij (·)) is a (strongly) unique strong solution of the stochastic integral equation (4.19)
(constructed on a common probability space with (�̂rij (·))), with the initial state (�̆rij (0)) =
(�̂rij (0)).

To prove this lemma we will need a series of auxiliary results.

Lemma 4.4. There exists C10 > 0 such that the following holds for any ε > 0, T > 0,
C11 > 0, δ9 > 0, and ν9 ∈ (0, 1

2 ). As r → ∞, uniformly on all the initial states such that
|F r(0)| ≤ C11r

1/2 and |(Qr
i (0))| + |(Zrj (0), j < J )| ≤ δ9r

ν9 , we have

P

{
max

t∈[0,T log r] |F
r(t)| ≤ r1/2+ε} → 1, (4.10)

P

{
max

t∈[0,T log r][|(Q
r
i (t))| + |(Zrj (t), j < J )|] ≤ C10δ9r

ν9
}

→ 1. (4.11)

Proof. The proof of property (4.10) is already contained in the proof of [16, Theorem 10(ii)].
Indeed, that proof considers the process on the interval [0, T log r] and shows that, starting
with |F r(0)| = o(r), w.p.1-l.r, |F r(t)| ‘hits’ the r1/2+ε-scale somewhere within [0, T log r],
and then ‘stays’ on this scale until the end of the interval. In our case, |F r(0)| is already on the
r1/2+ε-scale, and so the process, w.p.1-l.r, stays on it for the entire interval [0, T log r].

Given (4.10), to prove (4.11), we can ‘reuse’the proof of (4.4) of Lemma 4.2. In that proof we
showed that starting with |F r(0)| = O(r1/2), w.p.1-l.r, the quantity |(Qr

i (t))| + |(Zrj (t), j <
J )| ‘hits the rν9 -scale’ within an O(r−1/2) long time interval and ‘stays there’ until the end of
that time interval. (See (4.6).) In our case, the initial state is already such that |(Qr

i (0))| +
|(Zrj (0), j < J )| = O(rν9), and, therefore, this quantity stays O(rν9) on the entire interval.
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The fact that here we consider a much longer interval, namely,O(log r) as opposed toO(r−1/2),
is immaterial, because (4.10), and therefore (4.5), hold on the entire interval and r log r = o(rc)

(so we can use Proposition 4.2). We omit further details.

Proposition 4.3. There exists a set of independent standard Brownian motions, W(a)
i (·) and

W
(s)
ij (·), constructed on the same probability space as the set of Poisson processes 
(a)i (·) and



(s)
ij (·) such that the following holds. For any fixed T > 0, as r → ∞, for each i,

sup
0≤t≤T log r

r−1/4|
(a)i (rt)− rt −W
(a)
i (rt)| → 0 w.p.1,

and, for each (ij) ∈ E ,

sup
0≤t≤T log r

r−1/4|
(s)ij (rt)− rt −W
(s)
ij (rt)| → 0 w.p.1.

Proof. This follows from Proposition 4.1: in its statement we replace t with rt , T with
rT log r , and u with r1/8.

Proposition 4.4. Consider any sequence of standard Brownian motions, B1(·), B2(·), . . .,
defined on a common probability space. (They may be dependent.) Let T > 0, C12 > 0, and
ε ∈ (0, 1

4 ) be fixed. Then, w.p.1-l.r, conditions t1, t2 ∈ [0, T log r] and |t2 − t1| ≤ C12r
−1/2+ε

imply that |Br(t2)− Br(t1)| < r−1/8.

Proof. This proof follows from the basic properties of Brownian motion. Fix ε′ ∈ ( 1
8 ,

1
4 −

1
2ε). Then, for some fixed C13 > 0,

P

{
max

t∈[0,C12r−1/2+ε]
|Br(t)− Br(0)| ≥ r−ε′

}
≤ exp

{
−C13

[
r−ε′

r−1/4+ε/2

]2}
. (4.12)

This probability decays very fast with r . We divide the interval [0, T log r] into (a polynomial
in r number of) C12r

−1/2+ε long subintervals, and use the above probability estimate for each
of them; by the Borel–Cantelli lemma, w.p.1-l.r, the event (analogous to the event) in (4.12)
will not hold for any of the subintervals. The result follows.

Proof of Lemma 4.3. Suppose that, for each r , the initial state is fixed so that it satisfies
the conditions of the lemma. Suppose that the process, for any r , is driven by a common set
of Poisson processes, and associated Brownian motions constructed on the same probability
space, as specified in Proposition 4.3. It will suffice to show that, for any subsequence of r ,
there exists a further subsequence, along which the conclusion of the lemma holds. So, let us
fix an arbitrary subsequence of r . We fix any ν9 ∈ (0, 1

4 ) and choose a further subsequence
of r , with r increasing sufficiently fast, so, w.p.1-l.r, the events in (4.10) and (4.11) hold.

Let

Âri (t) = r−1/2[
(a)i (λirt)− λirt], Ŵ
(a),r
i (t) = r−1/2W

(a)
i (λirt),

D̂rij (t) = r−1/2[
(s)ij (μijψ∗
ij rt)− μijψ

∗
ij rt], Ŵ

(s),r
ij (t) = r−1/2W

(s)
ij (μijψ

∗
ij rt).

Note that, for any r , the law of ((Ŵ (a),r
i (·)), (Ŵ (s),r

ij (·))) is equal to that of ((
√
λiB

(a)
i (·)),

(
√
μijψ

∗
ijB

(s)
ij (·))), where all B(a)i (·) and B(s)ij (·) are independent standard Brownian motions.
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Using a standard sample path representation (see, e.g. [12]), we can write, for each i, and
all t ≥ 0,

Xri (t) = Xri (0)+ Ari (t)−
∑
j

Drij

(
μij

∫ t

0
�rij (s) ds

)
. (4.13)

Switching, again in a standard way, to diffusion-scaled variables and to a (I -dimensional) vector
form, we rewrite (4.13) as

(X̂ri (t)) = (X̂ri (0))+ (Âri (t))−
(∑

j

D̂rij

(
(ψ∗

ij rt)
−1

[∫ t

0
�rij (s) ds

]
t

))

−
(∑

j

∫ t

0
μij �̂

r
ij (s) ds

)
. (4.14)

Suppose that ε ∈ (0, 1
4 ) (so that we can apply Proposition 4.4 later). We will make the

choice of ε more specific below.
We claim that, w.p.1-l.r, the following properties hold uniformly for t ∈ [0, T log r]:

|Âri (t)− Ŵ
(a),r
i (t)| < r−1/4 for all i, |D̂rij (t)− Ŵ

(s),r
ij (t)| < r−1/4 for all (ij),

(4.15)∣∣∣∣(ψ∗
ij rt)

−1
[∫ t

0
�rij (s) ds

]
t − t

∣∣∣∣ ≤ r−1/2+εεT log r < r−1/2+ε′ for all (ij), (4.16)

|L′(X̂ri (t))− (�̂rij (t))| < r−1/4. (4.17)

Here ε′ is a fixed number within (ε, 1
4 ) and the linear mapping L′ is defined by (3.1). (L′ was

defined in [16, Section 5.2]. It maps a vector of centered customer quantities onto the vector of
centered occupancies, assuming all queues and idlenesses in pools j < J are zero.) Indeed, the
properties in (4.15) follow from Proposition 4.3; property (4.16) follows from (4.10); property
(4.17) follows from (4.11) and the definition of the operator L′.

Using properties (4.15)–(4.17), the sample path relation (4.14) implies the following relation
(written in vector form, with components indexed by (ij)), which holds, w.p.1-l.r, uniformly
for t ∈ [0, T log r]:

(�̂rij (t)) = (�̂rij (0))+ L′(Ŵ (a),r
i (t))− L′

(∑
j

Ŵ
(s),r
ij (t)

)
− L′

(∑
j

∫ t

0
μij �̂

r
ij (s) ds

)

+ (�ri (t)). (4.18)

Here |(�ri (t))|<r−1/9. (Instead of 1
9 we could use any fixed number in (0, 1

8 ).) Indeed, in (4.14)
we can replace Âri and D̂rij with Ŵ (a),r

i and Ŵ (s),r
ij , respectively, which introduces an o(r1/4)

error by (4.15); then, we apply the operatorL′ to both sides and replaceL′(X̂ri )with (�̂rij ), which
introduces an o(r1/4) error by (4.17); finally, we replace time (ψ∗

ij rt)
−1[∫ t0 �rij (s) ds]t with t

in the argument of Ŵ (s),r
ij , which introduces an O(r1/8) error by (4.16) and Proposition 4.4.

For each r and each initial condition (�̂rij (0)), in addition to (4.18) consider the
(strongly) unique strong solution (see Theorems 5.2.9 and 5.2.5 of [10]) (�̆rij (·))of the stochastic
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integral equation

(�̆rij (t)) = (�̆rij (0))+ L′(Ŵ (a),r
i (t))− L′

(∑
j

Ŵ
(s),r
ij (t)

)

− L′
(∑

j

∫ t

0
μij �̆

r
ij (s) ds

)
, (4.19)

driven by the same set of Brownian motions (Ŵ (a),r
i (·), Ŵ (s),r

ij (·)) and with the same initial
condition (�̆rij (0)) = (�̂rij (0)). Thus, solutions to both (4.18) and (4.19) for all r are constructed
on the same probability space associated with the underlying set of independent Brownian
motions (and the corresponding Poisson processes coupled with them). It follows that, w.p.1-l.r,
we have, for t ∈ [0, T log r],

|(�̂rij (t))− (�̆rij (t))| ≤ |(�ri (t))| +
∫ t

0
C′|(�̂rij (s))− (�̆rij (s))| ds,

with some constant C′ > 0. By the Gronwall inequality (see, e.g. Theorem 5.1 in Appendix 5
of [4]), for t ∈ [0, εT log r],

|(�̂rij (t))− (�̆rij (t))| ≤ r−1/9eC
′εT log r = r−1/9+εC′T .

Now we specify the choice of ε: it is such that both − 1
8 + εC′T < 0 and (for the reasons given

earlier) ε < 1
4 hold. In other words, 0 < ε < min{ 1

4 , 1/(9C′T )}.
Recall that for any r the law of the multidimensional Brownian motion (Ŵ (a),r

i (·), Ŵ (s),r
ij (·)),

driving (4.19), is same as that of (
√
λiB

(a)
i (·),

√
μijψ

∗
ijB

(s)
ij (·)), where all B(a)i (·)| and B(s)ij (·)

are independent standard Brownian motions. Therefore, for any r , the law of the solution
to (4.19) is equal to that of the solution to the stochastic differential equation

d(�̆ij (t)) = L′d(
√
λiB

(a)
i (t))− L′ d

(∑
j

√
μijψ

∗
ijB

(s)
ij (t)

)

− L′
(∑

j

μij �̆ij (t)

)
dt, (4.20)

with the same initial state (�̆ij (0)) = (�̆rij (0)). This is (3.3). Moreover, the drift term in (4.20)
can be written as

−L′
(∑

j

μij �̆ij (t)

)
dt = L(�̆ij (t)) dt,

where the matrix L is easily checked to be exactly the same matrix in the ordinary differential
equation (ODE) d(ψ̃ij (t)) = L(ψ̃ij (t)) dt for the local-fluid model, which follows from
conditions (24) of [16]. From [16, Theorem 23] we know that all eigenvalues of L have
negative real parts.

Proposition 4.5. Uniformly on all fixed initial conditions (�̆ij (0)) from any fixed bounded set,
the corresponding solutions to the stochastic differential equation (4.20) have the following
properties. Uniformly on all t ≥ 0, the random vector (�̆ij (t)) is Gaussian, with bounded
mean and covariance matrix. Moreover, as t → ∞, the mean vector and the covariance
matrix of (�̆ij (t)) converge to those of the unique stationary distribution, inv[(�̆ij (·))], which
is Gaussian with zero mean.
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Proof. This follows from the fact that all eigenvalues of the drift matrixL have negative real
parts; see (5.6.12), (5.6.13)′, (5.6.14)′, Problem 5.6.6, and Theorem 5.6.7 of [10].

Conclusion of the proof of Theorem 3.1. Consider the Markov process F r(·) in a stationary
regime. We choose T as in Lemma 4.1, then ε as in Lemma 4.3, and consider the process on the
interval [0, εT log r]. Fix an arbitrary ν9 ∈ (0, 1

4 ). The combination of [16, Theorem 10(ii)],
Lemma 4.1, and Lemma 4.2 proves the following fact: uniformly on all sufficiently large r , the
process will ‘hit’ a state, satisfying the conditions of Lemma 4.3, with probability that can be
made arbitrarily close to 1 by choosing sufficiently large fixed C11 > 0.

Now, suppose at some time point within [0, εT log r] the process is in a state satisfy-
ing the conditions of Lemma 4.3. First, we obtain a bound on |F r(εT log r)|. Namely,
uniformly on all sufficiently large r , |F r(εT log r)| ≤ C14r

1/2 with a probability that can
be made arbitrarily close to 1 by choosing a sufficiently large fixed C14 > 0. This follows
from Lemma 4.3 and Proposition 4.5. This establishes the tightness of the sequence of
inv[(�̂rij (·))] ≡ inv[r−1/2(�rij (·)−ψ∗

ij r)]. Secondly, we obtain a bound on |(Qr
i (εT log r))|+

|(Zrj (εT log r), j < J )|. This is even easier; by (4.11),

P{|(Qr
i (εT log r))| + |(Zrj (εT log r), j < J )| ≤ C10δ9r

ν9} → 1.

But, since ν9 can be chosen arbitrarily small, we obtain property (3.4).
Given the tightness of the sequence of inv[(�̂rij (·))] and property (3.4), it is straightforward

to prove the remaining property (3.2). (The argument is essentially the same as that used in
the proof of [11, Theorem 8.5.1], although that result does not directly apply to our setting.)
Consider the Markov process F r(·) in a stationary regime. We fix an arbitrary T > 0, δ9 > 0,
and ν9 ∈ (0, 1

4 ), and then a large enough parameterC11 > 0, so that, with probability arbitrarily
close to 1, the conditions on F r(0) in Lemma 4.3 are satisfied for all large r . We then pick a
sufficiently small fixed ε > 0 so that property (4.9) holds. Finally, using Proposition 4.5, we
pick a sufficiently large T ′ > 0 so that dist[(�̆ij (T ′))] is close to inv[(�̆ij (·))], uniformly on
the initial states |(�̆ij (0))| ≤ C11. (Here ‘close’ is in the sense of close Gaussian distribution
parameters, namely, means and covariances; or, more generally, it can be in the sense of the
Prohorov metric [4].) Note that, for all large r , T ′ < εT log r . Applying Lemma 4.3, we
see that, for all large r , dist[(�̂rij (T ′))] is close to dist[(�̆rij (T ′))], which in turn is close to
inv[(�̆rij (·))] = inv[(�̆ij (·))]; and we can make it arbitrarily close by rechoosing parameters.
This implies (3.2). We omit further details.

5. Discussion

As already mentioned in the introduction, we believe that the approach developed in [16]
and this paper provides a quite generic scheme for establishing the diffusion-scale tightness of
invariant distributions under the strictly subcritical load ρ < 1. The approach shows that, for
the diffusion-scale tightness to hold, it is essentially sufficient to verify the two key stability
properties, global stability and local stability, which we (at a high level and informally) describe
next. Let F r(·) be a process describing the system-state deviation from the equilibrium point.
(For the LAP policy, F r(t) = (�rij (t)− ψ∗

ij r,Q
r
i (t)) as defined in this paper.)

(a) Global stability. The fluid limit f (t), t ≥ 0, is defined as limr r
−1F r(t), t ≥ 0. By

global stability we mean the following property:
(a.1) the trajectories f (t) converge to 0, uniformly in the initial states from a bounded set.

Moreover, we also require the following related property to hold:
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(a.2) uniformly on all infinite initial states, |f (0)| = ∞, each trajectory f (t) reaches a state,
where all server pools are fully occupied, and then stays in such a state forever. (For the LAP
policy, the formal statements are [16, Propositions 13 and 16].)

(b) Local stability. Suppose thath(r) is a function of r such thath(r)/r → 0 andh(r)/
√
r →

∞. The local fluid limit f̃ (t), t ≥ 0, is defined as limr h(r)
−1F r(t), t ≥ 0. Suppose that

the trajectories f̃ (·) satisfy a linear ODE (d/ dt)f̃ (t) = Lf̃ (t). By local stability we mean
the property that all eigenvalues of L have negative real parts. (For the LAP policy, the formal
statement is [16, Theorem 23]. For the LQFSLB policy of [17], the local stability does not
hold.)

Properties (a) and (b) may or may not be easy to verify for a given control policy; but the
task of proving or disproving them is typically much easier than the full task of verifying the
diffusion-scale tightness. We also note that showing local stability may require working with
the process under additional space and/or time scalings, such as hydrodynamic scaling for the
LAP policy (see [16, Section 5.2]).

If the global and local stability properties hold, the steps needed to establish diffusion-scale
tightness of invariant distributions are as follows.

Step 1. Existence and o(r)-scale tightness of invariant distributions. Using the global
stability property (a.2) and employing the total (appropriately defined) workload in the system as
a Lyapunov function, we can prove the positive recurrence (stochastic stability) of the process,
and, therefore, existence of a stationary distribution. The proof is fairly standard, using the
Lyapunov function average drift argument, which additionally shows that E|r−1F r | is bounded,
which in turn applies the tightness of distributions of r−1F r . We then employ the global
stability property (a.1) to show that, in fact, the invariant distributions of r−1F r asymptotically
concentrate at 0. This can be referred to as o(r)-scale tightness. (The formal result for the LAP
policy is given in [16, Theorem 14].)

Step 2. The r1/2+ε-scale tightness. Local stability implies the exponentially fast convergence
of fluid limit trajectories f̃ (·) to 0. In particular, for a sufficiently large fixed T , the norm
|f̃ (t +T )| ≤ δ|f̃ (t)|, where δ < 1. We use this, and the probability estimates for deviations of
h(r)−1F r(t) from a corresponding local-fluid limit f̃ (t), to show that if F r(0) = h(r) = o(r)

then, with high probability, |F r(T )| ≤ δ|F r(0)|. Now, it takes O(log r) intervals of length T
for |F r | to ‘descend’ from o(r) to r1/2+ε, and we show that this does in fact happen with high
probability. (So, the key technical issue here is that we have to obtain probability estimates
not on a finite, but on an O(log r) interval.) This implies r1/2+ε-scale tightness for any ε > 0;
namely, the invariant distributions of r−1/2−εF r asymptotically concentrate at 0. (The formal
argument for the LAP policy is given in [16, Section 5.2].) Note that this property is weaker
than, for example, E|r−1/2−εF r | → 0.

Step 3. Diffusion-scale (r1/2-scale) tightness. Here we start with the r1/2+ε-scale tightness,
with ε > 0 being sufficiently small. We show that if |F r(0)| = O(r1/2+ε) then, with high
probability, |F r(t)| ‘hits the diffusion scale’O(r1/2) within ε log r . Again, this is achieved by
considering O(log r) consecutive T long intervals, in each of which |F r | must decrease by a
factor with high probability, unless |F r(t)| does hit O(r1/2). (The formal result for the LAP
policy is Lemma 4.1.) Given that, it remains to show that if |F r(0)| = O(r1/2) and ε is small
enough, then, for any t ∈ [0, ε log r], we also have |F r(t)| = O(r1/2) with high probability.
This is achieved by showing the closeness of process r−1/2F r(·) to the corresponding limiting
diffusion process on the ε log r long interval, and the fact that the drift matrix of the diffusion
process is exactly the L matrix from the definition of local stability. (For the LAP policy, this
takes the bulk of this paper, from Lemma 4.2 on. It involves, in particular, showing that all
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queues and all pool idlenesses, except for pool J serving the lowest-priority activity, are in
fact o(rν) for any ν > 0.) Again, we note that the diffusion-scale tightness is weaker than, for
example, the boundedness of E|r−1/2F r |.

In conclusion, we remark again that many (although not all) parts of the above scheme do
rely on the strict subcriticality condition ρ < 1. It would be of interest to explore whether the
approach can be extended to establishing diffusion-scale tightness in the Halfin–Whitt regime.
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