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Abstract

We survey the legacy of L. G. Kovács in linear group theory, with a particular focus on classification
questions.
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Classifying linear groups is an old problem. For given degree n > 1, field F, and
group type, the task is to list irredundantly all subgroups of GL(n, F) of that type
up to GL(n, F)-conjugacy. If possible, each conjugacy class representative should be
specified by a generating set of matrices. Examples of the group type include: finite,
soluble, nilpotent, quasi-simple, maximal in its class (provided that each relevant
subgroup of GL(n, F) is contained in a maximal), irreducible, primitive, monomial,
and generated by matrices with special properties (e.g., pseudoreflections).

To narrow the scope and thereby have a reasonable hope of solving a linear group
classification problem, we impose extra conditions, such as the following.

• Characteristic: zero (F = C, the complex field, or F = Q, the rationals, are typical
instances); positive (mostly finite F).

• Degree: ‘small’, or otherwise restricted, according to the prime factorisation of n.

Furthermore, although GL(n, F)-conjugacy is a natural classification criterion, we
might ask for isomorphism class representatives instead. We may even limit ourselves
to classifying subgroups of SL(n,F) or PSL(n,F).

Laci Kovács had an abiding interest in linear group theory. He was one of the
first to realise the suitability of computer algebra systems as an environment for linear
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group classification: using a computer to aid in the compilation of lists, and applying
implemented lists to solve related algorithmic problems.

Much of Laci’s research dealing with representation theory and permutation groups
has strong intersections with linear group theory. Especially pertinent here are the
asymptotic bounds that he proved for finite soluble and nilpotent groups. We mention
a few of these results, to give context; the paper by Robinson [27] contains more detail.

In [9], Laci and Dixon derived a bound in terms of n and F on the number of
generators of a finite nilpotent subgroup of GL(n, F), where F is a finite-degree
extension of its prime subfield. Then Laci, Bryant and Robinson extended that result to
any finite group generated by its soluble radical and generalised Fitting subgroup [3].
The case of soluble linear groups was crucial (note also the paper [25] with Sim on the
number of generators of an abstract finite soluble group). But perhaps the most striking
achievement in this area is [24]. Laci and Robinson prove that a finite completely
reducible linear group of degree n over any field can be generated by b3n/2c elements.
Further contributions to linear group theory include [23], which establishes complete
reducibility of representations of the monoid of n × n matrices over a finite field.

Below we discuss a research programme founded by Laci in the 1990s, that targeted
difficult linear group classification problems. We describe how the objectives of this
programme were carried out with some of his students and postdoctoral researchers.
Laci guided the development of techniques and formulated the major strategies in this
programme.

1. Background

We begin with a sketch of historical background. See [32, Ch. III] and [34, Ch. 3,
Section 4] for comprehensive surveys.

Early interest in soluble linear groups over finite fields stemmed from their
connection to soluble permutation groups. Jordan gave a method (which can be viewed
as an archetypal group-theoretic algorithm) to construct such linear groups from
those of smaller degree. Jordan’s treatment is cumbersome and does not give a full
classification up to conjugacy. For finite groups in characteristic zero, it essentially
suffices to classify the irreducible ones, dispensing with small degrees first. Degrees 2
and 3 were investigated by Jordan and Klein, amongst others. Blichfeldt’s wonderful
book [2] covers finite complex linear groups of degree at most 4.

It became customary to ignore imprimitive groups. The emphasis was rather on
primitive subgroups of SL(n,C) or their images in PSL(n,C), and sometimes groups
were determined only up to isomorphism. The standard justification for this is as
follows. Let F be algebraically closed, and Z be the scalar subgroup of GL(n, F).
Given G ≤ GL(n,F), we may define H ≤ SL(n,F) such that GZ = HZ. Suppose that G
is irreducible (respectively, primitive). Then H is irreducible (respectively, primitive),
H and G have isomorphic central quotients, and H is finite precisely when G/Z(G) is
finite. An advantage of this reduction is that there are only finitely many conjugacy
classes of finite primitive subgroups of SL(n, F). However, as W. Feit has pointed out
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[3] L. G. Kovács and linear groups 57

in personal communication to the second author in 1997, producing a classification in
GL(n,C) from one in SL(n,C) or PSL(n,C) is not at all straightforward. Feit wrote:
‘Don’t fall into the trap I fell into, Blichfeldt only classified the groups in dimension 4
in PGL(4,C). It is a long way to go to GL(4,C).’

Classifying finite primitive (or quasiprimitive) subgroups of SL(n, C) gained
popularity in the lead-up to the classification of finite simple groups. After Blichfeldt,
authors including Brauer, Feit, Huffman, Lindsey II and Wales gave accounts for
n ≤ 10 (see [15, pages 76–78] and [16]).

Another wave of activity began in the late 1940s, as soluble linear groups were
recognised to play a fundamental role in the theory of infinite soluble groups.
Suprunenko and his students obtained various classifications of soluble linear and
permutation groups. Usually just the maximal soluble subgroups of GL(n, F) are
described (each soluble subgroup lies in a maximal). For example, [30, Theorem 6,
page 167] classifies the maximal irreducible soluble subgroups of GL(p, q) up to
conjugacy, p prime, with an explicit generating set stated for each conjugacy class
representative (cf. [6]). Many of the classification results for soluble matrix and
permutation groups by Suprunenko and his school are summed up in [31]. That book
also contains a classification of the maximal primitive soluble subgroups of Sym(n),
where n ∈ {pq, pq2

, pqr | p, q, r prime}.
Other notable classifications are in prime or prime-square degree: minimal

irreducible groups [33, page 2986], and irreducible p-groups over an algebraically
closed field (Conlon). Aside from this work, and in contrast to the insoluble case,
exhaustive classifications of soluble linear groups were rarely attempted—until the
advent of the research school directed by Laci.

2. The Kovács school

Some time ago, Laci, Neubüser and Newman proposed an algorithm to construct
maximal subgroups of low index in a finitely presented group [28, pages 2–4]. Their
algorithm relies on having a list of the primitive subgroups H of Sym(n) where n is the
subgroup index. If H is soluble then n = pm for some m and prime p, and listing these
permutation groups is equivalent to classifying the irreducible soluble subgroups of
GL(m, p) up to conjugacy. The need for such information motivated the PhD project
of Laci’s student Mark Short [28].

Short’s overall approach is based on theory of maximal irreducible soluble
subgroups of GL(n, F), as in [30, Ch. V] and with antecedents in work of Jordan.
Chapters 3–5 of [28] furnish a classification of the irreducible soluble subgroups
of GL(2, q) for odd q (Hulpke later found that two conjugacy classes of monomial
groups were missing). Other necessary results for GL(r, q), r an odd prime, and for
primitive soluble subgroups of GL(4, q), are provided. The listing in [28, Ch. 7] of
imprimitive groups of degree 4 is supplemented by a CAYLEY computation. Using
the methods in his thesis, Short classified the irreducible soluble subgroups of GL(n, p)
up to conjugacy for all pn < 256. He implemented this classification as a data library
and made it publicly available.
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A subgroup of GL(n, q) of order coprime to q can be ‘lifted’ to an isomorphic
copy in GL(n,C), and the lifting respects absolute irreducibility. Despite this link,
classification problems over C have a different flavour than those over finite fields.
One complicating factor is that a classification of finite subgroups of GL(n,C) might
entail an infinite list (whereas there are only finitely many finite primitive subgroups
of SL(n, C) up to conjugacy). For the lists discussed here, we may introduce a
parametrisation on certain families of matrices, so that each listed group is designated
by an integer string that corresponds to a generating set made up from the parametrised
families. A model for this sort of listing scheme is exhibited in [4]. Conlon classifies
the finite irreducible p-subgroups of GL(p,F), where F is a field not of characteristic p
with all p-power roots of unity. Such a group is conjugate to a subgroup G of the full
monomial matrix group Cp∞ o Cp. The subgroup of diagonal matrices in G has index
p and (to guarantee irreducibility) must be nonscalar. Conlon gave presentations for
groups in his list, and proved that any two of them are conjugate if they are isomorphic.

Attacks on other monomial group classification problems have followed the same
basic pattern as in [4]. Suppose that G ≤ GL(n,C) is monomial. Let π be the natural
projection of G into Sym(n) whose kernel D is the subgroup of diagonal matrices (that
is, π sends nonzero matrix entries to 1). First, all candidates for π(G) are written down;
namely, the transitive T ≤ Sym(n). Then we solve (S), the T -submodule problem: find
all D normalised by T such that if ker π = D then G is irreducible. The next step is the
extension problem (E) for each T and its accompanying T -modules. Lastly, we solve
the conjugacy problem (C), showing that each GL(n,C)-conjugacy class is represented
exactly once in our final list.

After the success of [4], composite degrees present a new challenge. The second
author, another student of Laci’s, classified the finite irreducible linear p-groups of
degree p2 for p = 2 [17]. We say a little bit about the methods used (some of which
appear in [1, 28] too). The submodule lattice of a direct sum of modules may be
assembled from isomorphisms between sections of the summands, via a well-known
theorem due to Goursat and Remak. This is applied to solve (S). Second cohomology
features in the solution of (E) and (C): |H2(T,D)| is an upper bound on the number
of conjugacy classes of G ≤ GL(4,C) such that π(G) = T and ker π = D. Lyndon–
Hochschild–Serre spectral sequences are used to calculate the requisite orders. For
each T and D, precisely |H2(T,D)| extensions G of D by T in GL(4,C) are constructed.
Any remaining conjugacy between these extensions is eliminated by ad hoc means.
Having dealt with the 2-groups, Flannery went on to classify all finite irreducible
monomial subgroups of GL(4,C) [18].

At this juncture it is appropriate to note a question in the province of the
submodule listing problem (S), that arose out of an algorithm suggested by Conlon
for decomposing group characters. Let p be a prime, V be the central quotient of
Cp∞ o (Cp)n, and N be any finite normal subgroup of V . Conlon conjectured that the
centre Z of V/N has order at least pn. Examples are known where Z � Cn

p, Z � Cpn ,
and |Z| is much greater than pn. When n = 1 there is nothing to prove. Conlon verified
his conjecture for 2 ≤ n ≤ 4 by a combination of hand and machine calculations.
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As far as we know, Conlon’s conjecture is unresolved. Laci’s student Zoltán
Bácskai made progress towards an affirmative proof, but eventually changed his thesis
topic to classifying finite irreducible monomial subgroups G of GL(p,C). Insoluble
groups now crop up: π(G) = T ≤ Sym(p) is either ‘compulsory’ (i.e., soluble, Alt(p),
or Sym(p)), or ‘sporadic’, with just 11 values of p less than 1000 giving such a
transitive group. Bácskai obtained a complete classification for p ≤ 11, and for
arbitrary prime degree p when T is compulsory. In particular, the solution of (S) for
all T occupies [1, Chs 3 and 4 and Section 7.1] (observe that a finite soluble monomial
subgroup of GL(p,C) is irreducible if and only if its diagonal matrix subgroup is
nonscalar). Bácskai’s thesis, which should be in the literature, contains many valuable
results on linear group classification.

An irreducible linear group of prime degree is either primitive or monomial. Dixon
and Zalesskii classified finite primitive subgroups of SL(p,C), and insoluble finite
monomial groups of prime degree over an algebraically closed field, in [11–13]. The
paper [11] has a traditional aim—classifying primitive unimodular linear groups over
C—and makes critical use of the classification of finite simple groups.

A further milestone in the Kovács programme was supplied by Burkhard
Höfling, who worked as a postdoctoral researcher with Laci. In a long and interesting
paper [20], Höfling settles the case of imprimitive nonmonomial finite irreducible
groups over C in smallest degree. He begins by considering the general situation of
G ≤ GL(2n,C) with an unrefinable imprimitivity system of size 2. Either G has just
one system, or it has three ([20, Theorem 2.4] is a broader statement; its proof cites
[22]). This yields an initial split in the classification. To construct all G, one needs to
know all primitive groups of degree n. Thus, as part of his solution in degree 4, Höfling
classified the finite primitive subgroups of GL(2,C) up to conjugacy. Each such group
is contained in a central product of scalars with a primitive subgroup of SL(2,C), and
the latter were classified previously [2, Ch. III]. Höfling’s lists, together with [1, 18]
and [2, Chs V, VII] filled out to GL(n,C), would complete the Kovács programme
in degrees less than 5 over C. Degree 5 is surely achievable too, with [1, 11] as
a foundation.

Laci’s student Hyo-Seob Sim wrote several papers on metacyclic linear groups. In
[29], he examines the structure of metacyclic primitive subgroups of GL(n, q), with
the intent to classify these groups when n is an odd prime power (cf. the classification
[8] of nilpotent primitive subgroups of GL(n, q) for all n, q; and the GAP procedure
in [7] that returns the groups for input n, q). Laci and Sim in [26] give a condition
to decide whether two nilpotent metacyclic irreducible groups G,H ≤ GL(n,F) of odd
order are conjugate. They isolate the subgroup GAutG of G whose elements are fixed
under Aut(G), and show that (with caveats) the number of GL(n,F)-conjugacy classes
of subgroups H of GL(n, F) isomorphic to G is equal to the number of equivalence
classes of faithful irreducible F-representations of GAutG.
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3. Related work

Linear group classifications of the kind advocated by Laci are constantly in demand,
and hence worth pursuing. The area is effectively still wide open. We review a sample
of other classifications with a computational aspect that relate to Laci’s concerns.

Dixon and Mortimer [10] listed all primitive permutation groups of degree less
than 1000 with insoluble socle. Short originally aimed to match this range of
degrees for soluble groups. Eick and Höfling [14] extended the degree bound far
beyond that in [28]. Taking Aschbacher’s categorisation of potentially maximal
subgroups of GL(n, q) as a starting point, they developed an algorithm to classify the
soluble irreducible subgroups of GL(n, p) for pn ≤ 6560. (Höfling later augmented the
list, going up to permutation group degree 10 000.) Their algorithm involves testing
irreducibility and subgroup conjugacy in GL(n, q). The complexity of this algorithm
grows with n and q. More recently, Coutts et al. [5] classified the insoluble irreducible
subgroups of GL(n, p) for pn < 4096.

Building on [18], and at the instigation of Laci, Flannery gave methods to
classify the irreducible monomial subgroups of GL(4, q). Subsequently Flannery and
O’Brien [19] designed algorithms to list irreducible linear groups of small degree over
finite fields, with analogous classifications over C as an ingredient. The input field
size bounds the integer parameter strings that define generating sets. A key theorem in
[19] asserts that if F is any extension of GF(q), and n ≥ 3 or q > 3, then a subgroup of
GL(n, F) isomorphic to SL(n, q) is irreducible and conjugate to SL(n, q). The proof of
this result is mainly due to Laci and uses [21]. Implementations of the algorithms of
[19] are available in Magma. Their efficiency depends on field arithmetic (as do, for
example, the algorithms of [7, 8]), and they avoid testing irreducibility or conjugacy.
The input field size is unrestricted except for a very small number of exceptions. This
type of implementation may be compared with data libraries such as [28], and with
the approach of [14], which requires nontrivial computation in GL(n, q). Techniques
similar to those in [19] could be applied at least up to degree 5.

Classifying irreducible soluble linear groups over a finite field in other special
degrees, such as the product of two primes, is feasible. Suprunenko’s book [31] is
yet to be exploited for this purpose. The resultant algorithms would be practical for
large degrees and fields.

Finally, we note that progress in computational representation theory affords new
avenues for classifying insoluble linear groups over finite fields and C.

4. Concluding remarks

The second author remembers hours spent each week with Laci, seeing the solution
of a problem through to its very end. Laci was extremely generous in sharing his
expertise. The work that he inspired and nurtured in others forms an important part of
his legacy. We owe him a lasting debt.
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[24] L. G. Kovács and G. R. Robinson, ‘Generating finite completely reducible linear groups’, Proc.
Amer. Math. Soc. 112(2) (1991), 357–364.

https://doi.org/10.1017/S1446788716000045 Published online by Cambridge University Press

http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
http://www.gap-system.org/Packages/nilmat.html
https://doi.org/10.1017/S1446788716000045


62 A. S. Detinko and D. L. Flannery [8]
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