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UPPER BOUNDS ON |L(1, )|
AND APPLICATIONS

STEPHANE LOUBOUTIN

ABSTRACT. We give upper bounds on the modulus of thevaluesat s= 1 of Artin L-
functions of abelian extensions unramified at all the infinite places. We also explain how
we can compute better upper bounds and explain how useful such computed boundsare
when dealing with class number problems for CM-fields. For example, we will reduce
the determination of all the non-abelian normal CM-fields of degree 24 with Galois
group SL,(F3) (the special linear group over the finite field with three elements) which
have class number one to the computation of the class numbers of 23 such CM-fields.

1. Introduction. Itiswell known that there existsc > 0 such that for any primitive
Dirichlet character modulo f > 1 we have |L(L.x)| < 2 logf + c. Letting ¢, de and he
denote the Dedekind zeta function, the absolute value of the discriminant and the class
number of anumber field E, in [Lou3] we generalized this result and proved:

THEOREM 1. Letk beagivennumber field. Thereexistsaconstant ux > 0 (depending
on k only) such that for any non-trivial character x on the Galois group of any abelian
extension K /k which is assumed to be unramified at all the infinite places we have

1
(1) L@ )| < Res1(6) (5 10g, +2ux)
together with the following two improvements:
1 .
@ L@ < Resa(G) (5 10gf, +px ) iff, >
and
(€) IL(L.x)| < ik Ressa (&) iffy = 1.

Here, we let F, denote the conductor of x and set f, =N, o(F,).

COROLLARY 2. Let K /k bean unramified at all the infinite places abelian extension
of degreem. Then

m-1
@ Reses(Ge) < (Resea(60)” | g = foa /) + 20

Moreover, if K /k is unramified at all the places, then

©) Rese1((k) < Ress1 (GBI where B £ 11y Resey (G).
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PrROOF. Use (1),
Res-1(G) = Resea(6) [ LL X) < Resea(@)( =22 L))"
x#1 71

and [T, f, = dk /d{" to get (4). Use (3) and

Ress1(G) = Ress=a(G) [ L(2,x)
71
to get (5). ]
According to (2), for any primitive even Dirichlet character x of conductor f, > 1
we have

1
©) L@l < 5109f, + po.

(and we will prove that pg = (2 +7 - Iog(47r)) /2 =0.023095708966 - - -). Hence, for
any real quadratic field k of discriminant dyx we get

1
M Ress1(G) < 51090k + uq.
and more generally, for any real abelian field k of degree n and conductor fy we have
8 R < (=1 iogd " (Liogt "~
) 85s1(Gk) < (m og k+MQ) < (§ og fi +MQ)

(use (6), the conductor-discriminant formula and the arithmetic-geometric mean inequal -
ity). Moreover we proved in [Lou3] that if k isareal quadratic field then we have

1
) B = ik Res1(G) < 5 10g” dk.

However, our proof of (9) in [Lou3] was not that enlightening and did not point to any
easy to handle method which would enable us to get a result similar to (9) for totally
real fields k of any degree n > 2. We then used (4), (5), (7) and (9) to get upper bounds
on residues at s = 1 of Dedekind zeta functions of various totally real number fields
which were abelian extensions of real quadratic fields k. These bounds were in turn
used to get lower bounds on relative class numbers of various CM-fields and, finaly,
these lower bounds were used to solved various class number problems for non-abelian
CM-fields (see[Lef], [LLO], [LO] and [LOO]). We refer the reader to [Was] for all the
prerequisites on CM-fields we will assume him to be familiar with. Let us only mention
that the analytic relative class number formula

e = QnWn JW Ress=1((n)
NT@mn \ dys Ressa(Gue)’

(10)

makesit reasonableto seek upper boundson residuesat s = 1 of Dedekind zetafunctions
of totally real number fields N* to obtain lower bounds on relative class numbers hy of
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CM-fields N (here, N is a CM-field of degree 2n and wy and Qy € {1, 2} denote its
number of roots of unity and Hasse unit index, respectively). The general upper bound

elog dN+)”1

(1) Rese1(6v) < (S

(see [Lou3] and [Lou4]) would provide worse lower bounds on hy than the ones we
obtained above (for example, compare the two lower bounds (42) and (43)). Maybe the
best illustration of the usefulness of our bound (4) is the solution of the class number
one problem for the dihedral CM-fields (see [Lef]). For simplicity’s sake we assume
that N is a dihedral CM-field of degree 2n = 4mwith m > 3 odd. We let M denote the
imaginary biquadratic bicyclic subfield of N and k denote the real quadratic subfield of
M. ThenN*/k iscyclic of degreem. Wenotethat hy, divideshy and that ((n/¢u)(s) > 0
for any s € 10, 1[. Now, assume that hy = 1. Then hy, = 1. However, it is known that
there are exactly 147 imaginary biquadratic bicyclic fields M such that hy, = 1 and,
moreover, one can easily check that for all these 147 fields M we have {y (s) < 0 for
s € ]0.1[. Therefore, if hy = 1 then (y(1 — (2/logdy)) < 0. However, it is known
that for any CM-field such that ¢y(1 — (2/ logdy)) < 0 we (roughly speaking) have
Ress=1((n) > 2/elogdy. Now, noticing that we have dy > dZ., if we use (10) and (11)
we get

_ 1 -
(12) My = n— 1 (2% logdy-)"’
from which we can deducethat there are only finitely many dihedral CM-fields of degree
2n=4m= 4 (mod 8) with relative class number one and that all satisfy d&,/f’ < 30000,
too large a bound to enable usto solve the (relative) class number one problem for such
dihedral CM-fields. But now, using (4), noticing that there are at most 147 occurrences
for k (which all satisfy dx < 65689) and using the bounds(7) and (9) or, more efficiently,
computing numerically px and Ress1(() for al of them, we end up with an explicit
upper bound

Rese1(Gn+) = O(log™ ).

hence with an explicit lower bound

Ve

hy > Cmm.

whose exponent mis half as large as the one n in (12). This lower bound is now good
enough to determine all the dihedral CM-fields with (relative) class numbers equal to
one (see[Lef]).

Thefirst purpose of this paper is to prove Theorem 1 (see Section 1.4).

The second purpose of this paper is to give boundson By = i Res=1((x) for totally
real fieldsk of degreen > 2 (see Theorems5 and 11). Contenting ourselveswith totally
real fieldsk isno serious restriction to us, for we aim at using our present results to get
good upper for residues at s = 1 of the Dedekind zeta functions of various totally real
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number fields K = N* which are maximal totally real subfields of CM-fields N. We will
provein Theorem 5 that we have

1
(13) Bk = uk Ress1(&) < log” dx.

- 2!
provided that dy is large enough. Thiswill provide us with alesstechnical proof and a

generalization of (9) to any totally real number field. Moreover, Theorem 11 will provide
us with the better bound

_ n _ n
(14) B = e Resa6) < "5 5 gy 109k +h) < "5 (3100t + 1)
provided that k is (real) abelian of conductor fy.

The third purpose of this paper is to explain how one can efficiently compute numer-
ically the value of any By = ux Ress=1(¢k) (see Sections 3.3 and 4.2). In fact, in the last
section of this paper, we will firstly use (5), (8) and (14) to determine the reasonable
bound fy < 83000 on the conductorsfy of thereal cyclic cubic subfieldsk of the normal
CM-fields N of degree 24 with Galois group SL»(F3) which have class number one (and
wewill point out that N iswell determined by k), and we will secondly compute numer-
ically all the By and Ress=1((x) for the 4784 possible occurrences of k with f, < 10° and
we will then use (5) to prove that only 23 out of these 4784 cyclic cubic fields can be
cyclic cubic subfields of normal CM-fields N of degree 24 with Galois group SL(F3)
and class number one (see Proposition 16). This example clearly showshow useful (13),
(24) and such computed bounds on residues can be, for it is much easier to compute By
than to compute hy. We also refer the reader to [CK] and [Lef] for other examples.

1.1. Definition of A\x and pk. Let k be anumber field of degreen =ry + 2r,, wherery
and r, denote the number of real and complex places of k, respectively. Let { and dk be
the Dedekind zeta function and the absol ute value of the discriminant of k, respectively.

We set
A =272 2 /gy,
Fk(s) = T (s/2r"(s)
and

Fi(9) = ATk (S)k(S)-
Itiswell known that Fy satisfiesthe functional equation Fy (1 — S) = Fi(s), has only two
poles, at s= 1 and s = 0, both simple, and we set

Ak = Rese(Fi) = AT (1) Rese (&) = (2m) "2 v/d Ressea (&)
which yields Ress-o(Fx) = —Ak. Note that we have A\ > 0. Wefinally set

w et e (53]

In particular, we have \q = 1, g = (2+7 — log(4r)) /2= 0.023- - -
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1.2. Definition of the functions Hy, S, A, and S,. We set

&)= zmm®

m>1

to define coefficients z,, (and note that we have z,, > 0) and define

—_ 1 —S
Hi() = 5= _[R(S):a M(9xSds (x>0anda > 0)

(and note that we have Hi(x) > O for x > 0) and

(16) S(¥) = % /%(S):a Fr(ex%ds= > zpHk(mx/Ac) (x> 0and o > 1).

m>1

Now, let x denoteaDirichlet character associated to an abelian extension K /k unramified
at al the infinite places, let F, denote the conductor of x (which is an integral ideal of

k) and set
f, = N/o(Fy)-
L(sx) = 3 gmm
m>1
with
om= > x()
Ng/q()=m

(where this sum ranges over all the integral ideals of k of norm m),

A, = A/

and
A\(S) = ASTk(S)L(S X)),

which is entire and satisfies the functional equation
A\ (1 —9) =W AL(9)

for some root number W, of absolute value equal to one. Notice that

1
(17) L(L.x) = N NN Ress=1(G)A\ (1)
We finally set
(18) S (¥ = 2%' /R(S):a A ()X °ds= mgldek(mx/A/\) x>0anda > 1)

and notice that |¢m| < zy yields

S\ < SOA/A) = Se(x/ /)
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Observe that it is of paramount importance that K /k be unramified at all the infinite
places, for the proof of Theorem 1 stems from the fact that 'y is the Gamma factor
which appears in the functional equations of both Fx and A, which enables us first to
express both S and S, in terms of Hy, and second to obtain |S, (X)| < S<(x/\/ﬂ). We
refer thereader to [Loul] and [Lou4, Th. 6] to see how complicated and less satisfactory
become generalizations of Theorem 1 when K /k is not assumed to be unramified at all
the infinite places.
Notice that the choice k = Q the field of rational numbersyields

(19) SN =23 e™¥,

n>1

1.3. Integral representations of A,, Fx and px. By shifting the line of integration
R(s) = ain (16) and (18) to the left to theline k(s) = 1 — o we pick up residuesat s= 1
and s = 0, and by using the functional equations satisfied by F and /A, to come back to
the line of integration %(s) = «, we obtain the following functional equations:

R N R )

Therefore, we finally obtain:
00 dx
_ s
AE = [0
00 dx 00 1 dx
— S - —S_
- /1 S, 00 X +./1 S\<X)X X

= [ 800w [0

and
(1) A1) = /f" S, (x) dx + W, /f" sx—(x)d?x.
In the same way, we get
der (1 1 1y _ 1 g 1 o dx
@) wE lim{ R - (527 5) =5 h S [7S

Notice that we get ukx > O.
1.4. Déefinition of f +— I (f) and proof of Theorem1. We set

f=A/A=fi>1

whichyields
15,091 < Sdx/f).
Setting
(23) 0 = [ se/nacr [ sognS

https://doi.org/10.4153/CJM-1998-042-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-042-2

800 STEPHANE LOUBOUTIN
and using (22) and (21), we obtain
(24) (D) = Mpx and  [A(D)] < 1k(f).

To beginwith, if f, = 1thenf = 1 and using (24) and (17) we get

IL(L )| = rlk Rese1(G)IA, (1)) < rlk Rese1(G)h(1) = juc Resea(G)

and (3) is proved.
Now, for any x, using (20), we have

00 00 d
I(f) = f/l/fSk(x)dx+ » S((X)YX
- f./loo 3<(X)dX+/1wS«(x)d;X +f/lf &(1/x)i_;(+/lf &(1/)()0'?"
= f/loo S((X)dX+/1wSk(X)dYX +f /lf S<(X)d7x +/1f Sc(X) dx + M (f — 1) logf

< @+ [ s [7S09%) # xelr — 1 10gf
= (F + Dle(D) + Mlf — 1) logt
= fa(logf + k) + Ac(uk — logf),

and using (24) and (17) we get

L) = = Resma (@A, ()]

f Ak

< - Resea(6l(h) < Resa@) (1 7) togt + (1+ ¢ )

from which we get (1) and (2) of Theorem 1.
Let us point out that Theorem 5 and Lemma 10 will be proved in much the same way.

2. A bound on uk Ress=1(() when k is totally real. From now on, we assume
that k is atotally real number field of degree n, which yields \x = 1/di Res=1(¢) and
k(1) = Aok = Ok pk Ress1() = +/dkBk. The aim of this section is to determine
bounds on I (1). Wefirst set some notation. For n > 1 we define

Fo(9) = %278/ 2(9) = g + -

Fn(9) = F(9) = AST"(s/2)C"(9)  with Ay = 7 "/2,
Cn(s) = Z meisﬁ

+0O(s— 1),

m>1
f=Ac/Ar =V,
l n —S
HA() = 5 ./}e@:a M(s/2x°ds (x> 0anda > 0).
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(note that Hy (X) = Hn(X)) and define

(25) S(X) = glzmHn(mx/An) = zim /R o F(9X7ds (x> Oand o > 1).

Since0 < z, < Z,, we get S(X) < S\(x/f) and (23) yields

00 1
= < —
(26) ik Ressa(G) = (@ < [ (1+2)Si0¢/f o
The aim of this section is to compute bounds on the right hand side of this inequality.
Shifting the line of integration }(s) = « in (25) to the left to the line R(s) = 1 — « we
pick up residuesat s = 1 and s = 0, and using the functional equation Fn(1 — s) = F,(S)
to come back to the line of integration }(s) = «, we obtain

_ _ 1 /1
5109 = Rese1(Fa(9x %) + Resso(Fa(9x %) + 15[ 5 )
and note that both these residues depend on x. Since F(s) = Fr(1 — ), we get

Reseo(Fn(9X°) = — Ress(Fo(1 — 9% 1) = — Resea (Fo(9%° ).

setting
(27) Gn(s) = Fn(s)(x° — Xs_l)
we get
_ 1 1
(28) $109 = Ress1(Gr) + (5 )
(and note that this residue depends on x), which yields
_ (™ dx oo /1y _gdx  goo dx
Fo(® = [T S0 = [T s (3 s =+ [ S0
o) d 50
= 7810005 +x9= — [ Resea(Gox S
LEMMA 3. Set d
_ X
IS = [ SO+
Then, S> 1implies
- Fn(s) Fn(s)
@) (O =Fu(9 +Resma (s 52 ) — Resa 51 2.

PROCF. Using (27), we have

(9 = Fa(9 + [ Resea(s1— Go(9))x Sl
= Fo(9) + Resea (51— [ Ga(9xSax)
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> 1
= Fa(S) + Resey (s — [ R0 S xS )dx)

= Fn(9 + R%;l(sr—> Fn(5)<; : ))

S+s—1 S-—s
Fn(s) Fn(s) )
S—s S+s—1)°

= Fo(9 — Respl(SH ) + Res;l(s’_’

PrROPOSITION 4. Set

10 = [T 5@ [7 0%
Then

(30) I, = R%;l(s — Fn(s)(% . Sf 1))

Proor. On the one hand we have

: Fn(s) . Fn(9) ) ( Fn(S))
lim Ress [ s+— = Reseq[s— | = Reseq[s— —2 |
N 1(5 S+s—1) 1(5 Msvs—1 1\s s

On the other hand, using

1 1 s—1
S—s S-— 1,;,(5— 1
and writing Fn(s) = Yi>_nai(n)(s — 1)', we get

)J'

-1 . .
P9~ Resea (51 12) = Fo(9— 3 a((s—1) = 3 a (S 1)
and
| 2O Fo(9
g\rrI(Fn(S) - Res;l(s'—> S S)) =ap(n) = Res;l(SH - 1).

Therefore, using (29) we get the desired result.
According to (26) and (28), we obtain:

(@ < [7(143)six/0 o
= /;;(f+%)8n(x)dx
= /loc(f+%)sn(x)dx+/lf(f+x)&(;1()i—;(
= [t +%)S1(x)dx+/lf<:—(+1)Sn(x)dx—/lf(:—(+1) Res.1(Gn) dx
< /l“’(f+%+£+1)$(x)dx-£(£+1) Rese1(Gy) dx

= (f + D)l — ngl(‘/lf(i + 1)Gn(S)dx)

= (F+ Dl — Reses(Fo(9)($ + 577 ) + 1= = F9).

S
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According to (30) and since \/dkBx = /i itk RESs=1(Ck) = Ak = 1k (1), we get

THEOREM 5. Let k be a totally real number field of degree n and set f = /di. We
have

VB« < Rf) £ Resgl(Fn(s)(é + Sfll)(fnfl—S)).

Moreover, we have the following Table:
Ri(f) = (f — 1) logf + by (f +1)
with by = (2+7 —log(4)) /2 = 0.023095- - -,
Ro(f) = B log?f — cu(f — 1) logf + co(f +2)
with ¢; = log(4r) —1— v =0.9538- - - and ¢, = 0.001029- - -,
Rs(f) = S log®f — du(f + 1) log? f + da(f — 1) logf + da(f + 1)
with dy = (3(I0g(47r) —7) - 2)/4 = 0.965---,d = 1.933--- and ds =
0.0000517- - - .
Let n > 2 be given. There exists f, such that f > f,, implies Ry(f) < % log"(f). In other
words, if nis given then there exists dy, such that

1
(31) Bk = pk Ressa(G) < log" di

- 2"n!

holds for any totally real number field k of degree n such that dx > dy. In particular,
(31) holds for any totally real number field k of degreen=2o0r n=3.

PROOF. One can easily check that R,(f) = fPy(log f) + P(— log f) where

Pu0) = Reswo (5 + 57 ) Fals+ 1)) = 32 B

o K
with 1 1
pu(n) = R%;o(é((g Ay 1)Fn(5+ 1)).
Since 1 log(4r) — 7 1
- og\ar) —
P+ =g "= 7 1
and

=2+ YUK

1 1
4+
s s+l s (%
weget pp(n) =1, pr_1(n) = — (n(log(47r) — “/) — 2) /2and

f+ (-1t

_ P+ -1
Ra(f) = o log"f + pn—l(n)w log™ " f +- -
_f f ” >
=5 log"f +pn_1(n) R log"*f + O(f log"“f),
and the desired result follows from pp—1(n) < 1+ — log(4r) < Oforn > 2. L]
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3. Numerical computation of uy Ress1((k).-

3.1. Themeanvalueof ux Ress1(¢k) over real quadraticfields. Accordingtotheresults
of the previous section, for any real quadratic field k we have Bx = ux Ress1(¢&) <
%Iog2 dx. However, numerical computation of By for various real quadratic fields k
suggeststhat in general thisbound is poor. In fact, the following result saysthat, roughly
speaking, we may expect By to be closeto ¢’ logdx wherec’ = %zc =145..-.

PrROPOSITION 6. When k ranges over the real quadratic fields

f() = > pk Ress1(G)

di <x
is asymptotic to cxlogx with ¢ = £ ITp(1 — (p° +p?)~*) = 0.22037 - - -
PrROOF. According to Lemma9 below, if k is quadratic then

fik Ress=1(G) = pL (L x) = L'(L xi) + ( — log(4r) + = |09 dk)'—(l Xk)-

We then argue as in [Jutl] and [Jut2] to prove that g(X) = g <x 1 which equals the
number of real quadratic fields of discriminants less than or equal to x is asymptotic to
3x/ 72, that Y, <x L(1. xk) is asymptotic to c;x, that >q <x(10g dk)L(1, xk) is asymptotic
to cixlogx, and that g, <x L'(1, xk) is asymptotic to —cyX, with

an=[1+p ™"

pim
¢ = %mz %g(l—p‘z)(l—(p3+p2)‘) %lpi( ®°+p))
and
=3 anloi(?mz) =132 .

m>1

Since we may expect By to be smaller than the bound (31) given in section above, let
us now explain on a particular example how useful it might be to compute numerically
Bk.

3.2. Usefulness of the numerical computation of i, Res=1((x). LetN denoteadihedral
CM-field N of 2-power degree 2n = 8m = 2" > 8 and let k denote the only quadratic
subfield of N such that the extension N /k is cyclic. Thusk isreal. In [LO] we proved
that N has odd relative class number if and only if N is the narrow Hilbert 2-classfield
of k, the 2-Sylow subgroup of the narrow ideal class group of k iscyclic of order 4mand
the norm of the fundamental unit of k is equal to +1 (whichimpliesk = Q(,/pq) for two
primes 2 < p < g not equal to 3 modulo 4 and such the Legendre symbols (g) isequal
to +1), and we have the following lower bound:

64 (dk /167%™
emB2Z™2(log dy + 0.1)*’

(32) hy > ¢
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where )
ex = max(1— (2mne'/" / /). : exp(2rn/+/d))

is asymptotic to 1 when dy goesto infinity.
Now, using the bound By < £ log? dy (see (31)), we get

em\ m#(logdk +0.1)*

Therefore, 8m > 16 and hy = 1imply d¢ < 3-10°, and in [LO], thanks to an efficient
technique for computing relative class numbers of such narrow Hilbert 2-classfields, we
were able to compute the 9542 relative class numbers for al the k’s with dx < 3- 105,
which enabled us to determine al the dihedral CM-fields of 2-power degrees with
relative class number one. But now, we can aleviate this amount of required relative
class number computation: we compute By for each possiblek and get rid of the k’s for
which (32) yields hy, > 1. Note that it is much easier to compute By than to compute
hy. For example, there are 105 real quadratic fields k with dx < 3- 10° for which
[N : Q] > 128 and all of them are such that (32) yields hy > 1. In particular, hy = 1
implies[N : Q] = 2n < 64. Let us also mention that there are 462 real quadratic fields
k with d¢ < 3 10° for which [N : Q] = 64 and 443 of them are such that (32) yields
hy > 1. This first example clearly shows that being able to compute numerically By
might be quite useful. In the last section of this paper wewill giveastill more convincing
example.

3.3. Numerical computation of ux Ress=1(¢k) when k is totally real. So, let us now
explain how, for any totally real number field k of degree n, we can compute the
numerical value of By = ux Ress1(¢). Since

VB = /G Ressa(G) = e = () = [~ s+ [ S0

and Sc(X) = L1 ZaHn(Mx/Ay) (with A = \/dy /"), setting

Bl—s

% 1
(33) Kn1(B) = /1 BHyBYdx = | = M(s/2)c—ds (B>Oanda>1)

and

o dx 1 n Bl
(34) Kn2(B) = /1 BHA(BX)— = 5= /R 9 '(5/2=~ds (B> 0Oanda > 1),

we get
LEMMA 7. Let k be atotally real number field of degreen. We have

(35) ik Ressa(G) =72 ) %(Kn.l(m/Ak) + Kn2(M/AY)).

m>1
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i/ (/B2 _ {,/Y/B2 if Y > B2,
R(9)=

27 J; s—1 0 if 0 <Y< B?

and {(V1,....Yn), ¥i > Oand ITL, yi > B?} isincluded in {(y1.....yn), ¥i > 0 and
Ji/y; > BZ/”}. Therefore, we get

dyl dyn
K B) = e (a+tyn) L 2N
n(®) -//ylyz~~yn282 VY1 VYn
S dy
n/2 y2)
<o e
< nﬂ_n/ZBfl/nefBz/”
and 4 4
Kee®=B[[ e*(y“'“*yn)% - yy” < Kna(B).
J. 0> n

In particular, (35) is arapidly absolutely convergent series suitable for numerical com-
putations, each terms of which we can compute thanksto power series expansionsof the
functions K,,j. For example, we have:

PrROPOSITION 8. Lety = 0.577215664901532 - - - denote Euler’sconstant. TakeB > 0
and set s1(0) = —7, 2(0) = 72 /6 and for k > 1, set

Mr

1
=1+ T

Ik
S

W& have the following power series expansions:

1 BZk+1
K1(B) = +4k§)(_ 1 2lrlog B) 2k + (K2
and
Kaa(B) = (= + 2% + 4y logB + 2log? B)B + 4 K +logB) o
==+ + + + [ — + S
22(B) (6 Y% +4ylog og ) gl( ok~ Sik) +log )(Zk)(k!)z
Set also ’
s 1
SZ(k)_€+;i_2'
We have the following power series expansions:
(_1)kBZk+1

=32 _ ATHE
Kz1(B) = %2 Ig)ak(2k+ NCIE

and

( 1)kBZk+l
Kz2(B) = —boB — kglbk GO
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with
8 125K 2 a: 2
%= G ot 9(s1(9)” + 35,(K) (m + 1251(k)) logB +4log? B,
2 3 2
bo = ?’WTW/ + 9% +((3) + (N2 + %)IogB+6’ylogZB+glog3B
_ 8 125(k 2 8 2
0= ot ok 9(s1(K))? + 352(K) — (E + 1251(k)) logB + 410g? B.

Note that ¢(3) = 1.202056903159594 - - - .

ProOF. Letusonly provethefirst expansion. We shift theline of integration i(s) = «
in (33) to theleft to —oo. We pick residuesat s = 1 and at each non-positive eveninteger
s = —2k. Noticing that

Blfs
—1) =7

Re&;l(rz(s/Z)S -

and using the functional equation satisfied by the Gamma function we get

2k+1
2k + 1)(K)2

Bls 1 r’

2 = — — — —
ReS;fzk(r (S/Z)S_ 1) = 4(2k+ 1T (k+1) —log B)
from which we easily get the desired resullt. ]

4. Thecasewherek isabelian. Weimprove our boundson By and give a different
and more efficient technique for computing numerically Bx. Whenever x is an even
primitive Dirichlet character of conductor f, > 1 we set

00 dx 00 _.dx
(36) A= ((/M7T(S/ALE ) = [ SE— +W, [~ Si00x>—
(see (21)). Let x, be the group of primitive Dirichlet characters associated to k. Then

Fc(® =Fo(s) II A9 and M= ] A (D).

XEXk NEXk
\#1 \#1
Since 1
Fo(s) = 7521 (s/2)¢(9) = -7 —¢*0(s—1)

withc=1— ug = (Iog(47r) — W)/Z =0.976904291 - - -, using (15) we get
(1 1 1
pe=lim{ SRE - (575 - 5))

- ]_+|Si\I'R{FQ(S)(/\%k ;\\:8) - sTll}
\

=1+|si\n}{(:11 —c+0(s—1))
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(1+(s— n( % ;\\—;(1)) +0((s- 1)2)) - STll}

XEXk WX
\#L
N N
=l-c+ ) A_X(l):NQ"' 2 A—X(l)-
NEX WX XEXK X
x#1 \#1

Using (I /r)(1/2) = —y —log4 and dy =11, ex, f,, weobtain
x71

LEMMA 9. Lety = 0.577215- - - denote Euler’sconstant. Let k beareal abelianfield
of degreen > 2 and let Xy be the group of primitive Dirichlet charactersassociated to

k. Then,
2 L'(L. x)
—1——“/——|0 4r) + = IO dx +
Fk 5 g(4n) gdk + ng L)
x71
and
A(D)
(37) Bk = uk Ress=1(Gk) = o II LX)+ > IT L@ ).
X o ff v
\#1 x71 VLY

In particular, if k isareal quadratic field associated to a primitive quadratic Dirichlet
character y of conductor fy = d¢ we get

(38) pik Ress=1(Gk) = pqL(L, xx) + \/(—)

and if k isacyclic cubic field associated to a primitive cubic Dirichlet character yy of
conductor fy we get

W

(39) " Rwyl(ck):uQ|L(1.xo|2+28%( Lo 9).

4.1. A better bound on px Ress1(() whenk is abelian.

LEMMA 10. Let x be an even primitive Dirichlet character of conductor f, > 1. We
have

NIV < (Flogh, - 313) = (7109f, — Su0) (5109f, * o).
PROOF. Noticing that |S, (x)| < So(x/ \/ﬂ) and using (36) we obtain
N < [ S/ yR)ogx 1+ ) e

Wesetf = \/f and must prove |\ ()] < 3 Iog f— EMQ Using the functional equation
S(1/X) = xSH(X) + x — 1 (see (20)), we obtam
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N < [ Solx/fllogx) (1+
/l p So)(log(fx) (f +
/ So(3)(log(fx)) (f+ )d /sQ(l/x) |og(f/x))( )dx
[ so9(10a(t) (1 + i)d SQ(X)(Iog(f/x))( 1) dx
+/ (Iog(f/x))(x—l)(— -)dx
/ S |og(fx))(f+ )dx+/ S |og(f/x))( ) X
+—Iog f— (F +1)logf +2(f — 1)
_(f+1)|ogf/ sQ(x)(1+ )dx+(f —1)/ sQ(x)(|ogx)(1—-)
/ So(¥) Iog(x/f))( +1) dx+ L log?f — (f +1)log +2(F — 1)

= fTIog f—(@1—a)f +1logf +2+b)(f —1)+R(f)

where we have set

a=./;oSQ(x)(1+)—1()dx, b=‘/lOOSQ(x)(Iogx)<1—%)dx
and
R(f)—/ SX) Iog(x/f))( +1)dx f/ xSQ(fx)—(Iogx)dx
Noticing that

Fo(s) — (%1 _ —) / SO +X -S)— o +vo(s— 1) + O((s— 1?)

S

weobtaina = ug = (2+“/—Iog(47r))/2 0.023095- - - and b = v = 0.000248155- - - .
Finally, sincex > 1 implies ((x + 1) logx) /x? < 1, using (19) we have

222 1 2 2 1 T 2
< —7Tnf X — —mn’f < g7t — 0 qf
R() < 2fn§/ dx glmzfe <e Y T Ee
and
|/\’ (1) < —_— Iog f—@Q—-a)(f +1)logf +(2+b)(f —1) + *”fz.
The desired result follows. n
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THEOREM 11. Letk beareal abelian field of degreen > 2 and conductor f,. We have

n—1 1 " n-1
= < - — < = n
(40) By = uk Res=1(¢k) < 5 (Z(n Y logdyk + HQ) S o (logfk +2uq)

PROCF. Using (37), (6) and previous lemma, we get

1 1 1 1
Bk < u 5 logfy, +pq ) + —logf, — Su 5 logfy +pu
Q &(2 X Q) &(4 Y2 Q) dg(k(z ‘ Q)
x#1 x#1 vFL
1 3—n 1
- (F1o90r25"%) 11 (219t 10
x71

IN

1 3—n 1 n-1
(3 logd+ = “Q)(z(n—l)'ogd““‘?)

<L1 ;Iod+ "
=72 (Z(n—l) 9% “Q)'

4.2. Numerical computation of ux Ress=1(¢k) whenk isabelian. According to (36), we

have
00 00 dx
N(1) = /1 S, (¥)(I0g X) dx — W, /l S:0)(logx) .
Since
_ 1 s
S0 31 [, A8
setting
1 Bl—s
KiB) = 5= /ﬁ o r(s/z)—(s_ 7 ds
- > B 2B ~B2 g — LBZ
—ZB/l e logtdt < o /:Ote dt = =B
and
1 BlﬁS 0 _p2p2 dt
= — = » — < .
Ka(B) = 5 /R o (625 ds=28 /1 e logt— < Ka(B)
we obtain:

LEMMA 12. Let x be an even primitive Dirichlet character of conductor f, > 1. We
have

N/ = (2 K - w2 Mk
where By, = /7P /f,.
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Note that if k is quadratic then this formula boils down to

N, (1)) Vi = 2 X"rgm) (K1(Bm) — K2(Br)).

m>1

Setting

Ru= > Wiy —w, » Wiey,

m<M m>1

we notethat if M is any integer greater than or equal to \/ Af /7, then we have

|/\/(1)/\/7 RM| < Z 2e” B% 2\/1:/7/ 77’”12/fdm

emBm eMs3

_ /7T) 32 ™/ < e_A

Finally, asthere is no known general formulas for Gauss sums we need compute

eZT'X/fx - < ox /).
ﬁ ;1 xX(%) ﬁ 192/2)(()() cos(2rx /f,)

and it is not much more time consuming to also compute

L0 =25 Seotogsin/f) = 20 5 ) logsin/f)
x *x=1 \/fx 1<x<f, /2
We note that if k is real quadratic then W, = 1 need not be computed, and it is more
efficient to use [WB] to compute the regulator and class number of k, from which we
deduce the exact value of L(1, x«).
Moreover, in the same way we proved Proposition 8 we would prove:

PropPosITION 13. We have

(_1)kBZk+l
Kl(B)——\/_( +IogZ+IogB)+ZB+2kglm
and
B 2 72 ( 1)kBZk+l
Ky(B) = (2—4 + 7 +7logB + log? B)B ZK; 2P

PROPOSITION 14. If k is a real quadratic field, then d, < 10° implies ux < 7,
Ress1(Gk) < 5 and px Ressi1(¢&) < 11 (note that %Iogz(105) = 16.56---). If k is
cyclic cubic field of prime conductor p = 1 (mod 6), then p < 10° implies p < 12,
Ress=1(¢k) < 21 and uk Res=1(¢k) < 91 (note that % log®(10°) = 254.33- - ).
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5. On the classnumber one problem for some non-abelian normal CM-fields of
degree24. From now on, welet N be anon-abelian normal CM-field of degree 24 with
Galois group SL»(F3), the special linear group over the finite field with three elements,
and we let N* be the maximal totally real subfield of N. Therefore, N* is a non-abelian
normal field with Galois group Ay, the alternating group of degree4 and order 12. Since
A4 has a unique (normal) subgroup of index three, we let k denote the unique (cyclic)
cubic subfield of N* and let fy denote the conductor of k. We note that the extension
N* /k is abelian with Galois group isomorphic to the four group (Z /2Z)>?.

To begin with, we give lower bounds on the relative class numbers hy of such N’s.

First, one proves that the Dedekind zeta function of N satisfies

(n(1—(2/logdy)) <O.

Indeed, (n+/( is the cube of the entire Artin’s L-function associated to the character
of degree 3 of the alternating group Gal(N*/Q) of degree 4 and order 12, and ((s) =
¢(9)|L(s. xk)|? < Ofor any s € 10, 1[. Therefore, if (y+(So) > O for somesp € 10, 1[, then
(n+ has at least atriple zero on ]sp, 1[. Now, one proves that the Dedekind zeta function
of any number field M has at most two real zerosin therange1 — (1/ logdu) <s< 1.
Putting everything together, we deduce that {y+ does not have any rea zero in the
range 1 — (1/logdy+) < s < 1, hencein therange 1 — (2/logdy) < s < 1, which
implies §N+(1 —(2/1og dN)) < 0. Since (v /(v is the square of the entire Artin's
L-function associated to the character of degree 2 of the quaternion group Gal(N/k)
then {n/¢v+ is entire and ({v/¢n+)(So) < O for any 5o € ]0, 1[. Hence, we do have
(n(1—(2/logdy)) <O.

Second, using ¢u(1 — (2/ logdy)) < 0 and setting ey = 1 — (24re"/2/d/*), we
have:

Ress=1((n) > 2en/ logd.

Using (10), we get:

PrROPOSITION 15 (SEE [LLO]). Let N bea normal CM-field of degree 24 with Galois
group isomorphic to SLy(Fs). If the relative class number hy of N is odd then the
quaternion octic extension N /k is unramified at all the finite places, which yields dy =
d2. = df =126, and wy = Qu = 2, which yields

fic / logfi

(1) M 2 O ez ResmaGr)

wheree = 1 — (24mel/12 /f2 /%) is asymptotic to 1 when fi goes to infinity.
Now, using (11) and (41), we get

_ 2f4
(42) hy > ex E
11((8re/11) logfy )
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and obtain hy > 1 for fy > 970000, quite alarge bound.
But, using (5), (8) and (14), we get

Reser () < Resea () sk Resa(40)” < oy g +0.08)™

which together with (41) imply

f4
43 hy > € k
3 N k4e(7r(logfk+0.05))12
which yields hy > 1 for fy > 83000, a much more reasonable bound. Neverthe-
less, this bound is still too large to solve easily the (relative) class number one prob-
lem for these N's. Indeed, according to [Lou2] we would have to do at least >
/dn/dnelog® dy /dn+ > ¢ log® i elementary operations to compute each hy and,
moreover, it is not that easy to explicitly construct N from k. However, according to
Section 4.2, the computation of each By can be donein <« fi elementary operations and
we might expect that the lower bound

f¢ / logfi

2e(2m)*? Ress-1(G) B}

(use (41) and (5)) will imply hy > 1 for most of the fields k with f, < 83000. To
simplify, we shall now focus on the class number one problem for these N's (and refer
the reader to [LL O] for the solution of the relative class number one problem for these
N’s). To start with, we notice that thanks to class field theory and Proposition 15, if
hy = 1then hy = 4, hencefy isaprime equal to 1 modulo 6. We computed the numerical
values of Resc1(¢k) and By = ux Ress1(¢k) for the 4784 possible k of prime conductors
f« = 1 (mod 6) such that fy < 10° and found that (44) implies hy > 1 except for 250
cyclic cubic fields k, the 56 of them with conductors greater than 5000 being given in
the following Table. Note that only 10 out of them are such that their class numbers are
equal to 4.

(44) hy = ex

Case fi h¢||Case fx he|[Case f« hg||Case fx by
250 21787 236 12007 222 8893 208 6967
249 19843 235 11971 221 8779 207 6301
248 18307 4| 234 11923 220 8707 206 6271
247 15973 233 11551 219 8629 205 6091
246 15679 232 11149 4| 218 8317 204 6079 4
245 14407 4| 231 11113 217 8191 4 || 203 5953
244 14197 230 10957 4 || 216 8167 202 5821
243 13063 229 10243 215 8011 4 || 201 5737
242 12973 228 9973 214 7963 200 5569
241 12799 227 9931 213 7723 199 5347
240 12583 226 9817 212 7639 4 || 198 5323
239 12391 225 9439 211 7369 197 5197 4
238 12343 224 9109 4| 210 7333 196 5113
237 12163 223 8929 209 7213 195 5101
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Now, accordingto[Gra], thereare 32 cyclic cubicfieldsof primeconductorsfy < 5000
and class number 4, the ones given in the following Table and for 14 out of them (44)
implieshy > 1

Case fi hN Case fi hﬁ Case fi hﬁ Case fi hﬁ
1 163 9 937 17 2311 >1|| 25 4099 >1
2 277 10 1009 18 2689 26 4261 >1
3 349 11 1399 19 2797 >1|| 27 4357 >1
4 397 12 1699 20 2803 28 4561 >1
5 547 13 1789 21 3037 > 1|| 29 4567
6 607 14 1879 > 1|| 22 3271 30 4639 >1
7 709 15 1951 > 1|| 23 3517 >1|| 31 4789 >1
8 853 16 2131 24 3727 >1|| 32 4801 >1

Moreover, according to the following Table, only 23 out of these 28 = 10 + 18
remaining cubic fields k are such that their narrow class numbers are equal to 4:

Case fk h; Case fk h; Case fk h; Case fk h;
1 163 4| 8 853 4|| 15 2689 4|| 22 8011 4
2 277 4|1 9 937 4| 16 2803 4|| 23 8191 16
3 349 4 || 10 1009 16|| 17 3271 4|| 24 9109 16
4 397 4| 11 1399 4 || 18 4567 4 || 25 10957 4
5 547 4| 12 1699 16|| 19 5197 4 || 26 11149 4
6 607 4| 13 1789 4|| 20 6079 4 || 27 14407 4
7 709 4| 14 2131 4| 21 7639 16|| 28 18307 4

Hence, wefinally get the following results which clearly show how useful our bounds
on By and our techniquesfor computing numerically By are:

PROPOSITION 16. Let N be a normal CM-field of degree 24 with Galois group iso-
morphic to SL,(F3), the special linear group over the finite field with three elements.
Assume that the class number of N isequal to 1. Then,

1. Theclassnumber h, and narrow classnumber h; of k areequal to 4, whichimplies
that the conductor fy of k isa prime equal to 1 modulo 6.

2. N* isthe narrow Hilbert 2-classfield of k, the narrow class number of N* isequal
to 2 and N is the second narrow Hilbert 2-class field of k.

3. Finally, f is equal to one of the following 23 prime values: f, = 163, 277, 349,
397, 547, 607, 709, 853, 937, 1399, 1789, 2131, 2689, 2803, 3271, 4567, 5197, 6079,
8011r, 10957, 11149, 14407 or 18307.

PrOOF. Use Proposition 15. ]

Finally, we refer the reader to [CK] and [Lef] for other examples of the use of the
techniques developed in this paper.
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