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FRENET FORMULAE FOR HOLOfiORPHIC CURVES

IN THE TWO QUADRIC

KICHOON YANG

We give a complete description of holomorphic curves in the

complex two quadric via the method of moving frames. For compact

curves a Morse theory type integral formula is derived.

0. Introduction

Let M be an orientable Riemannian two manifold. Also let Q

denote the hyperquadric in CP which is identified with the real

Grassmannian of oriented two planes in R . in this paper we study

isometric holomorphic immersion of M into Q. , where M is given the

induced complex structure coming from its (two dimensional) Riemannian

metric.

Viewing Q~ as a homogeneous space S0(4)/S0(2)*-S0(2) we apply

the method of repere mobile. We succeed in finding a local normal form

(10), and in doing so we stumble upon a global contact invariant which we

call T. This invariant T is our analogue of the torsion of real curves

in Euclidean three space. Indeed the totality of holomorphic isometric

immersions of M into Qg is parametrized by solutions of a single

differential equation (17) on M involving the Gaussian curvature of M

and the invariant T. Moreover, given a solution K, T of (17) an
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actual immersion of M into Q is constructed using integration involv-

ing ordinary differential equations only. Thus the equation (17) may be

called the complete integrability condition of the exterior system

describing holomorphic isometric immersions of M into Q_ .
Li

Assuming that M is compact and connected now, integration of (17)

yields an interesting integral formula (21). This formula relates the

number of zeros of T, area of M , and the Euler-Poincare characteristic

of M in a simple way. The significance of this Morse theory type formula

is not apparent to the author.

Finally in section 3, as an application of our local normal form

(10) the superminimality of the orthogonal maps of holomorphic curves in

Q? is established.

1. Frenet frame construction

In this section we give a moving frame theoretic description of

isometrically immersed holomorphic curves in the two-quadric. Besides

finding a local normal form (10) for such curves we obtain a single global

invariant, which we call T. The totality of holomorphic curves then is

parametrized by the solutions of a PDE on M (17) involving the Gaussian

curvature and T.

Let Qo denote the complex hyperquadric in CP . Qo is also the

real Grassmannian of oriented two-planes in R . As a homogeneous space

Q = S0(4) / S0(2)*S0(2).

The following index convention will be adhered to throughout this

section: 1 < i,3,k, ... < 2, 3 < a,b,c, ... < 4, and 1 < a,$,y, ... < 4.

If A = (A^A^A ,A ) = (Aa) e S0(4) then the projection map

IT; SO (4) ->• Q. is given by v(A) = C/L A AA = L4 + iA ] , where

[ A- A A„] is the oriented two-plane in R spanned by A^ and A^ and

[ A^ + i-A^'] is the point in CP' represented by the homogeneour coordin-

ate vector yl + iA?.
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Curves in the Quadric 197

Let ft = (tft) denote the Maurer-Cartan form of SOC4), Then a
P

50(4)-invariant hermitian metric on Q. is given by the pull-back of

.) . (This is the induced metric of the inclusion Q c CP j

the latter with the standard Fubini-Study metric.)
2

We use (M, ds ) to denote a connected, orientable Riemannian two
1 2

manifold. Let 9 3 9 3 be a local orthonormal coframe field so that

ds = (9 ; + (B )2 . By decreeing that $ = B1 + i82 is of type (1,0)

we introduce an almost complex structure on M and by the Korn-

Lichtenstein theorem this almost complex structure is actually complex,

hence M is now a Riemann surface.

Let f : M •*• Qo be a holomorphic, isometric immersion. A local

lifting e = (ej : U c M + S0(4) (which exists) will be called a S0(4)-

frame along / . Note that TT o e = f = [e
±

]

. n a a .1 1 , 3 . 3, ,2 1 , 4 . 4 ,
Notation. e*fi Q = w J ( J > = — (a + %u>n), § = — (u> + tw J .

/2 ^2

1 2Then holomorphicity of / is reflected by the fact that $ and <!> are

type (1,0) forms on M. Thus we can find locally defined complex valued

1 2
functions Z , Z such that

1 1 2 2
( 1 ) $ = Z $ , <f> = Z < f l .

Since / is an isometric immersion we must have

(2) \Z2\2 + \Z2\2 = 1.

Given e, other local S0(4)-frames along f are given by e = ek

it it
where k = (e , e ) : U + U(1)*U(1) = S0(2)xS0(2). (We use the
• j ^-c- 2.- it fcos t, -sin t l .
identification e ** \ . . . \ •)

l.sin t, cos t J

Notation, e il = u 3 similary define C$ ) .

~1 ~2
Let Z , Z be locally defined complex valued functions so that

(3) 4> =
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Computations show

(4)

that

'#'

z2
__

cos

-sin V

sin t2

cos £.

z1 '

Define T =
9 9 9, ~ • ~7 9
+ (Z T\, T = \(Z ) +

From (4) it follows

immediately that T = x , that is, T is a global invariant. Note that

T : M •* : 10,1 ].

PROPOSITION, i) If x is constant then either x = 0 or T = 1;

i i) if x - 0 then f(M) is congruent to an open submanifold of

(totally geodesic) CP7 = U(2) / U(l)xU(l) c Q^ with the Gaussian

curvature 4;

i i i) if x i 1 then f(M) is congruent to an open submanifold of

o
Q = 3 = SO (3) / SO(2) c Q with the Gaussian curvature 2.

Proof. The proof of i) will be given at the end of this section.

'.-,1
Suppose that T = 0. Put 2 =

1 1 2 2
w h e r e <(> = Z < t > j < J > 3 = Z § a s

in (1). Then ReZ ± ImZ and |ReZ| = llmZI = — at every point of M.

1 /2

Thus we can choose a S0(4)-frame e about any point of M so that,

relative to e ,

j> = — $ , <j>
*., 3 . 3 , , , 4 . 4 ,

, that i s , e*{0, + 1,QO) = ^ e*(ft7 + ^ftc;

Consider the exterior system on S0(4) given by {ft. = fi.j fi,, = -ft.

This system defines a completely integrable left invariant distribution on

S0(4)1 = U(2) .S0(4) whose analytic subgroup is H = j _ -

It is now a fairly easy matter to check that f(M) is congruent to an

open submanifold of H / G n {S0(2)*S0(2) }. The proof of iii) is omitted.

(We just mention that the exterior system to consider for iii) is

{ n * = o 3 n4
2 = o h ) •
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Remark. The above two cases (T S 0, T si) give the only

homogeneous holomorphic curves in Q~j this now follows essentially from

a theorem of E. Cartan ([2] , p. 255, also [4] , p. 41).

LEMMA, T is either identically zero or T {0} is an isolated set.

Proof. Assume that T is not identically zero. Recall that

T = (Z )2 + (Z )2 where 7T, Z are defined by (1), which says

<(, = Z <j> , <(> = Z2<j> . Put T = CZ1)2 + (Z )2 . Then, though T C is

defined only up to modulus, T~ {#} is a well-defined set and indeed

Tp {0} = T {0} . Now using the structure equations of S0(4) we obtain

(5) u A 4, - JA

A

We also have

(6) d§ = ito A <(> ^

2
where 10 is the Levi-Civita connection form of (M,ds ).

It follows that (using d<^ = d(Z%'$))

(7) dz1 = iz1(uK)-^) - z2u3.

dz2 = iz2r^-oo; + z1*3.

Thus

(8) cfT = 2i~: (m -m)

It now follows from a theorem of Chern ([3], section 4) that the zero set

of T (hence that of T ) is isolated. Moreover, the theorem says that

the zeros are all of finite multiplicities.

Assume that T is not identically zero. Let p e. M\ T ioh

Then, in a neighbourhood of p} x is never zero, hence TQ , defined on a

possibly smaller set, is never zero. Define real valued 9 by T^ = Te .

Possibly restricting to a yet smaller neighbourhood of p we can assume
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that 8 is a smooth real valued function. CTake a smooth single-valued

-e Ui
brance of 9.) Let t^ = —^ , k = Ce , 1)3 and e = eh. Then using

[~717 I
~2 w e

then must have ReZ L ImZj and | ReZ| > ] ImZ| . Now applying the rotation

in the normal plane we can change Z to ., 3 where a > \b\ > 0.
V-b)

2 2
Since a + b = 1 ((2)) we can find locally defined smooth a such that

(9)

a = cos a,

b = sin cij

IT

We summarize the preceding discussion as follows. In a neighbourhood

of every point of M\T {0} there exists a SO(4)-frame relative to which

the following normal form holds;

.1
t

(10)

= cos a

-"--•- <j>, where - \ < a < -r

So, on AAT {#} we have

2 2

(11) T = cos a -sin a = cos 2a > 0.

Upon exterior differentiation we get

(12) dx = -2sin 2a da .

On the other hand (8) gives
(13) dx = 2ix(a -w) dnodiJ>J.

Combining (12) and (13) and using the fact that T is real we get

(14) Csin 2a do. + icos 2a fa) -a>j] A $= 0 .

It follows that

(15) 2t(u-w12) = *dx ,

2
where * is the Hodge operator of (M,ds ) .

Rewriting,

(16) 2(u-t/2) = *<£logr .
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2
Let K denote the Gaussian curvature of CM, ds ) so tha t

-/ _-
dm = -r- K <j> A <j, . Also let A. denote the Laplace-Beltrami operator of

2 •£

CM, ds ) so that <i*<2log = -r CkJLoqi) § A <J,.

Exterior differentiation of both sides of (16) now gives

(17) 2(K - 2) = A log T .

The equation (17) holds in M\i~ {0}.

Proof Of Proposition part i). Assume that T is constant and not

zero. So the local normal form (10) is valid. Using (10) the equation in

3 3
(7) becomes dcosa = -isina u ('modifij, idsina = cosa m. fmod<j>J. It follows

that (D = 0. Hence du> = to A W + u A OJ = - icosasina cf> A § = 0 .

Since - -7 < a < — we must have sina = 0. and a = 0. This means that
4 4

T = cos 2a = 1.

Remark. i) If K > 2 then (17) says that logr is subharmonic

with singularities at T {0} where it goes to -°> . Further if M is

compact then logt attains a maximum in M, hence is constant by the

maximum principle for subharmonic functions. It follows that K = 2.

ii) Combining the Proposition part ii) with the preceding remark it

follows that for compact M,K =4 if and only if T = 0.

2. Integral formulae.

In this section we assume that M is a compact, connected, orient-

able surface. Write M = M , g, the number of handles. We have

X(M) = 2 - 2g , where X CM) is the Euler-Poincare characteristic.

Let / : M -*• Qp be a holomorphic, isometric immersion as in section

1. Then in M\T {0} the equation (17) holds and T {<?} is a finite set

(or T is identically zero.) In the following we will give an integrated

version of (17) relating xCM) , Rxea(M) , and the number of zeros of T .

We have
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(18) hxeaCM) = \
m

Note t h a t though <f) i s defined only local ly 4> A 4> i s a global 2-form

and -T- $ A <f> i s the area form of M.
a

The Gauss-Bonnet-Chern theorem states

As an application of the elementary argument principle we get

(20) - —r- AlogT § A <t = # (T
4v )

M

where # (T {0}) is the number of zeros of T each counted with multipli-

city. Of course, here, we must assume that T is not identically zero so

that the formula makes sense in view of the Lemma in section 1.

We also know that — Area(M) is a positive integer. This follows

from the well-known equidistribution property of compact projective curves:

Include f(M) c Q c CP' . Then for a non-planar f(M) in CP3,- flreafW
Ci Tl

is the intersection number (counted with multiplicity) between f(M) and

any CP2 c CP3 .

Integrating (17) over M now gives:

THEOREM A. Let M be a compact, connected, orientable surface with

a Riemannian metric, equipped with the induced complex structure. Assume

that the Gaussian curvature of M is not identically equal to 4. Also

let f : M ->-Q „ be a holomorphic, isometric immersion. Then (with

notation as above)

(21) # (T'1^)}) = 2f^Area(W - X(M)) .

COROLLARY, i ) If M = M = S2 then Area(M) > 2ir . Note the case

K = 4 has been excluded. Also, then, Area (M) = 2TT if and only if f(M)

is congruent to Q7 •
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i i ) if M = M with g > 1 then T~ {0} is not empty, hence M
y

(T~ {0}) is a positive even integer.

3. Normal superminimal surfaces

As an application of our frame construction in section 1, in

particular the local normal form CIO), we will show that the normal map

of a holomorphic curve in (L is superminimal. (See theorem B. below

for a precise statement.) But first we review briefly the notion of

superminimality.

Superminimal surfaces naturally arose as minimal spheres in

Euclidean spheres or, more generally in spaces of constant curvature.

2
(The nomenclature was first employed in [/].) Let (M, ds ) be a

connected, orientable two-manifold endowed with the induced complex

2
structure as in section 1. Also let (N, ds^) be a Riemannian manifold

of dimension n > 4. We consider a smooth isometric immersion g: M •*• N.

We will use the following index convention for the rest of the paper:

1 < i, 3, k,... < 2, 3 < a,b,o, ... < n, 1 < a.,Z,y, ... < n.

Let (Q ) be a (local, of course) orthonormal coframe on N. The

Levi-Civita connection forms (Bo) are characterized by the structure
p

equations dQ = -6D A 9 . An orthonormal coframe (6 ) along the map
p

g is called a Darboux coframe if (6 ) = 0 on M. If f9 ) is a

Darboux coframe then dQ = -9. A 0 = 0 for every a. Applying Cartan's
if

lemma we get 9. =h . .9 for some local functions h. . = h .. . Define
% id 1-3 3^

Sa = -ha^ + ih°L0 and put S = (S
a). Let <J> = 9̂  + id2. Then • is a

2
type (1,0) form on M and dsM = §i> . Then the quartic symmetric form

t 4
of type (4,0) 4> = SS<fr is a globally defined form on M.

DEFINITION. A smooth isometric immersion g: M -*• N is said to be

superminimal if it is minimal and $ vanishes identically.
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Now if N is of constant curvature then one can show that $ is

holomorphic, hence by Riemann-Roch a minimal sphere in N is superminimal

with the induced metric. Of course, this is not the case for N = Q..

We now consider f: M -v Q. a holomorphic, isometric immersion as

before. If e = (e ,e ,e ,e ) is any S0(4)-£rame along / (that is,

f = [e- A e.2) then the normal map j : M -*• Qo is defined to be

[e_ A e ] which is globally defined.

THEOREM B. Let f: M •+ Q. be a holcmorphia3 -isometric immersion of

2

a connected, orientdble two-manifold (M, ds ) with the induced oomplex

structure. Then the normal map j : M •* Q_ is a superminimal (not +

holomorphic) immersion.

Proof. If e = (e ,e ,e ,e ) i s any local S0(4)-frame along /

then E = (E-3E ,E }E ) = (e ,e ,e e ) is a local S0f4j-frame along

g - f • Using the notation M* = e*fi" and u° = E*Q we get
p p p p

to01 = u) a , o j where la + 2 I i s def ined t o be a + 2 (mod 4) , and
6 | p + ^ I

l i k e w i s e f o r |g + 2 \. Let <)> = — (w7 + iio9) and <\> = — (to + i^J •
J2 l * f2 2 d

Recall that £ = - (J + il) = Z14, / = - (tl + iJ) = Z2 <\>, W f+\Z2 f=

1, (fi a local unitary coframe on M. So the induced metric on M by g

is V * 3 + %2^2 = J (</3)
2 + (u4)

2 + (u2)2 + (J4)
2 = <$>$ . This shows that

g = j is an isometric immersion.

We first assume that T is not identically zero so that the local

normal form (10) is valid in M\i {0} where T {0} is an isolated set.

We will show that g = J is superminimal in M\T~ {<?}. Then g has to

be superminimal everywhere in M by a simple continuity argument in view

of the fact that g is an isometric immersion. In a neighborhood of a
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point in M T {(?} we can choose a S0C4)-frame along f so that

relative to it ij> = cosa 4>, <j> = isina , where - -J <• a < — . tThis is

"1 1 2 "2
(10) .) This means that <)> = -cosa 8 + isina 6 , and <j> =-cosa -

1 1 2 ~ 1 * 2
isina 9 , where <f> = 6 + id . It is at once observed that <j> j<j>

are neither of type (1,0) nor of type (0,1), hence j is neither

holomorphic nor antiholomorphic.

1 "3 "4 A3 ~4 "1 "2 "3 "4 £~
Now — fu^j a), iii . co0J = (6 , 9 , 9 j 6 ) = 8 form an orthonormal

f2 1 1 2 2

coframe along the map g = j". Let k be a S0(4)—valued (local) function

on M given by

' -o 0 8 0

0 -c 0 s

0 s 0 c

-s 0 -o 0

k = , where o = cosa, s = sina.

~t 1 2 3 4 — 1"
Then 9 = (Q,Q,Q,Q) = k Q i s a Darboux coframe along g, t h a t i s ,

6 = 8 = 0 on M. Computations show t h a t 8., = do. = 9 . and
J. u

i = 4 = -*r s° ei - huel + h3i2*2 - 4 = h42i%1+sY
92 = hllQl + 42e2 = - 4 = - h V ~h412Q2 •
4 4 4 4 3
11 + ^22 = ® a n d ^12 ~ ^21 i l n P l i e s t h a t fiji

h12 = h\l i m p l i e S t h a t

3

that f is minimal.

Now using the normal form (10), (7) becomes

This proves

dcosa= icosa (us -us) - isinaio ("modcfij

idsina = -sina (u>p-ui) + cosa a) .("modijij

I t follows that da= -sina dcosa + cosa dsina = ixw, (inodifij, Using the

fact that da. is real it follows that ™ = *da. But this means that
o

4 +3
Ql " % so IT
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•f- 3 3 2 4 4 2
SS = (-hjj + i L J + (~hU + ^ l d ~ °' H e n c e t h e quartic form 0

vanishes proving that j is superminimal.

We now consider the case T identically zero. Then in a neighbour-

hood about any point of M we can choose a SO C4) -frame along / so that

1 1 2 i
r e l a t i v e t o i t <f> = — <f>j <j> = — <j> , CSee t h e proof of t h e P r o p o s i t i o n i n

/2 Jl

section 1.) Using this local normal form an argument completely analogous

to the one given for the case T not identically zero finishes the proof

of the Theorem. •
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