Some inequalities in trigonometric approximation

Chin-Hung Ching and Charles K. Chui

> For a nonconstant $L^{2}(-\pi, \pi)$ function f, we prove that $\frac{1}{\pi} \omega_{2}\left(\frac{\pi}{n+1} ; f\right)<\left\|\sigma_{n}(f)-f\right\|_{2}<\frac{1}{\sqrt{2}} \omega_{2}\left(\frac{\pi}{n+1} ; f\right)$ and that the inequalities are sharp.

Let $s_{n}(f)$ be the n-th partial sum and $\sigma_{n}(f)$ the n-th Cesàro means of the Fourier series of an $L^{2}=L^{2}(-\pi, \pi)$ function f. Extend f periodically to the real line and let $\omega_{2}(\delta ; f)$ denote the L^{2} integral modulus of continuity of f. For nonconstant f, Cernyh [1] proved that

$$
\begin{equation*}
\left\|s_{n}(f)-f\right\|_{2}<\frac{1}{\sqrt{2}} \omega_{2}\left(\frac{\pi}{n+1} ; f\right) \tag{1}
\end{equation*}
$$

and that the constant $1 / \sqrt{2}$ cannot be made smaller. In this note, we show that Cernyh's proof can be improved to give

$$
\begin{equation*}
\frac{1}{\pi} \omega_{2}\left(\frac{\pi}{n+1} ; f\right)<\left\|\sigma_{n}(f)-f\right\|_{2}<\frac{1}{\sqrt{2}} \omega_{2}\left(\frac{\pi}{n+1} ; f\right) \tag{2}
\end{equation*}
$$

for all nonconstant $f \in L^{2}$ and all n. We also note that the constant $1 / \pi$ cannot be made larger, and hence, the inequalities in (2) are best possible. In general, it is well-known that $\left\|\sigma_{n}(f)-f\right\|_{p}<C_{p} \omega_{p}\left(\frac{\pi}{n+1} ; f\right)$. However, the best constants $C_{p}, p \neq 2$, do not seem to be known to our knowledge.

To prove the inequalities in (2), we write

$$
\left\|\sigma_{n}(f)-f\right\|_{2}^{2}=\sum_{|k| \leq n}\left(\frac{k}{n+1}\right)^{2}\left|a_{k}\right|^{2}+\sum_{|k|>n}\left|a_{k}\right|^{2}
$$

and

$$
\omega_{2}^{2}\left(\frac{\pi}{n+1} ; f\right)=\sup _{0 \leq t \leq \frac{\pi}{n+1}} \sum_{k=-\infty}^{\infty} 4\left|a_{k}\right|^{2} \sin ^{2}\left(\frac{k t}{2}\right),
$$

where the a_{k} are the Fourier coefficients of $f \in L^{2}$. It can be shown that

$$
|k| \leq n+1) ~\left(\frac{k}{n+1}\right)^{2}\left|a_{k}\right|^{2} \leq \sup _{0 \leq t \leq \frac{\pi}{n+1}}|k| \leq n+1 \quad \sum_{k}| |_{k} \sin ^{2}\left(\frac{k t}{2}\right) ;
$$

and following the proof of the theorem in [1], we have

$$
|k|>n+1<a_{k}\left|a^{2}<\sup _{0 \leq t \leq \frac{\pi}{n+1}}\right| k\left|>n+1<1 a_{k}\right|^{2} \sin ^{2}\left(\frac{k t}{2}\right)
$$

for nonconstant f. This gives the second inequality in (2). The other inequality in (2) also follows, since if f is not constant, then

$$
\begin{aligned}
\omega_{2}^{2}\left(\frac{\pi}{n+1} ; f\right) & \leq \sup _{0 \leq t \leq \frac{\pi}{n+1}}|k|_{\leq n} 4\left|a_{k}\right|^{2} \sin ^{2}\left(\frac{k t}{2}\right)+4 \sum_{|k|>n}\left|a_{k}\right|^{2} \\
& <\pi^{2} \sum_{|k| \leq n}\left(\frac{k}{n+1}\right)^{2}\left|a_{k}\right|^{2}+4 \sum_{|k|>n}\left|a_{k}\right|^{2} \\
& \leq \pi^{2}\left\|\sigma_{n}(f)-f\right\|_{2}^{2} .
\end{aligned}
$$

That the constant $1 / \pi$ cannot be made larger follows simply from the example $f\left(e^{i t}\right)=e^{i t}$

Reference

[1] H.H. Черных [N.I. Cernyh], "О неравенстве Дженсона в L_{2} ", [On Jackson's inequality in L_{2}], Trudy Mat. Inst. Steklov. 88 (1967), 71-74; quoted from Proc. Steklov Inst. Math. (Amer. Math. Soc.) 88 (1969), 75-78.

Department of Mathematics,
Texas A\&M University,
College Station,
Texas,
USA
and
Department of Mathematics,
University of Melbourne,
Parkville,
Victoria;
Department of Mathematics, Texas A\&M University,
College Station, Texas,
USA.

