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Abstract The global analogue of a Henselian local ring is a Henselian pair – a ring R and an ideal I
which satisfy a condition resembling Hensel’s lemma regarding lifting coprime factorizations of monic
polynomials over R/I to factorizations over R. The geometric counterpart is the notion of a Henselian
scheme, which can serve as a substitute for formal schemes in applications such as deformation theory.

In this paper, we prove a GAGA-style cohomology comparison result for Henselian schemes in positive
characteristic, making use of a ‘Henselian étale’ topology defined in previous work in order to leverage
exactness of finite pushforward for abelian sheaves in the étale topology of schemes. We will also discuss
algebraizability of coherent sheaves on the Henselization of a proper scheme, proving (without a positive
characteristic restriction) algebraizability for coherent subsheaves. We can then deduce a Henselian
version of Chow’s theorem on algebraization and the algebraizability of maps between Henselizations
of proper schemes.
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1. Introduction

In this paper, we will discuss Henselian schemes, which are a model for algebraic tubular

neighborhoods in algebraic geometry. More specifically, we will consider proper schemes

over a Henselian base ring and how they compare to their Henselizations.
As discussed in Section 2, an affine Henselian scheme Sph(A,I) for a Henselian pair

(A,I) (a ring and ideal satisfying a condition resembling Hensel’s lemma) is a locally

ringed space with underlying space V (I)⊆ Spec(A), and equipped with a richer sheaf of
rings – namely, on distinguished affine opens and on stalks, it is the Henselization with

respect to I of the structure sheaf of Spec(A). These affine Henselian schemes can be

glued together to form general Henselian schemes. One example of a Henselian scheme is

the Henselization of a scheme along a closed subscheme, which yields a Henselian scheme
that has the same underlying space as the closed subscheme and a structure sheaf which

is in some sense the Henselization of the structure sheaf of the original scheme (as defined

in [3]).
It is natural to ask whether similar Henselian GAGA (abbreviated as GHGA)

comparison theorems to those of formal GAGA (abbreviated as GFGA) exist for Henselian

schemes, such as cohomology comparison between coherent sheaves on a proper scheme
over a Henselian base ring and the pullback to the Henselization of the scheme, or

‘algebraizability’ for coherent sheaves on the Henselization of a scheme in the form of

a categorical equivalence between coherent sheaves on a proper scheme over a Henselian

base ring and coherent sheaves on the Henselization.

1.1. Results

We will prove a general GHGA statement regarding proper schemes over Henselian pairs

in positive characteristic.
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Theorem 3.6.1 (Henselian cohomology comparison). Let (A,I) be a Henselian pair such

that A has characteristic p > 0, and X a proper A-scheme with I-adic Henselization Xh,

a Henselian scheme over Sph(A).
Then for any quasi-coherent sheaf G on X and any j ≥ 0, the canonical cohomology

comparison map Hj(X,G)→Hj(Xh,Gh) is an isomorphism.

The proof proceeds by a series of reductions, using the “h-étale” topology discussed

in previous work [3] to isolate the role of the p-torsion hypothesis to the study of the

cohomology of the structure sheaf on P1.
It seems to remain an open question whether every coherent sheaf on the Henselization

of a proper scheme over a Henselian Fp-algebra admits an algebraization. Using a

characteristic 0 counterexample [10] to Theorem 3.6.1, we will easily see in Example 4.4.1

that this is not the case for the Henselized projective line in characteristic 0.
Using Artin-Popescu approximation and formal GAGA over a complete Noetherian

base, we will prove that subsheaves of algebraizable sheaves are algebraizable:

Theorem 4.3.1 (Algebraizability of subsheaves). Let X → Spec(A) be a proper and

finitely presented morphism of schemes, with (A,I) a Henselian pair. For F a finitely

presented sheaf on X and G a finitely presented OXh-submodule of Fh, there exists a

finitely presented subsheaf G1 ⊂F such that Gh
1 � G.

From Theorem 4.3.1, we can deduce a Henselian version of Chow’s theorem [2, Theorem

V], showing that a closed Henselian subscheme of Henselian projective space (or indeed
of the Henselization of any proper, finitely presented scheme over a Henselian base) arises

from a subscheme of the corresponding scheme.

Corollary 4.3.2 (Henselian Chow’s Theorem). Let X → Spec(A) be a proper and finitely

presented morphism of schemes, with (A,I) a Henselian pair. For a finitely presented

closed Henselian subscheme Y ⊆Xh, there exists a finitely presented subscheme Z ⊆X

with Zh = Y as Henselian subschemes of Xh.

In past work [3, Proposition 3.2.10], it was shown that the pullback functor on

coherent sheaves between a proper scheme over a Noetherian complete affine base and
its Henselization is exact and fully faithful. We use Theorem 4.3.1 and this past work

to relax the completeness hypothesis and to consider the essential image of this pullback

functor, proving the following:

Corollary 4.3.3 (Henselian GAGA). Let (A,I) be a Noetherian Henselian pair, and let

X be a proper A-scheme with I-adic Henselization Xh. Then the functor

(·)h :Coh(X)→Coh(Xh)

(taking a coherent sheaf F on X to its pullback Fh on Xh) is exact and fully faithful, and

its essential image is closed under subobjects and quotients.

It also follows that coherent ideal sheaves, hence maps, are algebraizable in any

characteristic.
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Corollary 4.3.4 (Algebraizability of maps). Let X → Spec(A),Y → Spec(A) be proper

and finitely presented morphisms of schemes, with (A,I) a Henselian pair. Then the map

HomSpec(A)(X,Y )→HomSph(A)(X
h,Y h)

is bijective.

Hence, for any Henselian A, the functor taking a proper A-scheme to its Henselization

is fully faithful.

1.2. Motivation and history

F. Kato has proved a Henselian cohomology comparison in degree 0 – as well as the fact

that algebraizability is inherited by coherent subsheaves – in the case of a valuation base

ring that is Henselian with respect to a principal ideal [13]. We will prove a cohomology

comparison for a more general base (under a p-torsion hypothesis) in Theorem 3.6.1 and
an algebraizability result for finitely presented sheaves over a general base Henselian ring

without a p-torsion hypothesis in Theorem 4.3.1. It was shown by de Jong in [10] that

in characteristic 0 or mixed characteristic, cohomology comparison in degree 1 can fail
even for the structure sheaf on the projective line, so the p-torsion hypothesis is needed

for our cohomology comparison results.

Our method of proof differs from the conventional approach to proving GAGA and
GFGA theorems, since directly computing the cohomology of twists O(n) of the structure

sheaf on projective space would be difficult in the Henselian setting due to lack of a

concrete description for elements of the Henselization of a polynomial ring. Instead, we

will reduce to the study of the cohomology of the structure sheaf on P1 by leveraging a
finite flat map (P1)×d →Pd, which we recall in Section 3.2, as part of a series of reduction

steps. However, in order to make use of this map, we must consider the effect of finite

pushforward on the cohomology of a quasi-coherent sheaf on a Henselian scheme.
For schemes, the higher direct images of a quasi-coherent sheaf by a finite morphism

vanish. This is likely untrue in general for Henselian schemes, as we will discuss in more

detail in Section 3.1. We get around this issue using [3, Corollary 5.3.11], which states
that in positive characteristic, the problem of étale and h-étale comparison is equivalent

to the comparison problem for Zariski topologies. Hence, we can make our reductions of

GHGA statements in the setting of étale and h-étale cohomology and use the fact that

finite pushforward on arbitrary abelian sheaves is exact for the étale topology of schemes
and hence for the h-étale topology of Henselian schemes.

Another consequence of de Jong’s counterexample [10] is that even in the case of the

projective line in characteristic 0 (or in mixed characteristic), there are already failures of
algebraizability for coherent sheaves, as we show in Example 4.4.1. However, we will be

able to show in Theorem 4.3.1 that coherent subsheaves of algebraizable coherent sheaves

are algebraizable regardless of characteristic of the Henselian base ring.
It follows from Theorem 4.3.1 that for a proper scheme X over a Noetherian Henselian

affine base, the pullback functor Coh(X)→Coh(Xh) is exact and fully faithful, and its

essential image is closed under subobjects and quotients, as we discuss in Corollary 4.3.3.
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Corollary 4.3.3 is similar to a recent result in o-minimal geometry [1, Theorem 1.4].

While o-minimal geometry concerns itself with topological spaces that are locally modeled

on sets that are definable with regard to some o-minimal structure, Henselian geometry
can be thought of similarly as an algebraic substitute for formal geometry. In fact, the

Henselization of sufficiently nice rings can be identified with the ‘algebraic’ subring of

their completion, as we review in Lemma 3.5.5.
However, while in the o-minimal setting the analogue of Theorem 4.3.1 is deduced

from the definable Chow’s theorem result of Peterzil and Starchenko [16, Corollary 4.5],

in the Henselian case, we proceed in reverse, deducing the Henselian Chow’s theorem
(Corollary 4.3.2) from Theorem 4.3.1.

Another similarity between Henselian geometry and o-minimal geometry is the fact

that the Henselization functor Coh(X) → Coh(Xh) is not essentially surjective in

general. We give a specific counterexample in Example 4.4.1. The definabilization functor
Coh(X) → Coh(Xdef ) is also not essentially surjective, as shown in [1, Example 3.2]

for X = Gm. Although Gm is not proper, it is an appropriate counterexample as the o-

minimal equivalent [1, Theorem 1.4] of Theorem 4.3.1 applies to X which is a separated
algebraic space of finite type.

1.3. Dependence on previous work

Many results in this paper depend on the results of [3], some of which are reviewed in

Section 2. (These results can also be found in my PhD thesis [4, Chapters 1-5].)
The GHGA cohomology comparison results of Section 3 depend on the Henselian

étale or ‘h-étale’ topology defined in [3]. Finite pushforward is exact for the h-étale

topology of Henselian schemes as a consequence of the equivalence of categories between
the h-étale site of a Henselian scheme and the étale site of the underlying scheme [3,

Proposition 5.3.3]. Therefore (as discussed in Section 1.2), we prove the reduction step

Proposition 3.2.2 in the étale/h-étale setting. This is possible because of the equivalence of

Zariski and h-étale cohomology comparison in positive characteristic [3, Corollary 5.3.11].
In Section 4, Corollary 4.3.3 and the counterexample Example 4.4.1 depend on the

results [3, Lemma 3.2.3, Proposition 3.2.10] concerning the exactness and faithfulness of

the Henselization functor (·)h :Coh(X)→Coh(Xh) for the Henselization Xh of a scheme
X along a closed subscheme Y. Some of the lemmas on limits in the Appendix, which are

used in this paper for the case of non-Noetherian rings, also depend on [3]. Lemma A.2

depends on [3, Lemma 3.2.4], which describes the pullback of quasi-coherent sheaves on
affine schemes to their Henselization. Lemma A.4 depends on the Henselian version of

‘Nike’s trick’ for distinguished affines [3, Proposition 4.2.1].

2. Background and previous work

In this section, we review previous work from [3] regarding the Zariski cohomology and
h-étale cohomology of a Henselian scheme which will be useful to us when proving our

GHGA comparison theorems. The notion of a Henselian pair appears in [7, Section 18.5],

as well as the Henselization of a pair [7, Section 18.6]; Henselian pairs are also discussed
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in [18, Chapter XI]. For a review of the definition of Henselian schemes and various useful

statements about quasi-coherent sheaves on them, see [3, Sections 2-3].

Definition 2.1. Given a Henselian scheme (X,OX), the underlying scheme of X is

the locally ringed space (X,OX/I), where I is the radical ideal sheaf of OX comprising

sections which vanish at the residue field of every point.
We can see that (X,OX/I) is a scheme by considering the case X =Sph(A,I), for which

this process gives the scheme Spec(A/I). The general case follows by gluing the affine

schemes coming from each affine open. If X is the Henselization of a scheme Y along a
reduced closed subscheme Z, then the preceding construction recovers Z.

Definition 2.2. A morphism f : (Y ,OY )→ (X,OX) of Henselian schemes is Henselian
étale, or h-étale, if it can be locally described as a morphism of affine Henselian schemes

Sph(B,J)→ Sph(A,I) arising from a map of pairs (A,I)→ (B,J), where B � Rh is the

Henselization of an étale A-algebra R, with
√
IB =

√
J .

The condition of being h-étale is equivalent to being hlfp or ‘Henselian locally finitely

presented’1, flat, and satisfying an appropriate formal lifting criterion [3, Proposition

5.2.10]; it follows that being h-étale can be checked using any Zariski covering.

When proving our Henselian GAGA theorems, we will wish to make use of not just

a Zariski cohomology comparison between a scheme and its Henselization, but also a
cohomology comparison between the étale topology of the scheme and the h-étale topology

on its Henselization.

There is an equivalence of categories between the h-étale site of a Henselian scheme

and étale site of the underlying scheme:

Proposition 2.3 ([3] Proposition 5.3.3). Let (X,OX) be a Henselian scheme and let

(X0,OX0
) be the underlying scheme. The functor F from the category of Henselian schemes

h-étale over X to the category of schemes étale over X0, which sends (Y ,OY ) to the

underlying scheme (Y0,OY0
), is an equivalence of categories.

Furthermore, quasi-coherent (Zariski) sheaves on Henselian schemes are in fact sheaves

for the h-étale topology as well [3, Theorem 5.3.5]; this fact underlies all our discussion

of the h-étale site that follows.

Remark 2.4. For a quasi-coherent sheaf F on a scheme X with closed subscheme Y

(and Henselization Xh along Y ), the sheaf (Fh)h-ét on the small h-étale site (Xh)h-ét of
Xh is the pullback of Fét along the morphism of sites (Xh)h-ét →Xét corresponding to

the morphism of locally ringed spaces Xh →X. (See [3, Lemma 3.2.5] and the discussion

in [3, Theorem 5.3.5].) Thus, to simplify notation, we will often write (Fét)
h for (Fh)h-ét.

It is also easily checked that pullback and ‘finite pushforward’ (see [3, Lemma 3.2.1])

of quasi-coherent sheaves along morphisms of Henselian schemes is compatible with the

functor F �→ Fh-ét.

1Zariski-locally the Henselization of a finitely presented map of pairs
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It will be useful to be able to consider the stalks of sheaves on the h-étale site as in the
following lemma.

Lemma 2.5 ([3], Lemma 5.3.7). Let X be a Henselian scheme, with X0 the underlying
scheme of X. For x0 a geometric point of X0 lying over x∈X0, consider x as a point of X

and write x for the geometric point of X arising from x0. Then the following statements

are true:

(i) The stalk of the structure sheaf OXh-ét of the small h-étale site at x is isomorphic

to Osh
X,x, the strict Henselization of the local ring OX,x along its maximal ideal,

(ii) If X is the Henselization of a scheme Y along a closed subscheme Z, then considering

x0 as a geometric point of Z =X0 ⊂ Y , the stalk of OYét
at x0 is isomorphic to the

stalk of OXh-ét at x.

Remark 2.6. In the setting of Lemma 2.5(ii), a similar statement holds for a quasi-

coherent sheaf F on Y. Letting ι : Z → Y be the usual closed immersion, by [3, Lemma

3.2.5] and the discussion in [3, Theorem 5.3.5], we have (Fh)h-ét = ι−1
ét (Fét) as sheaves on

Zét. (Recall that Zét is equivalent to Xh-ét by Proposition 2.3.) Then by the definition of
the inverse image functor, the stalk of (Fh)h-ét = (Fét)

h at x is isomorphic to the stalk

of Fét at x0 [19, Lemma 03Q1].

When computing h-étale cohomology on Henselian schemes, we will use the h-étale

topology analogue of de Jong’s ‘Theorem B’:

Theorem 2.7 (de Jong’s ‘Theorem B’). Let (A,I) be a Henselian pair such that A has

characteristic p> 0. Then if Z =Sph(A), for any quasi-coherent sheaf F on X =Spec(A),
the cohomologies Hj(Z,Fh) are 0 for j > 0.

Proof. This was proved by de Jong in [12]; an exposition of the proof is also given in [3,
Theorem 3.2.6].

In [11], de Jong provides a counterexample to the analogous vanishing for Zariski

cohomology for A of characteristic 0 or mixed characteristic (see also [3, Proposition
3.1.15]). The same example works in the h-étale topology, so in the following result, we

cannot drop the assumption that A is an Fp-algebra.

Lemma 2.8 ([3], Lemma 5.3.8). Let (A,I) be a Henselian pair with A an Fp-algebra.

Then for a quasi-coherent sheaf F on Spec(A) and any affine object Z of Sph(A)h-ét, the

h-étale cohomologies Hj
h-ét(Z,Fh) are 0 for j > 0.

Our cohomology comparison with the Henselization of a scheme uses the natural base

change map comparing higher direct images for a map of schemes and the corresponding
map of their Henselizations. For later cross-referencing purposes, we record this standard

fact here:

Lemma 2.9. Let (A,I) be a Henselian pair and f :X → Y a morphism of A-schemes.

Consider the commutative diagram
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Xh X

Y h Y

pX

fh f

pY

for Xh and Y h the I-adic Henselizations of X and Y, respectively, and pX,pY the canonical

maps Xh →X,Y h → Y .

There exists a canonical δ-functorial OY h-linear morphism (Rjf∗F)h →Rjfh
∗ (Fh) for

OX-modules F .

Proof. This follows from [19, Lemma 02N7], which is in the more general setting of ringed

spaces with flat horizontal maps in the commutative square.

The functor (·)h :Coh(X)→Coh(Xh) of pullback of coherent sheaves from a proper

scheme X over a base ring A to the Henselization Xh has been discussed in [3]. Exactness
and faithfulness for any base is proved in [3, Lemma 3.2.3], and we can deduce fullness

in the complete case from formal GAGA [6, Theorem 5.1.4] (see [3, Lemma 3.2.9]).

Proposition 2.10 ([3], Proposition 3.2.10). Let (A,I) be a Noetherian Henselian pair
with I-adically complete A, and let X be a proper A-scheme with I-adic Henselization Xh.

Then the functor (·)h :Coh(X)→Coh(Xh) is exact and fully faithful.

In this paper, we will relax (in Corollary 4.3.3) the completeness hypothesis of

Proposition 2.10.

Just as we have a Zariski cohomology comparison map, we can compare h-étale and

étale cohomology as well. This rests on the following:

Definition 2.11. For a scheme X with Henselization Xh along a closed subscheme Y

and a quasi-coherent sheaf F on X, the equality (Fh)h-ét = i−1
ét (Fét) for i : Y ↪→ X the

canonical closed immersion gives rise to an h-étale cohomology comparison map

Hj(Xét,Fét)→Hj((Xh)h-ét,(Fh)h-ét).

Remark 2.12. To simplify notation of cohomology groups, for a scheme X and a quasi-
coherent sheaf F on X, we often write Hj

ét(X,F) for Hj(Xét,Fét). Similarly for a Henselian

scheme Y and a quasi-coherent sheaf G on Y, we write Hj
h-ét(Y ,G) for Hj(Yh-ét,Gh-ét).

In particular, when Y =Xh,G=Fh, we write Hj
h-ét(X

h,Fh) for Hj((Xh)h-ét,(Fh)h-ét)=
Hj((Xh)h-ét,(Fét)

h) (because (Fét)
h = (Fh)h-ét; see Remark 2.4), so the h-étale compar-

ison map of Definition 2.11 is Hj
ét(X,F)→Hj

h-ét(X
h,Fh).

To conclude this background section, we include the key theorem and corollary of [3]
in which it was proved that in positive characteristic, h-étale comparison is equivalent to

Zariski comparison.

Theorem 2.13 ([3], Theorem 5.3.9). Let X be a Henselian scheme over a Henselian pair

(A,I) such that A has characteristic p > 0. Then for any quasi-coherent sheaf G on X and

any i≥ 0, the natural map Hi(X,G)→Hi
h-ét(X,G) is an isomorphism.
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Corollary 2.14 ([3], Corollary 5.3.11). Let (A,I) be a Henselian pair such that A has

characteristic p> 0, and let X be an A-scheme with I-adic Henselization Xh. For a quasi-

coherent sheaf F on X, the natural comparison map Hj(X,F)→ Hj(Xh,Fh) for Zariski
cohomologies is an isomorphism if and only if the h-étale comparison map Hj

ét(X,F)→
Hj

h-ét(X
h,Fh) is an isomorphism.

This equivalence of comparison problems in positive characteristic is essential to

Section 3 due to non-exactness problems with finite pushforward of abelian sheaves in
the Zariski topology. Since exactness of finite pushforward is necessary for some of the

reduction steps in the proof of our GHGA comparison isomorphism in Theorem 3.6.1, we

prove those reduction steps for the h-étale comparison problem rather than the Zariski
comparison problem.

3. Cohomology comparison on proper schemes

In this section and the following sections, we consider comparison problems for Henselian

schemes similar to formal GAGA (also called GFGA); we abbreviate “=Henselian GAGA’

as ‘GHGA’.

Definition 3.1. A Noetherian Henselian pair (A,I) is a Henselian pair such that the
ring A is Noetherian.

Definition 3.2. Let (A,I) be a Henselian pair and X a scheme over Spec(A) with I -adic

henselization Xh, a Henselian scheme over Sph(A). For an OX -module F , we say that F
satisfies GHGA comparison on X if for any j ≥ 0, the canonical h-étale cohomology
comparison map Hj

ét(X,F)→Hj
h-ét(X

h,Fh) is an isomorphism.

If A is Noetherian and X is finite-type over A, we say that X satisfies coherent GHGA

comparison if every coherent sheaf F on X satisfies GHGA comparison on X.

3.1. Overview

For a proper scheme X over Spec(A) for a Noetherian Henselian pair (A,I), we wish

to consider whether the comparison map Hi(X,F)→Hi(Xh,Fh) is an isomorphism for
coherent sheaves F on X. The conventional approach to proving GAGA and GFGA

theorems begins by directly computing the cohomology of twists O(n) of the structure

sheaf on projective space in the analytic or formal setting. However, that would be difficult

to do in the setting of Henselian schemes, since it is difficult to concretely describe the
elements of a Henselized polynomial ring. Furthermore, the idea of a ‘graded’ A-module

or a projective system of A/In-modules for n ∈N does not have a natural counterpart

in the Henselian setting.
In fact, it has been shown by de Jong that in characteristic 0 and mixed characteristic,

coherent GHGA comparison does not hold for proper Henselian schemes [10], even for

F = OX on X = P1
A. Therefore, we have to use alternative methods to prove coherent

GHGA comparison theorems over Fp.

Our proof of coherent GHGA comparison for proper schemes over a Noetherian

Henselian base in positive characteristic proceeds as follows:
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(I) In [3, Corollary 5.3.11] (stated here as Corollary 2.14), it was proven that in

positive characteristic, the problem of étale and h-étale comparison is equivalent

to the comparison problem for Zariski topologies. Therefore, we can make the
following reductions of GHGA statements in the setting of étale and h-étale

cohomology; see Remarks 3.1.1, 3.1.2.

(II) We reduce coherent GHGA comparison for general projective schemes to the
case of (P1)×d by defining and making use of a finite flat map (P1)×d → Pd

(Section 3.2). Specifically, we will begin our reduction steps by proving in

Proposition 3.2.2 that for a finite flat surjection P ′ → P of projective schemes

over a Henselian pair (A,I), coherent GHGA comparison for P ′ implies coherent
GHGA comparison for P.

(III) We show in Proposition 3.3.3 that for maps satisfying a “relative comparison”,

higher direct images are compatible with pullback to the Henselization; this lets
us reduce further to the case of P1 in Proposition 3.3.1.

(IV) To reduce the proper case to the projective case and hence to the case of P1, we

use Grothendieck’s Unscrewing Lemma (Section 3.4).

(V) We complete the Noetherian case in Section 3.5 by reducing coherent GHGA
comparison for P1 to the case of the structure sheaf and then do some hands-on

work; we do not need to work over Fp in the preceding reduction steps, but in

Section 3.5, we restrict ourselves to the setting of positive characteristic in order

to return to the case of Zariski cohomology, which we can then compute.

(VI) Finally, in Section 3.6, we will discuss the non-Noetherian case; we also extend to

the case of a proper map over a base X which satisfies GHGA comparison but is

not necessarily affine.

Remark 3.1.1. For schemes, the higher direct images of a quasi-coherent sheaf by a finite

morphism vanish. However, this is likely not true in the setting of Henselian schemes in
general.2 The key issue is that a ring finite over a local ring which is Henselian for its

maximal ideal is a finite product of local rings, but if the local base ring is Henselian

along some ideal smaller than its maximal ideal, then in general we can only say that
a finite algebra is semi-local; it is unknown if the higher cohomologies of quasi-coherent

sheaves on the Henselian spectrum of a semi-local ring (Henselian for some ideal) vanish.

Because finite pushforward on arbitrary abelian sheaves is exact for the étale topology

of schemes and hence for the h-étale topology of Henselian schemes, the preceding issue
does not arise if we make our reductions in the setting of étale and h-étale cohomology.

Remark 3.1.2. In characteristic 0 and mixed characteristic, de Jong showed that for
a complete DVR A, the Zariski cohomology H1((P1

A)
h,O(P1

A)h) does not vanish [10]

2A finite morphism of Henselian schemes refers to an hlfp map X → Y , which locally appears
as a map of affine Henselian schemes Sph(B,J) → Sph(A,I) arising from a finite morphism
of rings A → B. The finite morphisms of Henselian schemes which we will consider are the
Henselizations of finite morphisms of schemes, so we have no need for a general theory of finite
morphisms in the Henselian setting.
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(explained here in Example 4.4.1). It follows that the Zariski cohomology comparison map

H1(P1
A,OP1

A
)→ H1((P1

A)
h,O(P1

A)h) is not an isomorphism in characteristic 0; therefore,

we lose nothing by considering h-étale cohomology comparison instead.
Although Corollary 2.14 does not hold in characteristic 0 (its proof requires Theorem 2.7

and Lemma 2.8), the argument given in [10] can be used to show nonvanishing of

H1
h-ét((P

1
A)

h,O(P1
A)h) as well. Therefore, h-étale cohomology comparison also cannot hold

for P1
A, except in positive characteristic.

3.2. Product of projective lines

The first step of reduction is to show that coherent GHGA comparison for projective

d -space can be reduced to coherent GHGA comparison for the product of d projective

lines.

Fix some d≥ 1. For a ring A, we define a map of projective A-schemes �A : (P1
A)

×d →
Pd

A by giving its values functorially as

([α1,β1], . . . ,[αd,βd]) �→ [f0(α,β),f1(α,β), . . . ,fd(α,β)],

where the fi(α,β) are homogeneous polynomials of degree d in the αj,βj given by

d∏
j=1

(αj +βjY ) =

d∑
i=0

fi(α,β)Y
i.

Proposition 3.2.1. The morphism �A is finite, flat and surjective.

Proof. It suffices to consider the case A = Z. It is immediately clear that �Z has

finite fibers and that it is surjective (by considering its behavior on geometric points).

Furthermore, �Z is a morphism of projective Z-schemes, so it is proper. Thus, �Z is a
finite morphism. Finally, we can see that �Z is flat by comparing dimensions of local

rings in a straightforward use of ‘Miracle Flatness’ applied between geometric fibers over

Spec(Z) [14, Theorem 23.1].

For a fixed Noetherian Henselian pair (A,I), we will use the map �A to reduce coherent

GHGA comparison for Pd
A to coherent GHGA comparison for (P1

A)
×d. More generally,

we will show the following:

Proposition 3.2.2. Let (A,I) be a Noetherian Henselian pair, and π : P ′ → P a finite

flat surjection of projective schemes over Spec(A). Then if P ′ satisfies coherent GHGA
comparison, so does P.

Remark 3.2.3. In Lemmas 3.2.4, 3.2.5 and 3.2.6, we omit the Noetherian assumption

on A and consider all quasi-coherent sheaves on P ′, since Lemma 3.2.6 will be used to

reduce the non-Noetherian case for general proper schemes to the case of coherent GHGA
comparison for proper schemes over a Noetherian base. For the proof of Proposition 3.2.2,

we will assume that A is Noetherian and consider only coherent sheaves.

First, we show that a map π as in Proposition 3.2.2 is compatible with pullback to the

Henselization.
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Lemma 3.2.4. Let (A,I) be a Henselian pair, and π :P ′ →P a finite morphism of finite-

type schemes over Spec(A). Let (P ′)h,Ph be the I-adic Henselizations of the A-schemes

P ′,P . Consider the canonical map πh on Henselizations such that the following diagram
commutes:

(P ′)h P ′

Ph P

πh π

Then for G a quasi-coherent sheaf on P ′, the base change map (π∗G)h → πh
∗ (Gh) of

Lemma 2.9 is an isomorphism. In particular, via Remark 2.4, the corresponding map

((π∗G)ét)h = (πét,∗Gét)
h → πh

h-ét,∗((Gét)
h) = (πh

∗ (Gh))h-ét

of sheaves on (Ph)h-ét is also an isomorphism.

Proof. We will show that the base change map is an isomorphism on sections over a basis

of affine opens.
Since π is finite, it is affine; therefore, for each affine open V ⊂ P with V = Spec(R),

the inverse image π−1(V ) = U ⊂ P ′ is also affine, with U = Spec(B) for a finite-type A-

algebra B. Furthermore, the map R→B given by π is a module-finite map between the
finite-type A-algebras R,B.

Similarly, the preimage V h of V in Ph and Uh of U in (P ′)h are isomorphic to

the Henselian affine schemes Sph(Rh) ⊂ Ph,Sph(Bh) ⊂ (P ′)h, respectively (where the

Henselizations are taken with respect to the ideals IR,IB).
We have G(U) =M for some B -module M (since G is quasi-coherent), and π∗G|V is the

sheaf associated to M viewed as an R-module via the map R→B.

We can then easily check that the base change map (π∗G)h → πh
∗ (Gh) of Lemma 2.9 on

V h is given by the map of Rh-modules

((π∗G)h)(V h) =M ⊗
R
Rh = (M ⊗

B
B)⊗

R
Rh →M ⊗

B
Bh = Gh(Uh) = πh

∗ (Gh)(V h)

which arises from the map Rh⊗RB → Bh; this map is an isomorphism since R → B is

finite [19, Lemma 0DYE], so ((π∗G)h)(V h) ∼−→ πh
∗ (Gh)(V h) via the base change map.

Therefore, the base change map is an isomorphism on sections over a basis of affine

opens. Hence, (π∗G)h ∼−→ πh
∗ (Gh), as we desired to show.

Lemma 3.2.5. In the situation of Lemma 3.2.4, for any sheaf of abelian groups F on

((P ′)h)h-ét, the morphism Hi
h-ét(P

h,πh
∗ (F))→Hi

h-ét((P
′)h,F) is an isomorphism.

Proof. Let P0,P
′
0 be the closed subschemes of P,P ′, respectively, defined by I. Then by

Proposition 2.3, we have isomorphisms of sites (P0)ét → (Ph)h-ét,(P
′
0)ét → ((P ′)h)h-ét.

Let π : P ′
0 → P0 be the base change of π. Then by [19, Lemma 04C2], the functor πét,∗

from the category of abelian sheaves on (P ′
0)ét to the category of abelian sheaves on (P0)ét

is exact. Hence, for j > 0, we have Rjπét,∗G = 0 for all abelian sheaves G on (P ′
0)ét.
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The isomorphisms of sites above tell us that similarly, for j > 0, we have Rjπh
h-ét,∗(F) =

0 for all abelian sheaves F on ((P ′)h)h-ét. This gives us the desired isomorphism of

cohomology.

Lemma 3.2.6. In the situation of Lemma 3.2.4, a quasi-coherent sheaf G on P ′ satisfies
GHGA comparison on P ′ if and only if π∗G satisfies GHGA comparison on P .

Proof. Fix some i≥ 0 and a quasi-coherent sheaf G on P ′. Then we have a commutative

diagram

Hi
h-ét((P

′)h,Gh) Hi
ét(P

′,G)

Hi
h-ét(P

h,πh
∗Gh)

Hi
h-ét(P

h,(π∗G)h) Hi
ét(P,π∗G)

∼

∼

∼

where the lower diagonal arrow is an isomorphism by Lemma 3.2.4. The right vertical

arrow is an isomorphism because π is finite (ensuring that Rjπét,∗ vanishes on all abelian
sheaves for j > 0). The upper diagonal arrow is an isomorphism by Lemma 3.2.5.

It is then clear that the map Hi
ét(P

′,G)→Hi
h-ét((P

′)h,Gh) is an isomorphism if and only

if the map Hi
ét(P,π∗G)→Hi

h-ét(P
h,(π∗G)h) is an isomorphism, as we desired to show.

We can now prove Proposition 3.2.2. This is a standard argument using a resolution

of a coherent sheaf on P by pushforwards of coherent sheaves on P ′ and applying the
hypercohomology of the resulting complex to prove our cohomology comparison.

Proof of Proposition 3.2.2. Assume we have (A,I) a Noetherian Henselian pair and

π : P ′ → P a finite flat surjection of projective A-schemes. Fix a coherent sheaf F on P ;

we will show F satisfies GHGA comparison on P .
Since π is flat and surjective – hence faithfully flat – the map F → π∗π

∗F is injective

for any coherent sheaf F on P.

Setting G0 := π∗F , which is a coherent sheaf on P ′, we can replace F with (π∗G0)/F to

obtain an injective map (π∗G0)/F → π∗G1 for some coherent sheaf G1 on P ′. We can then
iteratively construct a resolution 0→F → π∗G0 → π∗G1 → . . . where the Gi are coherent

sheaves on P ′.
In other words, for any coherent sheaf F on P, there exists a resolution of F by

pushforwards of coherent sheaves on P ′. These sheaves π∗Gi satisfy GHGA comparison

on P by Lemma 3.2.6.

Now we consider two complexes of coherent OP -modules: F [0]•, the complex with
the only nonzero term being F in degree 0, and the complex G• with degree i term

Gi = π∗Gi. The injection F ↪→ π∗G0 in degree 0 and zero maps 0→ π∗Gi in degree i for

i > 0 give a quasi-isomorphism of complexes F [0]• → G•. The corresponding complexes
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of OPét
-modules (F [0]•)ét and (G•)ét are also quasi-isomorphic, so we may use the

hypercohomology of (G•)ét to compute the étale cohomology of F . By a similar argument,

for H• the complex with degree i term Hi = (π∗Gi)
h, the hypercohomology of (H•)h-ét

may be used to compute the h-étale cohomology of Fh.

The remainder of the proof is a standard application of the hypercohomology spectral

sequence.

3.3. Relative P1

In the previous section, we reduced coherent GHGA comparison for Pd over a Henselian
pair to coherent GHGA comparison for (P1)×d over a Henselian pair. In this section, we

reduce to the case of P1
A for (A,I) a Henselian pair. More specifically, we will show the

following:

Proposition 3.3.1. Let (A,I) be a Noetherian Henselian pair. Assume that for any A-

algebra B of essentially finite-type with I-adic Henselization Bh, the Bh-scheme P1
Bh

satisfies coherent GHGA comparison. Then if a projective A-scheme X satisfies coherent

GHGA comparison, so does Y :=P1
X .

Remark 3.3.2. We assume X projective in Proposition 3.3.1 since it will be applied

when X is a power of the projective line. However, the proof of Proposition 3.3.1 only

uses the fact that X is finite-type over a Noetherian ring (hence locally Noetherian). In
Theorem 3.6.2, we generalize Proposition 3.3.1 to the case where Y is proper over X and

X is finitely presented over the base Henselian pair.

We will first show that higher direct images along a relative P1 map are compatible

with pullback to the Henselization. In fact, we can show this is true more generally for

maps satisfying a ‘relative comparison’.

Proposition 3.3.3. Let (A,I) be a Henselian pair with A Noetherian, and S a proper

A-scheme. Assume that for any A-algebra B of essentially finite-type with I-adic

Henselization Bh, the proper Bh-scheme SBh = S ×Spec(A) Spec(B
h) satisfies coherent

GHGA comparison.
For X a finite-type A-scheme, let Y = X ×Spec(A) S and let f : Y → X be the natural

proper map. For F a coherent sheaf on Y and any j ≥ 0, the map (Rjfét,∗Fét)
h →

Rjfh
h-ét,∗(Fh) of sheaves on (Xh)h-ét arising from the base change map of Lemma 2.9 is

an isomorphism.

Proof. We will show the base change map is an isomorphism by checking on stalks, using

the results of [5, Section 5.9] on passage to limits for étale cohomology.
Since f is proper and X is locally Noetherian, the higher direct image sheaves Rjfét,∗Fét

are coherent on X. Therefore, the pullback (Rjfét,∗Fét)
h to (Xh)h-ét is a coherent sheaf

of O(Xh)h-ét -modules.
We fix a point x ∈Xh, and also write x for its image in X. Choose a geometric point

x of X lying over x, and write xh for the corresponding geometric point of Xh lying

over x. By Lemma 2.5, the stalks of O(Xh)h-ét at xh and of OXét
at x are both naturally
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isomorphic to the strict Henselization (OX,x)
sh of the local ring OX,x along its maximal

ideal.

By the construction of higher direct images as a sheafification, we can compute the

stalks of both sheaves at xh as:

((Rjfét,∗Fét)
h)xh = lim−→

(U,u)

Hj
ét(U ×X Y ,F), (*)

(Rjfh
h-ét,∗(Fh)h-ét)xh = lim−→

(U,u)

Hj
h-ét(U

h×Xh Y h,Fh) (**)

with (U,u)→ (X,x) the affine étale neighborhoods. This holds because the system of h-

étale neighborhoods (Uh,uh :Uh →Xh) of x (Henselizations of affine étale neighborhoods

of x as a geometric point of X ) is cofinal, since by the isomorphism of sites (X0)ét →
(Xh)h-ét for X0 the closed subscheme of X defined by the ideal I (Proposition 2.3), we

can check cofinality modulo I. The limit of the affine étale neighborhoods (U,u) of (X,x)

is the map Spec((OX,x)
sh)→X, which we denote X(x) →X.

Our map of sheaves (Rjfét,∗Fét)
h → Rjfh

h-ét,∗(Fh
ét) is given on each stalk as the limit

of the h-étale comparison maps Hj
ét(U×X Y ,F)→Hj

h-ét((U×X Y )h,Fh) = Hj
h-ét(U

h×Xh

Y h,Fh) for each étale neighborhood U of x as described above.
We begin by computing the first stalk ((Rjfét,∗Fét)

h)xh . Again, by the construction of

higher direct images as a sheafification, we note that that the colimit in (*) is also equal

to (Rjfét,∗Fét)x, which is isomorphic to Hj
ét(Y ×X(x),F|Y×X(x)

) [5, Corollary 5.9.5].

We now consider the other stalk, (Rjfh
h-ét,∗(Fh

ét))xh . For each affine étale neighborhood

(U,u) of (X,x), its Henselization is the Henselian affine h-étale neighborhood (Uh,uh :

Uh →Xh) of (Xh,xh). If U =Spec(B), then Uh is isomorphic to Sph(Bh) forBh the I -adic

Henselization of B. The limit lim−→Bh is equal to lim−→B, which is (OX,x)
sh (see Lemma 2.5),

so the limit of the Henselian affine h-étale neighborhoods (Uh,uh : Uh →Xh) is X(x) →
X. By the definition of f, we see that (U ×X Y )Bh � SBh as Bh-schemes. Furthermore,

we see that Uh×Xh Y h � (SBh)h, the I -adic Henselization of the scheme SBh . The A-
algebra B is finite-type since X is finite-type over A. Therefore, by our assumption,

SBh satisfies coherent GHGA comparison, so by Corollary 2.14, the comparison map

Hj
ét((U ×X Y )Bh,FBh)→Hj

h-ét(U
h×Xh Y h,Fh) is an isomorphism.

Since lim−→Bh = lim−→B = (OX,x)
sh, we note that both the limit of the maps U ×X Y → Y

and the limit of the maps (U ×X Y )Bh → Y are equal to the map Y ×X(x) → Y . Then

from (**), we can compute

(Rjfh
h-ét,∗(Fh)h-ét)xh = lim−→

(U,u)

Hj
h-ét(U

h×Xh Y h,Fh)

= lim−→
(U=Spec(B),u)

Hj
ét((U ×X Y )Bh,FBh)

= Hj
ét(Y ×X(x),F|Y×X(x)

),

with the final equality as a consequence of [5, Corollary 5.9.4].
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This identification arises from the natural maps, so the maps on stalks
((Rjfét,∗Fét)

h)xh → (Rjfh
h-ét,∗(Fh

ét))xh are isomorphisms; hence, the base change map is

an isomorphism, as we desired to show.

Corollary 3.3.4. In the situation of Proposition 3.3.1, let f be the canonical map Y =
P1

X →X, with fh : Y h →Xh the map induced by f on the I-adic Henselizations. For F
a coherent sheaf on Y and any j ≥ 0, the map (Rjfét,∗Fét)

h → Rjfh
h-ét,∗(Fh) of sheaves

on (Xh)h-ét arising from the base change map of Lemma 2.9 is an isomorphism.

Proof. This is a straightforward application of Proposition 3.3.3 with X projective and

S =P1
A.

We can now prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Let f : Y =P1
X →X be the natural map. Fix a coherent

sheaf F on Y. We will compare the Leray spectral sequence Hi
ét(X,Rjf∗F) =⇒

Hi+j
ét (Y ,F) to the analogous spectral sequence for fh and Fh.

We choose an injective resolution I• of Fét by OYét
-modules, with which we can compute

the étale cohomology of F . Similarly, we choose an injective resolution J • of Fh
h-ét by

O(Y h)h-ét -modules to compute the h-étale cohomology of Fh.

We may pull back I• to an exact sequence of O(Y h)h-ét -modules (with degree i term

(Ii)h), which maps to J • since J • is an injective resolution. This gives us a map from the

pullback of I• to (Y h)h-ét to J •, which can be lifted through the steps of constructing the
Leray spectral sequences (applying fét,∗ or fh

h-ét,∗, taking a Cartan-Eilenberg resolution,

taking global sections, and finally filtering the total complex by rows) to give us a map

of spectral sequences that must respect the filtration on limit terms.
Since f is projective (hence proper) proper and X is locally Noetherian, the higher

direct image sheaves Rjfét,∗Fét are coherent on X. Therefore, the pullback (Rjfét,∗Fét)
h

to (Xh)h-ét is a coherent sheaf of O(Xh)h-ét -modules. Then by Proposition 3.3.3, we see
that pullback to the Henselization gives an isomorphism on the second sheet, since

Hi
ét(X,Rjf∗F)→Hi

h-ét(X
h,(Rjf∗F)h)�Hi

h-ét(X
h,Rjfh

∗ Fh)

is an isomorphism by coherent GHGA comparison for X.

Since the map of spectral sequences is an isomorphism at the second sheet and

respects the filtration on limit terms, the comparison map Hn
ét(Y ,F) → Hn

h-ét(Y
h,Fh)

is an isomorphism for all n.

3.4. Reduction of the general proper case

We next consider general projective schemes.

Lemma 3.4.1. Let (A,I) be a Noetherian Henselian pair. Assume that for any A-algebra
B of essentially finite-type with I-adic Henselization Bh, the Bh-scheme P1

Bh satisfies

coherent GHGA comparison. Then any projective A-scheme X satisfies coherent GHGA

comparison.
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Proof. By Proposition 3.3.1 iterated and our assumption, we see that for any d≥ 1, the
projective A-scheme (P1

A)
×d satisfies coherent GHGA comparison. Then using the map

�A : (P1
A)

×d →Pd
A described in Section 3.2, by Proposition 3.2.2, we see that Pd

A satisfies

coherent GHGA comparison for all d≥ 1.
Now consider an arbitrary projective A-scheme X. Then there exists N and a closed

immersion ι :X ↪→PN
A . We apply Lemma 3.2.6 to ι :X ↪→PN

A to see that a coherent sheaf

F on X satisfies GHGA comparison on X if and only if ι∗F satisfies GHGA comparison

on PN
A .

Therefore, since PN
A satisfies coherent GHGA comparison, X does as well.

In order to extend Lemma 3.4.1 to the proper case via Chow’s lemma, we will use the

following result:

Lemma 3.4.2. Let (A,I) be a Noetherian Henselian pair. Assume that for any A-algebra
B of essentially finite-type with I-adic Henselization Bh, the Bh-scheme P1

Bh satisfies

coherent GHGA comparison.

Let X be a finite-type A-scheme and f : Y → X be a morphism of schemes which
is projective locally on X. For F a coherent sheaf on Y and any j ≥ 0, the map

(Rjfét,∗Fét)
h → Rjfh

h-ét,∗(Fh) of sheaves on (Xh)h-ét arising from the base change map

of Lemma 2.9 is an isomorphism.

Proof. This can be checked affine-locally on X, so we can assume X is affine and then

that Y =Pn
X . Then we can apply Proposition 3.3.3 with S =Pn

A to get the desired result

by Lemma 3.4.1.

We can now proceed with reducing the proper case to the projective case.

Theorem 3.4.3. Let (A,I) be a Noetherian Henselian pair. Assume that for any A-

algebra B of essentially finite-type with I-adic Henselization Bh, the Bh-scheme P1
Bh

satisfies coherent GHGA comparison. Then any proper A-scheme X satisfies coherent
GHGA comparison.

Proof. We will use [6, Theorem 3.1.2], sometimes called ‘Grothendieck’s Unscrewing

Lemma’ or ‘Grothendieck’s dévissage theorem’.
If we consider the full subcategory C of coherent OX -modules consisting of F satisfying

GHGA comparison on X, then it is obvious that 0 ∈ C and that for any short exact

sequence of coherent OX -modules F ′ ↪→ F � F ′′, if two of F,F ′,F ′′ are in C, all three
are. (The latter statement follows by the δ-functoriality of the h-étale comparison maps
and the five lemma.)

By the Unscrewing Lemma, in order to show that every coherent OX -module F satisfies

GHGA comparison on X (or equivalently, that C contains all coherent OX -modules), it
is enough to show that for any irreducible closed subset Z ⊂ X, there exists some G
supported on Z and satisfying GHGA comparison on X whose fiber at the generic point

of Z has rank 1.
We now use Noetherian induction on X. For our inductive assumption, we assume that

for any strict closed subscheme Y of X (strict meaning Y �X) that every coherent OY -

module satisfies GHGA comparison on Y . Note that Y is necessarily proper over A. If G
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is a coherent OX -module which is supported on a strict closed subscheme Y of X, then

considering G as a coherent OY -module, it follows from the inductive assumption that G
satisfies GHGA comparison on X.

If X is reducible or not reduced, then any irreducible closed subset Z ⊂ X must be

contained in a strict closed subscheme Y of X, so any G supported on Z whose fiber at
the generic point of Z has rank 1 must satisfy GHGA comparison on X by the inductive

assumption. Thus, by the Unscrewing Lemma, every coherent OX -module F satisfies

GHGA comparison on X if X is reducible or not reduced.
It is therefore enough to consider the case where X is integral and, given the inductive

assumption, exhibit a coherent OX -module F with generic stalk of rank 1 satisfying

GHGA comparison on X. Then by the Unscrewing Lemma, we are done.

Since X is integral, we can use Chow’s Lemma [19, Section 02O2] to find an integral
projective A-scheme X ′ and a morphism π : X ′ → X over A such that π is projective

and surjective, as well as a dense open U ⊂ X such that π|π−1(U) : π
−1(U) → U is an

isomorphism.
Now let G = OX′(n) with n > 0. Since π|π−1(U) is an isomorphism, we see that the

generic stalk of the coherent OX -module π∗G is invertible. Therefore, it will suffice to

show that π∗G satisfies GHGA comparison on X for some n.
Consider the Leray spectral sequences for Gét and (Gét)

h. Thus, we get a spectral

sequence of A-modules E•,•
• with second sheet Ei,j

2 = Hi
ét(X,Rjπ∗G) which converges to

Hi+j
ét (X ′,G) (inducing finite filtrations on the limit terms), and another spectral sequence

of A-modules Q•,•
• with second sheet Qi,j

2 = Hi
h-ét(X

h,Rjπh
∗ (Gh)) which converges to

Hi+j
h-ét((X

′)h,Gh) (inducing finite filtrations on the limit terms).

Working through the construction of these Leray spectral sequences, we have a

morphism φ : E•,•
• → Q•,•

• coming from the pullback of sheaves on X ′ to sheaves
on (X ′)h (see also discussion in the proof of Proposition 3.3.1). Since for all j we

have ((Rjπ∗G)ét)h = ((Rjπ∗G)h)h-ét by Remark 2.4 and the map ((Rjπ∗G)h)h-ét →
(Rjπh

∗ (Gh))h-ét is an isomorphism by Lemma 3.4.2, we see that φ : E•,•
• → Q•,•

• is
compatible with pullback of sheaves on X to sheaves on Xh.

Furthermore, since we have coherent GHGA comparison for X ′ by Lemma 3.4.1, we

know that this morphism is an isomorphism on the ∞-sheet (because the natural map

between the limit terms is an isomorphism).
The higher direct image sheaf (Rjπ∗G)ét =Rjπét,∗Gét is the sheafification of the presheaf

V �→ Hj
ét(π

−1(V ),G). For n sufficiently large, independent of the affine open V, and

j > 0, each of the cohomology groups Hj
ét(π

−1(V ),G) = Hj
ét(π

−1(V ),OX′(n)) vanishes.
Therefore, for j > 0, the sheaf (Rjπ∗G)ét is 0. Hence, we also have 0 = ((Rjπ∗G)ét)h =

((Rjπ∗G)h)h-ét ∼−→ (Rjπh
∗ (Gh))h-ét for j > 0 (see Remark 2.4, Lemma 3.4.2).

Therefore, both spectral sequences E•,•
• and Q•,•

• degenerate at the second sheet. Then
since our morphism of spectral sequences induces an isomorphism on the ∞ sheet,

the same is true for the second sheet, meaning the comparison map Hi
ét(X,π∗G) →

Hi
h-ét(X

h,πh
∗ (Gh)) � Hi

h-ét(X
h,(π∗G)h) is an isomorphism for all i. Thus, π∗G satisfies

GHGA comparison on X for large n.
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3.5. Cohomology of the Henselian projective line

In the previous sections, we reduced the problem of coherent GHGA comparison for a

proper scheme over a Noetherian Henselian pair (A,I) to the problem of coherent GHGA

comparison for P1
Bh with (Bh,IBh) the I -adic Henselization of a general essentially finite-

type A-algebra B.
For our more explicit computations with the projective line, we will need to assume

that A has characteristic p > 0 in order to leverage the vanishing of higher cohomologies

for quasi-coherent sheaves on affine Henselian schemes (as holds over Fp). The Zariski
version of this ‘Theorem B’ for Henselian schemes is stated here in Theorem 2.7, and the

h-étale version is stated here in Lemma 2.8.

Now we consider the Henselian projective line and show that for GHGA over (A,I) (for
A over Fp), it suffices to consider just H1

ét(P
1
A,OP1

A
).

Proposition 3.5.1. Let (A,I) be a Henselian pair with A Noetherian and such that A

has characteristic p > 0. Let P = P1
A be the projective line over A, with Ph its I-adic

Henselization. Assume that OP satisfies GHGA comparison on P . Then all coherent
sheaves F on P also satisfy GHGA comparison on P .

Proof. We start by considering twists of the structure sheaf OP (n) for all integers n.

Write P = Proj(A[x0,x1]). Then for each integer n, we have a short exact sequence of

sheaves on P :

0→ OP (n−1)
x1−→ OP (n)→Gn → 0,

where the first map is given by multiplication by x1. Then Gn is the structure sheaf of
the affine section [1,0] ∈P1

A = P , so Gn satisfies GHGA comparison on P by Lemma 2.8.

Since pullback to the Henselization is exact (as the maps of local rings are flat), we

have a short exact sequence of sheaves on Ph

0→ (OP (n−1))h
x1−→ (OP (n))

h →Gh
n → 0.

These short exact sequences give us maps of the corresponding long exact sequences of
étale cohomology and of h-étale cohomology. If Gn and OP (n) satisfy GHGA comparison

on P , then the same is true for OP (n− 1). Thus, using downwards inductions starting

with n= 0, we see that for all n≤ 0, the twist OP (n) satisfies GHGA comparison on P .

Similarly, we see that if Gn and OP (n− 1) satisfy GHGA comparison on P , then the
same is true for OP (n). Now using induction upwards from n= 1, we see that for all n> 0

– hence for any integer n – the twist OP (n) satisfies GHGA comparison on P .

For a general coherent sheaf F on P, we have a short exact sequence of sheaves

0→K→
r⊕

�=0

OP (n�)→F → 0

for some finite collection of integers n0, . . . ,nr. Note that K is also coherent as the kernel
of a map between coherent sheaves.

For j ≥ 2, we know that Hj
ét(P,G) = 0 for all quasi-coherent G. Similarly, by Lemma 2.8,

Hj(Ph,Gh) = 0 for j ≥ 2 because we can compute the h-étale cohomology of Gh on Ph
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with the Čech complex associated to the Henselization of the standard affine open cover

of P by [19, Lemma 03F7]. (Note that the Henselization of the standard affine open cover

of P is necessarily also an h-étale cover.)

Therefore, the comparison map Hj
ét(P,G)→ Hj

h-ét(P
h,Gh) is an isomorphism for j ≥ 2

and all coherent G. Now we use downwards induction on j, assuming that for all coherent

sheaves G we have Hj+1
ét (P,G)�Hj+1

h-ét(P
h,Gh).

Writing N for
⊕r

�=0OP (n�), the long exact sequence of cohomology gives us a
commutative diagram with exact rows

Hj
ét(P,K) Hj

ét (P,N ) Hj
ét(P,F) Hj+1

ét (P,K) Hj+1
ét (P,N )

Hj
h-ét(P

h,Kh) Hj
h-ét

(
Ph,N h

)
Hj

h-ét(P
h,Fh) Hj+1

h-ét(P
h,Kh) Hj+1

h-ét
(
Ph,N h

)

∼ ∼ ∼

where we note that N =
⊕r

�=0OP (n�) satisfies GHGA comparison on P and Hj+1
ét (P,K)�

Hj+1
h-ét(P

h,Kh) by the inductive hypothesis on j + 1. By the first Four Lemma, the

middle arrow Hj
ét(P,F) → Hj

h-ét(P
h,Fh) is surjective for arbitrary coherent F . Hence,

by considering a similar commutative diagram corresponding to a presentation of K, the
map Hj

ét(P,K)→Hj
h-ét(P

h,Kh) is also surjective. Therefore, we can use the second Four

Lemma to get injectivity of the middle arrow; hence, the middle arrow is an isomorphism.

Therefore, all coherent sheaves F on P satisfy GHGA comparison on P if OP does.

To show that OP1 satisfies GHGA comparison on P1, we first check in degree 0.

Proposition 3.5.2. Let (A,I) be a Henselian pair with A Noetherian. Let P = P1
A be

the projective line over A, with Ph its I-adic Henselization. Then the comparison map
A=H0

ét(P,OP )→H0
h-ét(P

h,OPh) is an isomorphism.

Proof. In order to compute H0
h-ét(P

h,OPh), we can describe P as the union of two

affine opens U = Spec(A[t]) and V = Spec(A[1/t]), with U ∩V = Spec(A[t,1/t]). We will

write A{t} for the I -adic Henselization (A[t])h of the polynomial ring A[t], and similarly
A{1/t}= (A[1/t])h,A{t,1/t}= (A[t,1/t])h for the I -adic Henselizations of A[1/t],A[t,1/t].

We note that the map A{t}→ (A[t])∧ is faithfully flat, hence injective, by [19, Lemma

0AGV]. Similarly, we have injections A{1/t} ↪→ (A[1/t])∧ and A{t,1/t} ↪→ (A[t,1/t])∧.
Elements of the completion (A[t])∧ have the form

∑∞
n=0 ant

n such that for any N ≥ 1,
there existsM so that an ∈ IN for n≥M . Elements of the other completions are described

similarly as series in t−1 or two-sided power series in t with coefficients tending I -adically

to 0 as the exponents go to ±∞.
Consider the map A{t}×A{1/t} → A{t,1/t} given by (f,g) �→ f − g (we write f,g

also for their respective images in A{t,1/t}), and the similarly defined map (A[t])∧ ×
(A[1/t])∧ → (A[t,1/t])∧. The kernel of the first map is H0

h-ét(P
h,OPh) by the sheaf

condition; it is clear that A⊂H0
h-ét(P

h,OPh) (via the diagonal map A→A{t}×A{1/t}).
Also, we see that H0

h-ét(P
h,OPh) is contained in the kernel of (A[t])∧ × (A[1/t])∧ →

(A[t,1/t])∧, which we can see is A using the explicit description of elements of
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these completions given above. Then H0
h-ét(P

h,OPh) = A = H0
ét(P,OP ), as we desired

to show.

To prove that the structure sheaf on P = P1
A for A a Henselian Fp-algebra satisfies

GHGA comparison, it remains to show that Hi
h-ét(P

h,OPh) = 0 for i ≥ 1. Since A is a

Henselian Fp-algebra, by Theorem 2.13, it suffices to show that the Zariski cohomology

Hi(Ph,OPh) vanishes.
The projective line P = P1

A is covered by the two affine opens U = Spec(A[t]),V =

Spec(A[1/t]). Since we have ‘Theorem B’ for affine Henselian schemes in positive

characteristic (Theorem 2.7), we can use the two-term Čech complex A{t}×A{1/t} →
A{t,1/t} to compute the cohomology Hi(Ph,OPh); it follows that Hi

h-ét(P
h,OPh) = 0 for

i > 1.

In order to compute H1(Ph,OPh) with the Čech complex A{t}×A{1/t}→A{t,1/t}, we
will identify the I -adic Henselization as the subring of elements of the I -adic completion

which are ‘algebraic’ over the base. This will be shown using approximation for Henselian

pairs with the aid of a G-ring hypothesis in order to leverage a powerful theorem of

Popescu:

Theorem 3.5.3 (Popescu). A regular homomorphism of Noetherian rings is a filtered

colimit of smooth ring maps.

Proof. See [19, Theorem 07GC]. Swan gives an exposition of Popescu’s proof of this
theorem in [20].

More specifically, we will use Artin-Popescu approximation for Henselian pairs, which

is a consequence of Popescu’s Theorem. This is [19, Lemma 0AH5], which we state here

without proof.

Theorem 3.5.4 (Artin-Popescu approximation). Let (A,I) be a Noetherian Henselian

pair, with A∧ the I-adic completion of A. Assume (A,I) is the Henselization of a pair

(B,J) for B a Noetherian G-ring.
Then given f1, . . . ,fm ∈A[x1, . . . ,xn] and â1, . . . ,ân ∈A∧ such that fj(â1, . . . ,ân) = 0 for

all j, there exists for every N ≥ 1 elements a1, . . . ,an ∈A such that âi−ai ∈ IN and such

that fj(a1, . . . ,an) = 0 for all j.

We can now identify the Henselization with the ‘algebraic’ subring of the completion,
in the case of a Noetherian domain and G-ring.

Lemma 3.5.5. Let B be a Noetherian domain and G-ring, and J ⊂ B an ideal. Let Bh

be the Henselization of B along J, and B∧ the J-adic completion of B. Then the map
Bh →B∧ is injective, and an element f ∈B∧ satisfies some nonzero polynomial in B[x]

if and only if f lies in the image of Bh.

Proof. The map Bh →B∧ is faithfully flat; therefore, it is injective, soBh ⊆B∧. Elements
of Bh are clearly algebraic over B.

Now we assume that we have an element f ∈B∧ and a nonzero polynomial q(x) ∈B[x]

such that q(f) = 0. Then since B is a G-ring, by Theorem 3.5.4 for any integer N ≥ 1, we
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can find gN ∈Bh with f −gN ∈ JNB∧ and q(gN ) = 0. This gives us a sequence {gN}∞N=1

of elements of Bh converging I -adically to f in B∧.
Since B is a Noetherian domain, it injects into its fraction field L. The tensor product

Bh⊗BL is also a finite product of fields
∏

iLi by [19, Lemma 0AH1], and Bh →Bh⊗BL

is injective because B →Bh is flat.
There are only finitely many roots of q in

∏
iLi, so there are only finitely many roots

of q in Bh ↪→
∏

iLi. Therefore, we have a subsequence {gNr
}∞r=1 of {gN}∞N=1 which are

all equal to a single element g0 ∈ Bh with q(g0) = 0, so f = g0 ∈ Bh, as we desired to
show.

Using Lemma 3.5.5, we will be able to reduce our computations with the Čech complex

above to the following lemma:

Lemma 3.5.6. Let A be a Noetherian ring such that A has characteristic p > 0, and

I ⊂ A an ideal. Then for f ∈ (A[t,1/t])∧ (the I-adic completion) which is algebraic over

A[t,1/t], we can write f = f++f− such that f+ ∈ (A[t])∧,f− ∈ (A[1/t])∧ with f+ algebraic
over A[t] and f− algebraic over A[1/t].

Proof. This is shown by de Jong in the Stacks Project Blog post at [9]; we provide the

proof here for the reader’s convenience.

The element f is a two-sided power series in t with coefficients going I -adically to 0 as
the exponent goes to ±∞. We separate f into f++ f− with f+ a power series in t and

f− a power series in 1/t = t−1. It suffices to show that f+ is algebraic over A[t], by the

symmetry of t and 1/t.
We can assume the constant term of f is part of f+. If f is algebraic over A[t,1/t],

we have a relation
∑m

i=0Pif
i = 0 with Pi ∈A[t,1/t],m > 0,Pm �= 0. By multiplying by an

appropriate power of t, we can assume that the Pi are in A[t].
Let A(t) denote the fraction field of A[t]. We see by the above that the A(t)-span of

the powers of f is finite-dimensional. Therefore, the A(t)-span of {fpi}∞i=0 is also finite-

dimensional, meaning we have a relation
∑r

i=0Qif
pi

with Qi ∈ A(t),r > 0,Qr �= 0. By
clearing denominators, we can assume that the Qi are polynomials in t.

Now because p = 0 ∈ A, we know that
(∑r

i=0Qif
pi

+

)
+
(∑r

i=0Qif
pi

−

)
= 0. We can

consider the coefficients of large positive powers of t on the left side of this equation; in

particular, for very large m, we know that the coefficient of tm in
∑r

i=0Qif
pi

− is 0 by

our choice of f−. Hence, in order for this equation to hold, for m sufficiently large, the

coefficient of tm in
∑r

i=0Qif
pi

+ must also be 0.

Therefore,
∑r

i=0Qif
pi

+ is actually a polynomial in t. Let
∑r

i=0Qif
pi

+ =:Q ∈A[t]. As we

assumed Qr �= 0, we see that Q−
∑r

i=0Qif
pi

+ = 0 is a nonzero polynomial relation, so f+
is algebraic over A[t], as desired.

We can now compute H1(Ph,OPh) for P = P1
A using the Čech complex. By Corol-

lary 2.14, from now on, we can work with the Zariski topology for the purposes of GHGA

comparison, and we will do so for the remainder of this section.
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Lemma 3.5.7. Let (A,I) be a Noetherian Henselian pair such that A has characteristic

p > 0. Let P =P1
A be the projective line over A, with Ph its I-adic Henselization. Then

OP satisfies GHGA comparison on P .

We will prove the lemma by a series of reductions, beginning with the case that

(a) A is a Noetherian domain and G-ring, then

(b) assuming A is a Noetherian normal reduced G-ring and reducing to case (a), and

finally

(c) reducing the case of a general Noetherian Henselian pair to case (b).

Proof. By Proposition 3.5.2, we have an isomorphism H0
ét(P,OP )� H0

h-ét(P
h,OPh). We

also have isomorphisms Hj
ét(P,OP )�Hj

h-ét(P
h,OPh) = 0 for j ≥ 2 by Lemma 2.8 and [19,

Lemma 03F7] (see the discussion in the proof of Proposition 3.5.1).
Therefore, in order to show that OP satisfies GHGA comparison on P , it suffices to

show that H1
ét(P,OP ) � H1

h-ét(P
h,OPh) via the natural map. By Corollary 2.14, in fact

it is enough to show that the Zariski comparison map H1(P,OP ) → H1(Ph,OPh) is an
isomorphism, or equivalently that H1(Ph,OPh) = 0, in order to prove that OP satisfies

GHGA comparison on P .

Using [19, Lemma 01ET] and applying Theorem 2.7, we know we can compute

H1(Ph,OPh) with Čech cohomology associated to the Henselization of the affine cover of
P given by the two affine opens U = Spec(A[t]) and V = Spec(A[1/t]), with intersection

U ∩ V = Spec(A[t,1/t]). Thus, H1(P,OP )→ H1(Ph,OPh) is an isomorphism if and only

if the map A{t}×A{1/t}→A{t,1/t} given by (f,g) �→ f −g is surjective.3

(a) We assume that A is a Noetherian Fp-algebra domain and G-ring.
Since A is a Noetherian domain and G-ring, the same is true for A[t] and A[t,1/t]

by [19, Proposition 07PV]. Therefore, we can apply Lemma 3.5.5 to B =A[t],A[1/t]

and A[t,1/t]. We then see that showing that the map A{t}×A{1/t} → A{t,1/t}
is surjective amounts to showing that for f ∈ (A[t,1/t])∧ (the I -adic completion)

which is algebraic over A[t,1/t], we can write f as a sum f = f+ + f− such that

f+ ∈ (A[t])∧,f− ∈ (A[1/t])∧ with f+ algebraic over A[t] and f− algebraic over
A[1/t]. This can be done by Lemma 3.5.6, so H1(Ph,OPh) = 0. It follows that OP

satisfies GHGA comparison on P for A which is a domain and G-ring, as discussed

above.

(b) Now assume that A is a Noetherian normal reduced G-ring. It follows that A is a
finite product of normal domains

∏
iAi by [19, Lemma 030C]. Therefore, Spec(A)

is the disjoint union of the Spec(Ai), and P is the disjoint union of P1
Ai

=: Pi.

These decompositions into components carry over to the Henselizations and Ph is
the disjoint union of Ph

i . Thus, H
1(Ph,OPh) =

⊕
iH

1(Ph
i ,OPh

i
).

3As in the proof of Proposition 3.5.2, we write A{t} for the I -adic Henselization (A[t])h of the

polynomial ring A[t], and similarly A{1/t} = (A[1/t])h,A{t,1/t} = (A[t,1/t])h for the I -adic
Henselizations of A[1/t],A[t,1/t].
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The Ai are clearly Noetherian domains and G-rings, so by the previous case (a),

each H1(Ph
i ,OPh

i
) is 0, so H1(Ph,OPh) = 0 and OP satisfies GHGA comparison on

P in this case as well.

(c) Finally, we treat the general Noetherian case. By hypothesis, A is an Fp-algebra.

We can write A as the filtered direct limit of its finitely generated subalgebras

A = lim−→Aλ. Let Iλ = I ∩Aλ, and Ah
λ be the Henselization of Aλ along Iλ. We see

that A= lim−→Ah
λ,I = lim−→Ihλ by [19, Lemma 0A04].

Since Aλ for each λ is a finitely generated Fp-algebra, we see that Ah
λ is the

quotient of the Henselization (along some ideal) of a polynomial ring Fp[t1, . . . ,tr].

Note that the Henselization of Fp[t1, . . . ,tr] is a Noetherian normal reduced G-ring.

(See [19, Lemma 033B, Lemma 0AH3, Lemma 033C, Lemma 037D, Lemma 0AGV].)
Therefore, each pair (Ah

λ,I
h
λ ) is the quotient of some Henselian pair (A′

λ,I
′
λ) with

A′
λ a Noetherian normal reduced G-ring. Let Pλ :=P1

Ah
λ

,P ′
λ :=P1

A′
λ
.

By the previous case (b), for all λ, the structure sheaf OP ′
λ

satisfies GHGA

comparison on P ′
λ; then by Proposition 3.5.1, in fact, P ′

λ satisfies coherent GHGA
comparison.

Because Spec(Ah
λ) ↪→ Spec(A′

λ) is a closed immersion, so is Pλ ↪→ P ′
λ. Closed

immersions are finite, so we can apply Lemma 3.2.6 – the pushforward of OPλ

is coherent, so OPλ
satisfies GHGA comparison on Pλ.

Therefore, for all λ, the map Ah
λ{t} × Ah

λ{1/t} → Ah
λ{t,1/t} is surjective.

Since Henselization commutes with direct limits [19, Lemma 0A04], we see that
lim−→Ah

λ{t}=A{t}. Similarly, we see that lim−→Ah
λ{1/t}=A{1/t} and lim−→Ah

λ{t,1/t}=
A{t,1/t}.
Then A{t}×A{1/t}→A{t,1/t} is the colimit of surjective maps, so it is surjective.

Therefore H1(Ph,OPh) = 0.

Thus, for (A,I) a general Noetherian Henselian pair in characteristic p> 0, we have shown

that H1(Ph,OPh) = 0, so OP satisfies GHGA comparison on P , as we desired to show.

Theorem 3.5.8. Let (A,I) be a Noetherian Henselian pair such that A has characteristic

p > 0, and let X → Spec(A) be a proper A-scheme. Then X satisfies coherent GHGA
comparison.

Proof. This follows from Theorem 3.4.3, Proposition 3.5.1 and Lemma 3.5.7 because

if B is an A-algebra with A → B essentially finite-type, then B and Bh have positive
characteristic if A does.

3.6. Non-Noetherian comparison

In this section, we will extend Theorem 3.5.8 to the case of a base ring which is not

necessarily Noetherian, but still has characteristic p > 0. (Recall that, via Corollary 2.14,

we will now work with Zariski cohomologies for the purpose of GHGA comparison.)

Theorem 3.6.1 (Henselian cohomology comparison). Let (A,I) be a Henselian pair such

that A has characteristic p > 0, and X a proper A-scheme with I-adic Henselization Xh,

a Henselian scheme over Sph(A).
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Then for any quasi-coherent sheaf G on X and any j ≥ 0, the canonical cohomology
comparison map Hj(X,G)→Hj(Xh,Gh) is an isomorphism.

In the Appendix, it is shown in Lemmas A.1 and A.2 that limits of schemes or of
Henselian schemes are compatible with cohomology in order to reduce the non-Noetherian

case to the Noetherian one. We will use these lemmas to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. Fix X → Spec(A) proper and F a quasi-coherent sheaf on X.

We will show that F satisfies GHGA comparison on X.
For X → Spec(A) proper, we can find a closed immersion ι :X ↪→X ′ with X ′ proper

and finitely presented over A. (See, for example, [19, Lemma 09ZR]).

Now by Lemma 3.2.6, we may reduce to the situation of X → Spec(A) both proper
and finitely presented. By [19, Lemma 01PJ], F can be written as the filtered colimit of

finitely presented, quasi-coherent OX -modules, so we can reduce to the case of F finitely

presented using [19, Lemma 01FF].
Write A as the filtered direct limit of its subalgebras Ai which are finitely generated

over the finite field Fp. Set Ii = I ∩Ai. Then clearly, lim−→Ii = I. Hence, by the universal

property of Henselization, A = lim−→Ah
i ,I = lim−→Ihi for (Ah

i ,I
h
i ) the Henselization of the

pair (Ai,Ii) as Henselization commutes with filtered colimits. Furthermore, the Ah
i are

Noetherian by [19, Lemma 0AGV].
Since we are now assuming that X is finitely presented over A, there exists i0 and a

finitely presented Ah
i0
-scheme Xi0 such that X =Xi0 ⊗Ah

i0
A by [19, Lemma 01ZM]. We

may assume that Xi0 is proper over Ah
i0

by [19, Lemma 081F].

Furthermore, as F is finitely presented, we can increase i0 as necessary so that there

exists a coherent sheaf Fi0 on Xi0 so that F = Fi0 ×Xi0
X by [19, Lemma 01ZR].

SettingXi =Xi0 ⊗Ah
i0
Ah

i for Ai0 ⊂Ai and defining Fi similarly, if we let Yi be the closed

subscheme of Xi corresponding to Ihi , we see that we are in the situations of Lemmas A.1

and A.2. Therefore, we see that lim−→i
Hj(Xi,Fi) � Hj(X,F) and lim−→i

Hj(Xh
i ,Fh

i ) �
Hj(Xh,Fh) for all j ≥ 0. Because each Ah

i is a Noetherian Fp-algebra, we know that

the natural map Hj(Xi,Fi) → Hj(Xh
i ,Fh

i ) is an isomorphism for all i and all j ≥ 0 by

Theorem 3.5.8, so F also satisfies GHGA comparison on X, as we desired to show.

As mentioned in Remark 3.3.2, we will generalize the notion of ‘relative comparison’
from Proposition 3.3.1 to the non-Noetherian setting and general proper maps in the

following theorem.

Theorem 3.6.2. Let (A,I) be a Henselian pair such that A has characteristic p > 0, and

f : Y →X a proper map of A-schemes.

Assume that any quasi-coherent sheaf on X satisfies GHGA comparison on X and that
X is finitely presented over Spec(A). Then any quasi-coherent sheaf on Y satisfies GHGA

comparison on Y .

To prove Theorem 3.6.2, we will generalize Proposition 3.3.3 to the case of a general

proper morphism of finite-type schemes over a Noetherian base.
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Lemma 3.6.3. Let (A,I) be a Noetherian Henselian pair such that A has characteristic

p > 0. Let X be a finite-type A-scheme and f : Y →X be a proper morphism of schemes.

For F a coherent sheaf on Y and any j ≥ 0, the map (Rjfét,∗Fét)
h → Rjfh

h-ét,∗(Fh) of

sheaves on (Xh)h-ét arising from the base change map of Lemma 2.9 is an isomorphism.

Proof. Since f is proper and X is locally Noetherian, the higher direct image sheaves

Rjfét,∗Fét are coherent on X. Therefore, the pullback (Rjfét,∗Fét)
h to (Xh)h-ét is a

coherent sheaf of O(Xh)h-ét -modules.

We proceed as in the proof of Proposition 3.3.3 to show the base change map is an
isomorphism by checking on stalks; fix a point x ∈Xh, and choose a geometric point x

of X lying over x, with xh the corresponding geometric point of Xh. Recall the equations

computing the stalks:

((Rjfét,∗Fét)
h)xh = lim−→

(U,u)

Hj
ét(U ×X Y ,F), (*)

(Rjfh
h-ét,∗(Fh)h-ét)xh = lim−→

(U,u)

Hj
h-ét(U

h×Xh Y h,Fh), (**)

where (U,u)→ (X,x) are affine étale neighborhoods. The remainder of the argument to

show that both stalks can be identified with Hj
ét(Y ×X(x),F|Y×X(x)

) via the natural maps
is almost exactly as in the proof of Proposition 3.3.3. The only difference in the proof

is how we show that for U = Spec(B),Uh = Sph(Bh), the comparison map Hj
ét((U ×X

Y )Bh,FBh)→Hj
h-ét(U

h×Xh Y h,Fh) is an isomorphism, which we now describe.
Note that the Bh-scheme U ′ := (U×X Y )Bh is proper over Bh since f : Y →X is proper.

Furthermore, we see that Uh×Xh Y h is isomorphic to the I -adic Henselization (U ′)h.
Because A is an Fp-algebra and B is a finite-type A-algebra, both B,Bh are Noetherian

Fp-algebras [19, Lemma 0AGV]. Therefore, the proper Bh-scheme U ′ satisfies coherent
GHGA comparison by Theorem 3.5.8; it follows from Corollary 2.14 that the comparison

map

Hj
ét((U ×X Y )Bh,FBh) = Hj

ét(U
′,FU ′)→Hj

h-ét((U
′)h,Fh) = Hj

h-ét(U
h×Xh Y h,Fh)

is an isomorphism.
The rest is precisely as the proof of Proposition 3.3.3.

We can now prove Theorem 3.6.2.

Proof of Theorem 3.6.2. Fix a quasi-coherent sheaf F on Y and let Y h be the I -

adic Henselization of Y (which is a Henselian scheme over Sph(A)). We will show

that the canonical h-étale cohomology comparison map Hn
ét(Y ,F)→ Hn

h-ét(Y
h,Fh) is an

isomorphism for all n, so F satisfies GHGA comparison on Y .

Since f : Y →X is proper, we can find a closed immersion ι : Y ↪→ Y ′ with Y ′ proper
and finitely presented over X. (See, for example, [19, Lemma 09ZR]).
Now by Lemma 3.2.6, F satisfies GHGA comparison on Y if and only if ι∗F satisfies

GHGA comparison on Y ′. Thus, we may reduce to the situation where f is both proper

and finitely presented. By [19, Lemma 01PJ], F can be written as the filtered colimit of
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finitely presented, quasi-coherent OY -modules, so we can reduce to the case of F finitely

presented using [19, Lemma 01FF].
As in the proof of Theorem 3.6.1, we can write the pair (A,I) as the filtered direct limit of

(Ai,Ii := I∩Ai) for the finitely generated Fp-subalgebras Ai of A. In fact, A= lim−→Ah
i ,I =

lim−→Ihi for (Ah
i ,I

h
i ) the Henselization of the pair (Ai,Ii), and the Ah

i are Noetherian by

[19, Lemma 0AGV].
Since we are now assuming that f : Y → X is a morphism of finitely presented A-

schemes, there exists i0 and a morphism of finitely presented Ah
i0
-schemes fi0 : Yi0 →Xi0

such that X =Xi0 ⊗Ah
i0
A,Y = Yi0 ⊗Ah

i0
A and f is the base change of fi0 by [19, Lemma

01ZM]. We may assume that fi0 is proper by [19, Lemma 081F].

Furthermore, as F is finitely presented, we can increase i0 as necessary so that there

exists a coherent sheaf Fi0 on Yi0 so that F = Fi0 ×Yi0
Y by [19, Lemma 01ZR].

Set Xi =Xi0 ⊗Ah
i0
Ah

i for Ai0 ⊂Ai and define Yi,fi,Fi similarly. Then for all i≥ i0 and

all j ≥ 0, the map (Rj(fi)ét,∗(Fi)ét)
h → Rj(fh

i )h-ét,∗(Fh
i ) of sheaves on (Xh

i )h-ét arising

from the base change map of Lemma 2.9 is an isomorphism by Lemma 3.6.3.

Fix j and consider for all i ≥ i0 the pullbacks of the sheaves Rj(fi)ét,∗(Fi)ét from
(Xi)ét to Xét. The limit of these pullbacks is the sheaf Rjfét,∗Fét by [5, Corollary 5.9.6].

It follows that the limit of the pullbacks of (Rj(fi)ét,∗(Fi)ét)
h to (Xh)h-ét is (R

jfét,∗Fét)
h

(where Xh
i is the Henselization of Xi along the closed subscheme X ′

i corresponding to
Ihi ; consider Remark 2.4).

A similar argument (again implicitly using the equivalence of (Y h
i )h-ét and (Y ′

i )ét
for Y ′

i the closed subscheme of Yi corresponding to Ihi and Remark 2.4) finds that

the limit of the pullbacks of Rj(fh
i )h-ét,∗(Fh

i ) to Xét is Rjfh
h-ét,∗(Fh). The maps

(Rj(fi)ét,∗(Fi)ét)
h →Rj(fh

i )h-ét,∗(Fh
i ) from Lemma 2.9 are compatible with these limits,

so we have an isomorphism (Rjfét,∗Fét)
h →Rjfh

h-ét,∗(Fh)h-ét for each j.

To complete the proof, we will compare the Leray spectral sequence Hm
ét(X,Rnf∗F) =⇒

Hm+n
ét (Y ,F), and the analogous spectral sequence for fh and Fh. (We use m,n to avoid

confusion with the indices i above.)

As in the proof of Proposition 3.3.1, we choose an injective resolution I• of Fét by OYét
-

modules, with which we can compute the étale cohomology of F . Similarly, we choose an

injective resolution J • of Fh
h-ét by O(Y h)h-ét -modules to compute the h-étale cohomology

of Fh.

We may pull back I• to an exact sequence of O(Y h)h-ét -modules (with degree m term
(Im)h), which maps to J • since J • is an injective resolution. This gives us a map from

the pullback of I• to (Y h)h-ét to J •, which can be lifted through the steps of constructing

the Leray spectral sequences to give us a map of spectral sequences that must respect the
filtration on limit terms.

By hypothesis, the map Hm
ét(X,Rnf∗F)→Hm

h-ét(X
h,(Rnf∗F)h) is an isomorphism, and

we showed above that (Rnfét,∗Fét)
h →Rnfh

h-ét,∗(Fh)h-ét for all n. Thus, pullback to the
Henselization gives an isomorphism on the second sheet

Hm
ét(X,Rnf∗F)→Hm

h-ét(X
h,(Rnf∗F)h)�Hm

h-ét(X
h,Rnfh

∗ Fh)
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for our map of spectral sequences Since this map respects the filtration on limit terms,
the comparison map Hn

ét(Y ,F) → Hn
h-ét(Y

h,Fh) is an isomorphism for all n. It follows

that F satisfies GHGA comparison on Y by Corollary 2.14.

4. Algebraization of coherent sheaves

In this section, we consider a different GHGA problem: algebraizability of sheaves on a

Henselization.

Definition 4.1. For a proper and finitely presented morphism of schemes X → Spec(A)

with (A,I) a Henselian pair and a finitely presented sheaf of OXh -modules G (for Xh

the I -adic Henselization of X ), we say that G is algebraizable if there exists a finitely

presented sheaf F on X with Fh � G.

We restrict ourselves to the case of a proper scheme in order to leverage the fact that for

a proper scheme X over a pair (A,I) such that A is Noetherian and I -adically complete,
pullback of coherent sheaves to the Henselization is an exact and fully faithful functor

(see Proposition 2.10). Furthermore, regardless of characteristic, a proper scheme satisfies

coherent GHGA comparison in degree 0 under a completeness condition [3, Lemma 3.2.9].
We will prove that coherent subsheaves of algebraizable coherent sheaves are algebraizable

(Theorem 4.3.1), and deduce the consequences mentioned in Section 1.1.

(I) Our proof of algebraizability of subsheaves begins by reducing to the case where
the base ring A is a Noetherian G-ring, using the fact that a Henselian ring A is

the filtered colimit of the Henselizations of its finitely generated Z-subalgebras.

(II) When the base A is a Noetherian G-ring, we can use Popescu’s theorem
(Theorem 3.5.3) to reduce further to the case where the base ring is complete.

(III) By leveraging formal GAGA results, we can prove Theorem 4.3.1 in the case

of a complete base ring, from which a Henselian version of Chow’s theorem

(Corollary 4.3.2) and algebraizability of maps between Henselian schemes or maps
of coherent sheaves (Corollaries 4.3.3, 4.3.4) will follow.

(IV) Finally, we use a counterexample of de Jong [10] to show that even in the case of

the projective line in characteristic 0 (or in mixed characteristic), we already have

failures of algebraizability for abstract coherent sheaves on Xh (which are not
necessarily subsheaves of some algebraizable sheaf Fh), so algebraizability for all

coherent sheaves on a proper and finitely presented A-scheme remains uncertain

only with a positive characteristic hypothesis.

4.1. Noetherian G-rings

We first reduce algebraizability of a general finitely presented sheaf of OXh -modules to

the situation where A is a Noetherian G-ring.

Lemma 4.1.1. Let (A,I) be a Henselian pair; X,X ′ and Y proper and finitely presented

A-schemes with morphisms X → X ′,Xh → Y h over Spec(A),Sph(A) respectively; and

G → G′ a morphism of finitely presented sheaves of OXh-modules.
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Then there exists a Noetherian G-ring A0 ⊆ A and a map of Henselian pairs
(A0,I0) → (A,I), X0,X

′
0,Y0 proper and finitely presented A0-schemes with morphisms

X0 → X ′
0,(X0)

h → (Y0)
h over Spec(A0),Sph(A0) respectively, and G0 → G′

0 a morphism

of finitely presented sheaves of O(X0)h-modules such that:

(i) X0×A0
A=X,X ′

0×A0
A=X ′, and the map X →X ′ arises from the map X0 →X ′

0;

(ii) Y0×A0
A= Y , and the map Xh → Y h arises from the map (X0)

h → (Y0)
h;

(iii) the pullback of the map G0 →G′
0 along the map Xh →Xh

0 is the map G → G′.

Proof. As in the proof of Theorem 3.6.1, we can write A as the filtered direct limit of

its subalgebras Ai which are finitely generated over Z. Let Ii = I ∩Ai. If (A
h
i ,I

h
i ) is the

Henselization of (Ai,Ii) for each i, we have A = lim−→Ah
i . Because X is finitely presented,

for some i0, we have X = Xi0 ×Ah
i0
A for some proper morphism Xi0 → Spec(Ah

i0
), and

similarly for X ′,Y .
By [19, Lemma 01ZM], we can assume that the map X → X ′ arises from some map

Xi0 → X ′
i0

for some index i0. Similarly, using Lemma A.3, we can assume (possibly

after increasing i0) that the map Xh → Y h arises from some map Xh
i0
→ Y h

i0
. Note that

Xi0,X
′
i0
,Yi0 are proper and finitely presented Ah

i0
-schemes.

In the same way, we can (again, possibly after further increasing i0) use Lemma A.5

to find finitely presented OXh
i0
-modules Gi0,G′

i0
with a map Gi0 →G′

i0
which pulls back to

G → G′ via the map Xh →Xh
i0
.

Since Ah
i0

has been chosen to be the Henselization of a finitely generated Z-algebra, we
see that Ah

i0
is a Noetherian G-ring by [19, Lemma 0AH3]. Then letting A0 =Ah

i0
,I0 = Ihi0 ,

we get the desired result.

Remark 4.1.2. In the setting of Lemma 4.1.1, if G0 is algebraizable – meaning we have
a coherent sheaf F0 on X0 such that Fh

0 � G0 – then we see immediately that G is

algebraizable, since Fh � G for F the pullback of F0 along the map X →X0. For similar

reasons, if the map G0 →G′
0 arises from a map of coherent sheaves F0 →F ′

0 on X0, it is
clear that the map G → G′ is algebraizable; and if the map Xh

0 → Y h
0 arises from a map

X0 → Y0 over A0, then the map Xh → Y h arises from a map X → Y over Ah.

Therefore, we have reduced the general algebraizability problem for finitely presented

proper schemes to the case where the base is a Noetherian G-ring. We next reduce to the

case where the base ring A is I -adically complete.

4.2. Reduction to complete case

Lemma 4.2.1. Let (A,I) be a Henselian pair with A a Noetherian G-ring, and let X

be a proper A-scheme and G a coherent sheaf on the I-adic Henselization Xh of X. Let

X ′ =X×AA∧ and G′ be the pullback of G along the map (X ′)h →Xh, which is a coherent
sheaf.

If there exists a coherent sheaf F ′ on X ′ such that G′ � (F ′)h – that is, if G′ is

algebraizable – then G is algebraizable.

Proof. Since A is a NoetherianG-ring, the map A→A∧ from A to its I -adic completion is

regular by [19, Lemma 0AH2]. We can now leverage Popescu’s theorem (Theorem 3.5.3) to
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see that A→A∧ is a filtered colimit of smooth ring maps. Furthermore, the map A→A∧

is faithfully flat by [19, Lemma 0AGV]. Then X ′ →X must be flat and surjective since

Spec(A∧)→ Spec(A) is.
We then have a commutative cube (†) below, with left and right faces Cartesian.

The zigzag arrows represent pullback of sheaves, such as with the leftmost zigzag arrow

showing that G′ is the pullback of G.
We would like to find a coherent sheaf F on X such that Fh � G. In order to do so,

we will use Popescu’s theorem. Since A→ A∧ is a filtered colimit of smooth ring maps,

there exists a smooth A-algebra C0 such that F ′ is the pullback of a coherent sheaf F0 on
the proper C0-scheme XC0

=X×AC0. Let G0 := G×Xh Xh
C0

; we then (possibly replacing

C0 by some further smooth A-algebra in the colimit yielding A∧) can use Lemma A.5 to

arrange that Fh
0 � G0 descending the isomorphism (F ′)h � G′.

Spec(A) Sph(A)

F G
X Xh

Spec(A∧) Sph(A∧)

F ′ G′

X ′ (X ′)h

?

(†)

This gives us a larger commutative diagram (††) below, again with all left and right faces

Cartesian. The arrow from F0 to F represents that we will construct F as a pullback of

F0 along the dashed arrow from X to XC0
, which is a section of the morphism XC0

→X.

Spec(A) Sph(A)

F G
X Xh

Spec(C0) Sph(Ch
0 )

F0 G0

XC0
Xh

C0

Spec(A∧) Sph(A∧)

F ′ G′

X ′ (X ′)h

?

(††)
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The map C0 → A∧ gives us a map C0 → A/I. We can find an étale A-algebra A′ with
A′/IA′ � A/I and a map C0 → A′ lifting the map C0 → A/I by [19, Lemma 07M7].

Because A is Henselian, the map A → A′ has a section lifting the isomorphism A/I �
A′/IA′, so we have a section C0 →A over A lifting the map C0 →A/I.

This map C0 → A gives us the desired dashed arrow X →XC0
over X. As in (††), let

F be the pullback of F0 along this map. Now we wish to show that Fh is isomorphic to
G, which is represented by the zigzag arrow with a question mark in (††).
We recall that we have an isomorphism Fh

0
∼−→G0, represented by the second horizontal

zigzag arrow of (††). We can pull back this map along the map Xh
C0

→Xh, giving us an
isomorphism Fh ∼−→ G (here, we use that Xh →Xh

C0
→Xh is the identity map). Hence,

G is algebraizable, as we desired to show.

Remark 4.2.2. Similarly to Lemma 4.1.1, Lemma 4.2.1 can also be used to reduce
algebraizability of maps of coherent sheaves or of maps of the Henselizations of proper

schemes over a Noetherian G-ring Henselian base A to the case of a Noetherian complete

base.
The key point is that by Popescu’s theorem, A→A∧ is a filtered colimit of smooth ring

maps. Hence, for any object(s) over A∧ coming from a finite set of finitely presented data,

we can find a smooth A-algebra C0 with a map C0 → A∧ such that our objects over A∧

are the pullbacks of objects over C0. We can then use the Henselian property of A to get
a section C0 →A along which we can pullback algebraizations over A∧ to algebraizations

over A.

Although it is not always the case that A∧ inherits the Noetherian G-ring property
from A (see [15, Section 5] for a counterexample), we will not need to use the G-ring

property when proving algebraizability of subsheaves over a complete base A∧, instead
relying on the completeness property to leverage formal GAGA results.

4.3. Subsheaves of algebraizable sheaves

In this section, we show that subsheaves of algebraizable sheaves are algebraizable.

Theorem 4.3.1 (Algebraizability of subsheaves). Let X → Spec(A) be a proper and
finitely presented morphism of schemes, with (A,I) a Henselian pair. For F a finitely

presented sheaf on X and G a finitely presented OXh-submodule of Fh, there exists a

finitely presented subsheaf G1 ⊂F such that Gh
1 � G.

This is proved by F. Kato in [13, Theorem 5] when A is a valuation ring which is

Henselian with respect to the principal ideal (a), for a a nonzero element of the maximal

ideal of the valuation ring. Our proof is similar but does not use the notions of I -adically

adhesive or I -adically universally adhesive which are used in [13].

Proof. Applying Lemma 4.1.1 to the the injective morphism G ↪→Fh of finitely presented

OXh -submodules, we can obtain a map of Henselian pairs (A0,I0) → (A,I) with A0 a
Noetherian G-ring, as well as

• a proper and finitely presented A0-scheme X0 for which X =X0⊗A0
A;

• a finitely presented sheaf of OX0
-modules F0 for which F = F0×X0

X;
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• and a morphism of finitely presented sheaves of OX0
h-modules G0 → Fh

0 which
pulls back to the injective morphism G ↪→Fh by the map Xh →Xh

0 .

Since pullback is right exact, we can replace G0 with its sheafified image in Fh
0 , as that

will also pull back to G. Thus, we can identify G0 with a coherent subsheaf of Fh
0 .

As in Remark 4.1.2, if G0 is algebraizable as the Henselization of some coherent subsheaf
of F0, then G is also algebraizable (as the Henselization of a coherent subsheaf of F).

Thus, replacing A with A0, we have reduced to the case where A is a Noetherian G-

ring. By Lemma 4.2.1 and Remark 4.2.2, we can furthermore assume that A is I -adically
complete (and we will no longer need to assume that A is a G-ring).

Consider the formal scheme X∧ → Spf(A) which is the I -adic completion of X, and is

proper over Spf(A). The map X∧ →X factors through Xh.
We write F∧,G∧ for the pullbacks of F,G along the maps X∧ → X,X∧ → Xh,

respectively. Then clearly G∧ ⊂ F∧, so by formal GAGA [6, Theorem 5.1.4], we have

a coherent sheaf G1 ⊂F on X such that G∧
1 = (Gh

1 )
∧ � G∧ as subsheaves of F∧.

To show that the finitely presented sheaves Gh
1 and G are equal as subsheaves of Fh,

it suffices to work over Henselian-affine opens of Xh arising from affine opens of X.

Since Gh
1 ,G are finitely presented, we can consider a new affine setting: Spec(Bh) for B a

finite-type A-algebra (with I -adic Henselization and completion Bh,B∧, respectively) and

Fh = M̃ , G = Ñ , Gh
1 = Ñ ′ for M a finitely generated Bh-module with finitely generated

submodules N,N ′: we wish to show that if N ⊗Bh B∧ and N ′⊗Bh B∧ are equal as B∧-
submodules of M ⊗Bh B∧, then N and N ′ are equal as Bh-submodules of M.
Because B is finite-type over A, which is Noetherian, we see that Bh →B∧ is faithfully

flat. Thus, since the inclusions N ⊂N+N ′,N ′ ⊂N+N ′ inside M become equalities after

tensoring with B∧, they are equalities of Bh-submodules as we desired to show.

Chow’s theorem [2, Theorem V] states that a closed analytic subspace of complex

projective space is an algebraic subvariety. We can deduce a Henselian version of this

from Theorem 4.3.1.

Corollary 4.3.2 (Henselian Chow’s Theorem). Let X → Spec(A) be a proper and finitely
presented morphism of schemes, with (A,I) a Henselian pair. For a finitely presented

closed Henselian subscheme Y ⊆Xh, there exists a finitely presented subscheme Z ⊆X

with Zh = Y as Henselian subschemes of Xh.

Proof. If A is Noetherian, then the closed immersion Y ⊆ Xh is defined by a finitely
presented ideal sheaf inside OXh . This ideal sheaf is algebraizable by Theorem 4.3.1, so

there is a finitely presented ideal of OX defining a finitely presented closed subscheme

Z ⊆X with Zh = Y . This completes the proof of the Noetherian case.
If A is not Noetherian, then as in the proof of Theorem 3.6.1 and Lemma 4.1.1, we

can write A as the filtered direct limit of the Henselizations of its finitely generated Z-

subalgebras Ai; in other words, if (Ah
i ,I

h
i ) is the Henselization of (Ai,I ∩Ai) for each i,

we have A= lim−→Ah
i . The Ah

i are Noetherian by [19, Lemma 0AGV].

Hence, we can apply Lemma A.4 to find an index i0 and a finitely presented closed

Henselian subscheme Yi0 ⊆Xh
i0

such that Xi0 ⊗Ah
i0
A=X,Yi0 ⊗Ah

i0
A= Y .
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Then because Ah
i0

is Noetherian [19, Lemma 0AGV], we see that Yi0 ⊆ Xh
i0

is
algebraizable – meaning there exists a finitely presented closed subscheme Zi0 ⊆ Xi0

with Zh
i0
= Yi0 . Letting Z = Zi0 ⊗Ah

i0
A⊆X, we see that Zh = Y , algebraizing Y.

As discussed in Section 1.1, we can also extend [3, Proposition 3.2.10] (stated here as

Proposition 2.10), while relaxing its completeness hypothesis:

Corollary 4.3.3 (Henselian GAGA). Let (A,I) be a Noetherian Henselian pair, and let

X be a proper A-scheme with I-adic Henselization Xh. Then the functor

(·)h :Coh(X)→Coh(Xh)

(taking a coherent sheaf F on X to its pullback Fh on Xh) is exact and fully faithful, and

its essential image is closed under subobjects and quotients.

Proof. We know this functor is exact and faithful for any A (and in fact for the
Henselization of any scheme along any closed subscheme) by [3, Lemma 3.2.3]. The

essential image is closed under subobjects by Theorem 4.3.1, and it is closed under

quotients as well since the functor is exact.
For fullness, fix some coherent sheaves F,G on X and assume we have a morphism Fh →

Gh on Xh. The graph H of this morphism is a subsheaf of Fh⊕Gh, so by Theorem 4.3.1,

we have a subsheaf H0 of F ⊕G such that Hh
0 =H inside Fh⊕Gh.

We know that the map

H ↪→Fh⊕Gh →Fh

is an isomorphism. Consider the map

H0 ↪→F⊕G →F .

Since the Henselization functor is exact, ifK=ker(H0 →F), we know that Kh is the kernel
of H→Fh, so Kh vanishes. Thus, because the Henselization functor is faithful, it follows

that K also vanishes. Applying a similar argument to the cokernel of H0 ↪→F⊕G →F ,

we see that this map is also an isomorphism.
Therefore, H0 defines a morphism of sheaves F →G ‘algebraizing’ the morphism Fh →

Gh. This proves fullness of the functor as well, completing the proof.

We can now show that maps between the Henselizations of proper and finitely presented

A-schemes are algebraizable.

Corollary 4.3.4 (Algebraizability of maps). Let X → Spec(A),Y → Spec(A) be proper
and finitely presented morphisms of schemes, with (A,I) a Henselian pair. Then the map

HomSpec(A)(X,Y )→HomSph(A)(X
h,Y h)

is bijective.

As with Theorem 4.3.1, F. Kato proves this corollary in [13, Corollary 6] when A is a

valuation ring which is Henselian with respect to a principal ideal (a), for a a nonzero
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element of the maximal ideal of the valuation ring. Our proof is similar, but we will go
into more detail.

Proof. By Lemma 4.1.1, for any morphism X → Y , we can find a map of Henselian pairs

(A0,I0)→ (A,I) with A0 a Noetherian G-ring for which X =X0⊗A0
A,Y = Y0⊗A0

A for
proper and finitely presented A0-schemes X0,Y0 such that X → Y is the base change of

a morphism X0 → Y0.

Similarly, for any morphism Xh → Y h, we can find A0,X0,Y0 as above so that Xh → Y h

is the base change of a morphism Xh
0 → Y h

0 using Lemma A.3. This allows us to reduce

to the case where A is Noetherian and a G-ring. We can further reduce to the case where

A is also I -adically complete by Lemma 4.2.1 and Remark 4.2.2.

Let X∧,Y ∧ be the proper formal schemes over Spf(A) which are the I -adic completions
of X,Y respectively. By formal GAGA, we have a bijection

HomSpec(A)(X,Y )→HomSpf(A)(X
∧,Y ∧)

between the Hom set of morphisms of A-schemes X → Y and the Hom set of morphisms of
A-formal schemes X∧ → Y ∧. This bijection factors through the map HomSpec(A)(X,Y )→
HomSph(A)(X

h,Y h). Hence, HomSpec(A)(X,Y ) → HomSph(A)(X
h,Y h) must be injective.

To show it is surjective, we have to ‘descend’ an arbitrary map Xh → Y h over Sph(A) to
a map X → Y over Spec(A).

For a morphism g : Xh → Y h, we can consider its graph G ⊂ Xh ×Sph(A) Y
h =

(X×Spec(A) Y )h. By Corollary 4.3.2, we have a closed subscheme F of X×Y such that

Fh =G as closed Henselian subschemes of Xh×Sph(A) Y
h.

To show that F defines the graph of a morphism X → Y , we want the morphism

F ↪→X×Spec(A) Y →X

to be an isomorphism. We already know that the map Fh ↪→ Xh ×Sph(A) Y
h → Xh is

equal to G→Xh, which is an isomorphism. Now we will use the following lemma:

Lemma 4.3.5. For (A,I) a Noetherian Henselian pair and f : T → S a morphism of

proper A-schemes, f is an isomorphism if fh is.

Proof of Lemma. If fh : Th → Sh is an isomorphism, then for all r, the morphism

fr : Tr → Sr of the proper A/Ir+1-schemes Tr := T ×AA/Ir+1,Sr := S×AA/Ir+1 is an

isomorphism. Therefore, f∧ : T∧ → S∧, the I -adic completion of f, is an isomorphism.
Hence, for any point t ∈ T0, the morphism (f∧)t is an isomorphism. Therefore, f is flat

and quasi-finite at all points t of T0.

The flat locus and the quasi-finite locus of f are open by [8, Corollary 13.1.4] and [8,
Theorem 11.3.1], respectively.

Therefore, the locus of points of T at which f is both flat and quasi-finite is open and

contains T0. However, since I is contained in the Jacobson radical Jac(A), we see that the
only open set in Spec(A) containing Spec(A/I) is Spec(A) itself; because the morphism

T → Spec(A) is proper, we see that the only open set in T containing T0 = T ×AA/I is

all of T.
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Therefore, f is flat and quasi-finite. Since T is proper over Spec(A), f is in fact finite and

flat. The function sending points t ∈ T to the fiber degree (the dimension of f−1(f(t))) is

locally constant. Since the fiber degree for all t ∈ T0 is 1 (because f0 is an isomorphism),
we see that there exists an open set U ⊃ T0 on which the fiber degree is 1. However, since

the only open set containing T0 is all of T, we see that f is a finite flat morphism of fiber

degree 1. Hence, f is an isomorphism, as we desired to show.

By Lemma 4.3.5, since the composite map

Fh ∼−→G ↪→Xh×Sph(A) Y
h →Xh

is an isomorphism, the composite map F ↪→X×Spec(A)Y →X is an isomorphism as well.
Therefore, F defines the graph of a morphism X → Y which algebraizes our morphism

Xh → Y h.

4.4. Failures of algebraizability

The question remains open whether, in positive characteristic, all coherent sheaves on a

proper and finitely presented scheme over a Henselian base are algebraizable. However, in
characteristic 0 or mixed characteristic, we cannot have algebraizability for all coherent

sheaves on a proper and finitely presented A-scheme. In fact, even in the case of the

projective line over a complete DVR, there exists of a locally free coherent sheaf of finite
rank that is not algebraizable. Our example has rank 2; we are unsure if this is minimal.

Example 4.4.1. For A a complete DVR with fraction field K of characteristic 0, there
exists a locally free coherent sheaf of rank 2 on (P1

A)
h which is not algebraizable; this

follows from the nonvanishing of H1((P1
A)

h,O(P1
A)h) that was proved by de Jong in [10].

We reproduce that argument here for the convenience of the reader.

We will make use of Čech cohomology, which always injects into cohomology for H1.
Thus, to show nonvanishing of H1((P1

A)
h,O(P1

A)h), it will suffice to show nonvanishing

of the first Čech cohomology for O(P1
A)h with respect to the Henselization of standard

covering of P1
A. As in the positive characteristic case, this is the cokernel of the map

A{t}×A{1/t}→A{t,1/t}.4
Since a complete DVR is a Noetherian domain and G-ring, the same is true for

A[t],A[t,1/t] by [19, Proposition 07PV].
Thus, we can proceed as in the proof of Lemma 3.5.7, applying Lemma 3.5.5 to B =

A[t],A[1/t] and A[t,1/t]. Each element f ∈ (A[t,1/t])∧ (the I -adic completion) is a two-

sided power series in t with coefficients going I -adically to 0 as the exponent goes to ±∞,
and f can be written as f = f++f− for f+ ∈ (A[t])∧,f− ∈ (A[1/t])∧ (so f+ is a power series

in t and f− is a power series in t−1). Showing that the map A{t}×A{1/t} → A{t,1/t}
has nonzero cokernel amounts to showing that for some f = f++f− ∈ (A[t,1/t])∧ which

is algebraic over A[t,1/t], the element f+ ∈ (A[t])∧ is not algebraic over A[t].

4As in the proof of Proposition 3.5.2, A{t}= (A[t])h the I -adic Henselization of the polynomial

ring A[t], and similarly A{1/t}= (A[1/t])h,A{t,1/t}= (A[t,1/t])h for the I -adic Henselizations
of A[1/t],A[t,1/t].
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Let ω be a uniformizer of the complete DVR A. In [9], de Jong proves that in the

above situation, the element f =
√

(1+ωt)(1+ω/t) ∈ (A[t,1/t])∧, visibly algebraic over

A[t,1/t], has f+ not algebraic over A[t]. Therefore, the first Čech cohomology, and so the
first cohomology, for O(P1

A)h does not vanish: H1((P1
A)

h,O(P1
A)h) �= 0.

It will follow that there exists a locally free coherent sheaf of rank 2 on (P1
A)

h which

is not algebraizable; to show this, we proceed with a similar argument to [3, Example
3.1.16].

Since the group H1((P1
A)

h,O(P1
A)h) describes extensions of O(P1

A)h by itself [19, Lemma

0B39], we have a sheaf E on (P1
A)

h which fits into a short exact sequence O(P1
A)h ↪→E �

O(P1
A)h that does not split. Clearly, E is coherent, even locally free of rank 2.

Assume E is algebraizable (i.e., there exists a coherent sheaf E ′ on P1
A such that (E ′)h �

E). By Proposition 2.10, Henselization of coherent sheaves is an exact and fully faithful
functor. Hence, the maps of the short exact sequence O(P1

A)h ↪→E �O(P1
A)h also algebraize

to a diagram OP1
A
↪→ E ′ � OP1

A
that is short exact since (P1

A)
h → P1

A is flat over all

closed points and P1
A is proper over A. This necessarily splits since H1(P1

A,OP1
A
) = 0.

However, by the functoriality of Henselization of coherent sheaves, that would give a map
E → O(P1

A)h making E a split extension of O(P1
A)h by O(P1

A)h , a contradiction.

Appendix. Limits

In this Appendix, we collect lemmas on limits that are useful for reducing from a non-

Noetherian setting to the Noetherian setting.

The following standard fact, which we record primarily as motivation for the Henselian

version in the next lemma, is proved via the Čech-to-derived spectral sequence.

Lemma A.1. Consider a cofiltered inverse system {Xα} of quasi-compact and separated

schemes with affine transition morphisms φαβ : Xα → Xβ. Let X = lim←−Xα and let φα :

X →Xα be the canonical map.
Furthermore, take quasi-coherent sheaves Fα on Xα which form a filtered direct system

via compatible isomorphisms φ∗
αβFβ

∼−→Fα for α ≥ β, and set F = lim−→φ∗
αFα. Then the

natural map

lim−→Hj(Xα,Fα)→Hj(X,F)

is an isomorphism for each j ≥ 0.

Lemmas A.1 and A.2 are used in Section 3.6 to prove Henselian cohomology comparison

in the case of a non-Noetherian Henselian base ring (Theorem 3.6.1).

Lemma A.2. Consider a cofiltered inverse system {Xα} of quasi-compact and separated

schemes with affine transition morphisms φαβ : Xα → Xβ, with a compatible system of

closed subschemes Yα ⊂Xα (i.e., φ−1
αβ(Yβ) = Yα). Let X = lim←−Xα,Y = lim←−Yα, so Y is a

closed subscheme of X. Let φα :X →Xα be the canonical map.

Furthermore, take quasi-coherent sheaves Fα on Xα which form a filtered direct system

via isomorphisms φ∗
αβFβ

∼−→ Fα for α ≥ β, and set F = lim−→φ∗
αFα. Then if Xh

α is the
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Henselization of Xα along Yα and Xh is the Henselization of X along Y, the natural map

lim−→Hj(Xh
α,Fh

α)→Hj(Xh,Fh)

is an isomorphism for each j ≥ 0.

Proof. We begin by reducing to the case i= 0.

Taking the limit of the Čech-to-cohomology spectral sequence (as in [19, Lemma 01ES])
for all open coverings of Xh

α, we have for each α a spectral sequence αE•,•
• with second

sheet Ȟi(Xh
α,H

j(Fh
α)) which abuts to Hi+j(Xh

α,Fh
α). We also get a similar spectral

sequence for Xh with second sheet Ȟi(Xh,Hj(Fh)) which abuts to Hi+j(Xh,Fh).
By the functoriality of the spectral sequences for Čech cohomology, we have a

commutative diagram

lim−→α
Ȟi(Xh

α,H
j(Fh

α)) lim−→α
Hi+j(Xh

α,Fh
α)

Ȟi(Xh,Hj(Fh)) Hi+j(Xh,Fh)

where the horizontal arrows are the abutments of the spectral sequences. Let Ei,j
2 =

Ȟi(Xh,Hj(Fh)).

For j > 0, the presheaves Hj(Fh
α) on Xh

α and Hj(Fh) on Xh sheafify to 0 by [19, Lemma

01E3]. Therefore, for all α and all q > 0, the term αE0,q
2 vanishes.

The limit term Hq(Xh
α,Fh

α) of the spectral sequence αE•,•
• depends only on: αE0,q

2

(which is 0 for q > 0), the terms αEi,j
2 with j < q, and maps among these, because of the

direction of the differential maps.
Therefore, if we fix q > 0 and assume that for all j < q and all Xα,Yα, etc. we have the

statement of the lemma, we can use the commutative diagram above to deduce that the

lemma is true for q as well.
Therefore, we have reduced to showing that lim−→Γ(Xh

α,Fh
α)→ Γ(Xh,Fh) is an isomor-

phism. We may easily reduce to the case of all of the Xα being affine.

Now writeXα =Spec(Aα) and Yα =Spec(Aα/Iα) for rings Aα and ideals Iα ⊂Aα. Then

if A= lim−→Aα,I = lim−→Iα, we have X =Spec(A),Y =Spec(A/I). Furthermore, since the Fα

are quasi-coherent, we see that they correspond to Aα-modules Mα with F corresponding

to the A-module M = lim−→Mα. By [3, Lemma 3.2.4], for each sheaf Fh
α on Xh

α, we have

Fh
α = ˜Mα ⊗

Aα

Ah
α,

and similarly on Xh, we have an equality of sheaves

Fh = M̃ ⊗
A
Ah.

Then what we wish to show is that lim−→α
Mα⊗Aα

Ah
α →M⊗AAh is an isomorphism, where

Ah
α is the Henselization of Aα along Iα and Ah is the Henselization of A along I. This is

true since Henselization commutes with filtered colimits [19, Lemma 0A04].
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The following three lemmas are used in Section 4. Lemmas A.3 and A.5 are used
to reduce algebraization of subsheaves (Theorem 4.3.1) to the case of a Noetherian

G-ring base (Lemma 4.1.1), and then to the case of an I -adically complete base ring

(Lemma 4.2.1); Lemma A.4 is used in the proof of the Henselian Chow’s Theorem
(Corollary 4.3.2.)

Lemma A.3. Suppose that (A,I) is a filtered colimit of Henselian pairs (Ai,Ii). (Note

that from the definitions it is clear that (A,I) is also Henselian.) If X,Y are finitely

presented A-schemes and f :Xh → Y h is a map of Henselian schemes over Sph(A), then
there exists an index i0 and finitely presented Ai0-schemes Xi0,Yi0 with a map of Ii0-adic

Henselizations fi0 :X
h
i0
→ Y h

i0
over Sph(Ai0) so that

(i) X =Xi0 ⊗Ai0
A,Y = Yi0 ⊗Ai0

A;

(ii) and f is the pullback of fi0 to a map Xh → Y h.

Proof. Locally, the map f : Xh → Y h of Henselian schemes, which are both hlfp over
Sph(A), can be described by a map Sph(C)→ Sph(B), which arises from a map ϕ :B →
C where B,C are hfp A-algebras. Then B,C are the I -adic Henselizations of finitely

presented A-algebras B0,C0 such that Spec(C0) is an affine open in X, Spec(B0) is an
affine open in Y.

If

B0 �A[X1, . . . ,Xn]/(f1, . . . ,fm), C0 �A[Y1, . . . ,Yr]/(g1, . . . ,gs),

it follows that

B �A{X1, . . . ,Xn}/(f1, . . . ,fm), C �A{Y1, . . . ,Yr}/(g1, . . . ,gs).

As Henselization commutes with filtered colimits [19, Lemma 0A04] we see that

A{X1, . . . ,Xn}= lim−→Ai{X1, . . . ,Xn}, A{Y1, . . . ,Yr}= lim−→Ai{Y1, . . . ,Yr}.

Therefore, we can find i0 and elements

F1, . . . ,Fm ∈Ai0{X1, . . . ,Xn}, G1, . . . ,Gs ∈Ai0{Y1, . . . ,Yr}

such that the image of the Fj in A{X1, . . . ,Xn}= lim−→Ai{X1, . . . ,Xn} is fj (with a similar

statement for the elements Gj,gj).

Furthermore, if hi := ϕ(Xi) ∈ C, we can find H1, . . . ,Hn ∈ Ai0{Y1, . . . ,Yr}/(G1, . . . ,Gs)

such that the image of Hj in Ai0{Y1, . . . ,Yr}/(G1, . . . ,Gs)⊗Ai0
A= C is hj .

Then we can define a map φi0 :Ai0 [X1, . . . ,Xn]→Ai0{Y1, . . . ,Yr}/(G1, . . . ,Gs) =:Ci0 by

φi0(Xj) = Hj . This map factors through Ai0{X1, . . . ,Xn} by the universal property of

Henselization, giving a map ϕ′
i0
:Ai0{X1, . . . ,Xn}→ Ci0 .

We see that the elements ϕ′
0(Fj) must be 0 after tensoring with A, or after taking the

colimit; thus, we can increase i0 as needed so that ϕ′
i0
(Fj) = 0 ∈ Ci0 for all j. This gives

us a map ϕi0 : Bi0 := Ai0{X1, . . . ,Xn}/(F1, . . . ,Fm)→ Ci0 which is by definition equal to
ϕ :B → C after tensoring with A.

Hence, in the case Xh,Y h are Henselian-affine, we can use the map fi0 :

Sph(Ci0,Ii0Ci0)→ Sph(Bi0,Ii0Bi0) arising from ϕi0 .
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Before we prove the general case, we make the following claim:

Claim. If ψi0 : Bi0 → Ci0 is another Ai0 -map of Henselian pairs such that ψi0 ⊗Ai0
A=

ϕi0 ⊗Ai0
A=ϕ, then there exists some index i1 ≥ i0 such that ϕi0 ⊗Ai0

Ai1 =ψi0 ⊗Ai0
Ai1 .

Proof of Claim. Note that since Bi0 = Ai0{X1, . . . ,Xn}/(F1, . . . ,Fm), the map ϕi0 is

determined by αj := ϕi0(Xj) ∈ Ci0 . Similarly, ψi0 is determined by the elements βj :=
ψi0(Xj)∈Ci0 . Because ψi0 ⊗Ai0

A= ϕi0 ⊗Ai0
A= ϕ, this means that for each j, the image

of αj and βj are equal in C = Ci0 ⊗Ai0
A. Therefore, we can choose i1 ≥ i0 so that the

images of αj,βj are equal in Ci1 = Ci0 ⊗Ai0
Ai1 , which would mean that ϕi0 ⊗Ai0

Ai1 =
ψi0 ⊗Ai0

Ai1 .

The general case can be deduced from the affine case by gluing as follows. By [19,

Lemma 01ZM], we can find an index i0 and finitely presented Ai0 -schemes Xi0,Yi0 such

that X = Xi0 ⊗Ai0
A,Y = Yi0 ⊗Ai0

A. Let Yi0 =
⋃

j Vi0,j be a finite affine open cover of

Yi0 , with Y h
i0
=

⋃
j V

h
i0,j

,Y =
⋃
Vj,Y

h =
⋃
V h
j the corresponding finite (Henselian) affine

open covers of Y h
i0
,Y ,Y h.

For each j, we use the fact that X and hence Xh are qcqs to cover f−1(V h
j ) with finitely

many Henselian affine opens f−1(V h
j ) =

⋃
kU

h
j,k, where each Henselian affine open Uh

j,k is
the Henselization of an affine open Uj,k ⊆X. Possibly increasing i0, we can assume that

each affine open Uj,k arises from an affine open Ui0,j,k ⊆Xi0 .

Then for each map f |Uh
j,k

:Uh
j,k → V h

j , we can use the affine case of the lemma which we

have proved to obtain maps fi0,j,k : Uh
i0,j,k

→ V h
i0,j

such that fi0,j,k⊗Ai0
A= f |Uh

j,k
after

possibly increasing i0. The intersection of any two Uh
i0,j,k

can be covered with finitely

many Henselian affine opens as well, so using the claim above, we can increase i0 so
that the fi0,j,k are equal on each of these intersections. This allows us to glue the maps

together to obtain a map fi0 :X
h
i0
→ Y h

i0
which accomplishes the desired.

Lemma A.4. In the setting of Lemma A.3, if Z is a Henselian scheme which is hlfp and

qcqs over Sph(A) with an hlfp closed Henselian subscheme Z ⊆ Z, then there exists an

index i0 and a Henselian scheme Zi0 , which is hlfp over Sph(Ai0), with an hlfp closed
Henselian subscheme Zi0 such that Z = Zi0 ⊗Ai0

A,Z = Zi0 ⊗Ai0
A.

Proof. Locally, the Henselian scheme Z, which is hlfp over Sph(A), can be described as
Sph(B) for an hfp A-algebra B, which is the I -adic Henselization of a finite presented

A-algebra B0 = A[X1, . . . ,Xn]/(f1, . . . ,fm), so B = A{X1, . . . ,Xn}/(f1, . . . ,fm). We can

choose a Henselian affine cover of Z so that on each Henselian affine Sph(B), the hlfp
closed Henselian subscheme Z can be described as Sph(C) for C which is the quotient

of B by a finitely generated ideal: C �A{X1, . . . ,Xn}/(f1, . . . ,fm,g1, . . . ,gr) (where the gj
lie in A{X1, . . . ,Xn}).
As Henselization commutes with filtered colimits [19, Lemma 0A04], we see that

A{X1, . . . ,Xn}= lim−→Ai{X1, . . . ,Xn}.
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Thus, we can find i0 and elements F1, . . . ,Fm,G1, . . . ,Gr ∈ Ai0{X1, . . . ,Xn} such that the

image of the Fj in A{X1, . . . ,Xn}= lim−→Ai{X1, . . . ,Xn} is fj (with a similar statement for

the elements Gj,gj).
It then follows that for

Bi0 =Ai0{X1, . . . ,Xn}/(F1, . . . ,Fm),Ci0 =Ai0{X1, . . . ,Xn}/(F1, . . . ,Fm,G1, . . . ,Gr),

we have Bi0 ⊗Ai0
A�B,Ci0 ⊗Ai0

A� C. Therefore, in the case where Z,Z are affine, we

can use the closed Henselian subscheme Zi0 =Sph(Ci0,Ii0Ci0) inside Zi0 =Sph(Bi0,IBi0).

The general case can be deduced from the affine case by gluing as follows. Since Z is
qcqs, we can choose a finite Henselian affine open cover Z =

⋃
j Vj such that, as above,

each of the intersections Z ∩Vj =: V j is a closed immersion V j → Vj defined by an ideal
of O(Vj).

For each pair j,k, we can cover the intersection Vj ∩Vk with finitely many Henselian

affine opens Vj ∩Vk =
⋃

�Uj,k,� such that each Uj,k,� is a distinguished affine open both
in Vj and in Vk [3, Proposition 4.2.1]. Since any Henselian affine scheme Sph(R,J)

over Sph(A) is the Henselization of an affine scheme Spec(R) over Spec(A) at a closed

subscheme Spec(R/J), we see that we can apply the affine case of Lemma A.3 to each

of the inclusion maps fj,k,� : Uj,k,� → Vj . We thus obtain an index i0 and Henselian
affine schemes Vi0,j,Ui0,j,k,� over Sph(A) with maps fi0,j,k,� : Ui0,j,k,� → Vi0,j such that

fi0,j,k,�⊗Ai0
A= fj,k,�.

Since Uj,k,� is a distinguished affine open in Vj , we see that if Vj = Sph(R) for an hfp
A-algebra R=A{T1, . . . ,Tn}/(α1, . . . ,αm), then Uj,k,� = Sph(Rh

α) for some α ∈R. Then

Uj,k,� = Sph(Rh
α)� Sph(R{T}/(1−αT ))� Sph(A{T1, . . . ,Tn+1}/(α1, . . . ,αm,1−αTn+1);

following the construction in the proof of Lemma A.3, we see that (after possibly

increasing i0) the map fi0,j,k,� : Ui0,j,k,� → Vi0,j will arise from a map of hfp Ai0 -algebras

Ri0 =Ai0{T1, . . . ,Tn}/(β1, . . . ,βm)→Ai0{T1, . . . ,Tn+1}/(β1, . . . ,βm,1−βTn+1)

for some β ∈Ri0 . In particular, fi0,j,k,� is also an open immersion, as

Ui0,j,k,� =Ai0{T1, . . . ,Tn+1}/(β1, . . . ,βm,1−βTn+1)�Ri0{T}/(1−βT )� (Ri0)
h
β

is a distinguished affine open in Vi0,j . Furthermore, we can use the claim in the proof of
Lemma A.3 to ensure that the fi0,j,k,� satisfy an appropriate cocycle condition on triple

overlaps by increasing i0.

Then we can ‘glue’ the Vi0,j with the maps fi0,j,k,� : Ui0,j,k,� → Vi0,j to obtain a
Henselian scheme Zi0 =

⋃
j Vi0,j , which will be hlfp over Sph(Ai0) by construction, and

which will satisfy Zi0⊗Ai0
A=Z. Furthermore, we can increase i0 and apply the affine case

of this lemma to obtain for each j a closed immersion of Henselian schemes V i0,j ⊆ Vi0,j

with V i0,j ⊗Ai0
A = V j , which we can ‘glue’ in a similar way to get a closed subscheme

Zi0 such that Z = Zi0 ⊗Ai0
A.

Lemma A.5. In the setting of Lemma A.3, if F,G are finitely presented OXh-modules

with a map g : F → G, then there exists an index i0 and a finitely presented Ai0-scheme
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Xi0 with a map of OXh
i0
-modules gi0 :Fi0 →Gi0 (where Xh

i0
is the Ii0-adic Henselization)

such that

(i) X =Xi0 ⊗Ai0
A,F = Fi0 ×Xh

i0
Xh,G = Gi0 ×Xh

i0
Xh;

(ii) the map gi0 pulls back to g.

Furthermore, we can ensure that if g is an isomorphism, so is gi0 .

Proof. We first consider the case of a Henselian affine scheme V = Sph(B) for B an hfp

A-algebra, such that F|V � M̃ for M a finitely presented B -module and G|V � Ñ for

another finitely presented B -module N, with the map of OXh -modules g : F → G arising

from a B -module map f :M →N .
As in the proof of Lemma A.3, we can find an index i0 and an hfp Ai0 -algebra Bi0 so

that Bi0 ⊗Ai0
A�B. Letting Bi =Bi0 ⊗Ai0

Ai for i≥ i0, we see that lim−→i≥i0
Bi �B.

Then by [19, Lemma 05LI], we can find an index i1 and a map of finitely presented
Bi1 -modules fi1 : Mi1 → Ni1 such that M � Mi1 ⊗Bi1

B,N � Ni1 ⊗Bi1
B and the map

f :M →N is equal to the map fi1 ⊗1 :Mi1 ⊗Bi1
B →Ni1 ⊗Bi1

B. Furthermore, if f is an

isomorphism, we can ensure fi1 is as well [19, Lemma 05LI].
Similarly to the proof of Lemma A.3, it will be useful to note that if for two maps

fi1,f
′
i1
:Mi1 →Ni1 the maps fi1 ⊗1,f ′

i1
⊗1 :Mi1 ⊗Bi1

B →Ni1 ⊗Bi1
B are equal, then for

some index i2 ≥ i1, the maps fi1 ⊗1,f ′
i1
⊗1 :Mi1 ⊗Bi1

Bi2 →Ni1 ⊗Bi1
Bi2 are equal. (This is

proved by considering the images of some finite set of generators of the finitely presented

Bi1 -module Mi1 via the maps fi1,f
′
i1
.)

In the general case, we can cover Xh with finitely many Henselian affine opens V =

Sph(B)⊂Xh (for B an hfp A-algebra) such that we have an isomorphism F|V � M̃ for
M a finitely presented B -module. Possibly shrinking the affine opens V, we can assume

that we also have G|V � Ñ for another finitely presented B -module N, with the map of

OXh -modules g : F → G arising from a B -module map f :M →N .
As in Lemma A.3, we obtain an index i0 and a finitely presented Ai0 -scheme Xi0

such that Xi0 ⊗Ai0
A = X. We can increase i0 so for each of the Henselian affine open

V = Sph(B)⊆Xh, the corresponding affine open in Xi0 is Ui0 = Spec(Ri0) for a finitely
presented Ai0 -algebra Ri0 such that Rh

i0
⊗Ai0

A=B. Possibly replacing Xi0 with an open

subscheme, we can ensure that Xi0 is covered by the affine opens Ui0 = Spec(Ri0) and

Xh
i0

is covered by Henselian affine opens Vi0 = Sph(Bi0) for Bi0 =Rh
i0
.

By the affine case of this lemma, we can increase i0 so that on each of the Henselian
affine opens V, the map of B -modules f :M →N corresponding to F|V →G|V arises from

a map of Bi0 -modules fi0 : Mi0 → Ni0 ; these modules Mi0,Ni0 can be ‘glued’ together

similarly to the ‘gluing’ of Henselian affine schemes in Lemma A.4 (possibly increasing i0
to ensure compatibility on overlaps of the Vi0) to get OXh

i0
-modules Fi0,Gi0 . In the same

way we may ‘glue’ the maps fi0 to a map gi0 : Fi0 →Gi0 (again, possibly increasing i0 to
ensure compatibility on overlaps) which will pull back to g : F → G by construction.

Since for each f :M →N we can ensure that fi0 is an isomorphism if f is, the same is

true for gi0,g.
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