
9 Imperative Programming

This chapter includes contributions from Jason Hickey.

Most of the code shown so far in this book, and indeed, most OCaml code in general,

is pure. Pure code works without mutating the program's internal state, performing I/O,

reading the clock, or in any other way interacting with changeable parts of the world.

Thus, a pure function behaves like a mathematical function, always returning the same

results when given the same inputs, and never a�ecting the world except insofar as it

returns the value of its computation. Imperative code, on the other hand, operates by

side e�ects that modify a program's internal state or interact with the outside world.

An imperative function has a new e�ect, and potentially returns di�erent results, every

time it's called.

Pure code is the default in OCaml, and for good reason�it's generally easier

to reason about, less error prone and more composable. But imperative code is of

fundamental importance to any practical programming language, because real-world

tasks require that you interact with the outside world, which is by its nature imperative.

Imperative programming can also be important for performance. While pure code is

quite e�cient in OCaml, there are many algorithms that can only be implemented

e�ciently using imperative techniques.

OCaml o�ers a happy compromise here, making it easy and natural to program in a

pure style, but also providing great support for imperative programming. This chapter

will walk you through OCaml's imperative features, and help you use them to their

fullest.

9.1 Example: Imperative Dictionaries

We'll start with the implementation of a simple imperative dictionary, i.e., a mutable

mapping from keys to values. This is very much a toy implementation, and it's really

not suitable for any real-world use. That's �ne, since both Base and the standard

library provide e�ective imperative dictionaries. There's more advice on using Base's

implementation in particular in Chapter 15 (Maps and Hash Tables).

The dictionary we'll describe now, like those in Base and the standard library, will

be implemented as a hash table. In particular, we'll use an open hashing scheme, where
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the hash table will be an array of buckets, each bucket containing a list of key/value

pairs that have been hashed into that bucket.

Here's the signature we'll match, provided as an interface �le, dictionary.mli. The

type ('a, 'b) t represents a dictionary with keys of type 'a and data of type 'b.

open Base

type ('a, 'b) t

val create
: hash:('a -> int)
-> equal:('a -> 'a -> bool)
-> ('a, 'b) t

val length : ('a, 'b) t -> int
val add : ('a, 'b) t -> key:'a -> data:'b -> unit
val find : ('a, 'b) t -> 'a -> 'b option
val iter : ('a, 'b) t -> f:(key:'a -> data:'b -> unit) -> unit
val remove : ('a, 'b) t -> 'a -> unit

This mli also includes a collection of helper functions whose purpose and behavior

should be largely inferable from their names and type signatures. Note that the create

function takes as its arguments functions for hashing keys and testing them for equality.

You might notice that some of the functions, like add and iter, return unit. This

is unusual for functional code, but common for imperative functions whose primary

purpose is to mutate some data structure, rather than to compute a value.

We'll now walk through the implementation (contained in the corresponding ml

�le, dictionary.ml) piece by piece, explaining di�erent imperative constructs as they

come up.

Our �rst step is to de�ne the type of a dictionary as a record.

open Base

type ('a, 'b) t =
{ mutable length : int
; buckets : ('a * 'b) list array
; hash : 'a -> int
; equal : 'a -> 'a -> bool
}

The �rst �eld, length, is declared as mutable. In OCaml, records are immutable

by default, but individual �elds are mutable when marked as such. The second �eld,

buckets, is immutable but contains an array, which is itself a mutable data structure.

The remaining �elds contain the functions for hashing and equality checking.

Now we'll start putting together the basic functions for manipulating a dictionary:

let num_buckets = 17
let hash_bucket t key = t.hash key % num_buckets

let create ~hash ~equal =
{ length = 0
; buckets = Array.create ~len:num_buckets []
; hash
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; equal
}

let length t = t.length

let find t key =
List.find_map
t.buckets.(hash_bucket t key)
~f:(fun (key', data) ->
if t.equal key' key then Some data else None)

Note that num_buckets is a constant, which means our bucket array is of �xed length.

A practical implementation would need to be able to grow the array as the number of

elements in the dictionary increases, but we'll omit this to simplify the presentation.

The function hash_bucket is used throughout the rest of the module to choose the

position in the array that a given key should be stored at.

The other functions de�ned above are fairly straightforward:

create Creates an empty dictionary.

length Grabs the length from the corresponding record �eld, thus returning the

number of entries stored in the dictionary.

find Looks for a matching key in the table and returns the corresponding value if

found as an option.

Another important piece of imperative syntax shows up in find: we write

array.(index) to grab a value from an array. find also uses List.find_map, which

you can see the type of by typing it into the toplevel:

# open Base;;
# List.find_map;;
- : 'a list -> f:('a -> 'b option) -> 'b option = <fun>

List.find_map iterates over the elements of the list, calling f on each one until a

Some is returned by f, at which point that value is returned. If f returns None on all

values, then None is returned.

Now let's look at the implementation of iter:

let iter t ~f =
for i = 0 to Array.length t.buckets - 1 do
List.iter t.buckets.(i) ~f:(fun (key, data) -> f ~key ~data)

done

iter is designed to walk over all the entries in the dictionary. In particular, iter

t ~f will call f for each key/value pair in dictionary t. Note that f must return unit,

since it is expected to work by side e�ect rather than by returning a value, and the

overall iter function returns unit as well.

The code for iter uses two forms of iteration: a for loop to walk over the array of

buckets; and within that loop a call to List.iter to walk over the values in a given

bucket. We could have done the outer loop with a recursive function instead of a for

loop, but for loops are syntactically convenient, and are more familiar and idiomatic

in imperative contexts.

The following code is for adding and removing mappings from the dictionary:
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let bucket_has_key t i key =
List.exists t.buckets.(i) ~f:(fun (key', _) -> t.equal key' key)

let add t ~key ~data =
let i = hash_bucket t key in
let replace = bucket_has_key t i key in
let filtered_bucket =
if replace
then
List.filter t.buckets.(i) ~f:(fun (key', _) ->

not (t.equal key' key))
else t.buckets.(i)

in
t.buckets.(i) <- (key, data) :: filtered_bucket;
if not replace then t.length <- t.length + 1

let remove t key =
let i = hash_bucket t key in
if bucket_has_key t i key
then (
let filtered_bucket =
List.filter t.buckets.(i) ~f:(fun (key', _) ->

not (t.equal key' key))
in
t.buckets.(i) <- filtered_bucket;
t.length <- t.length - 1)

This preceding code is made more complicated by the fact that we need to detect

whether we are overwriting or removing an existing binding, so we can decide whether

t.length needs to be changed. The helper function bucket_has_key is used for this

purpose.

Another piece of syntax shows up in both add and remove: the use of the <- operator

to update elements of an array (array.(i) <- expr) and for updating a record �eld

(record.field <- expression).

We also use ;, the sequencing operator, to express a sequence of imperative actions.

We could have done the same using let bindings:

let () = t.buckets.(i) <- (key, data) :: filtered_bucket in
if not replace then t.length <- t.length + 1

but ; is more concise and idiomatic. More generally,

<expr1>;
<expr2>;
...
<exprN>

is equivalent to

let () = <expr1> in
let () = <expr2> in
...
<exprN>

When a sequence expression expr1; expr2 is evaluated, expr1 is evaluated �rst,

and then expr2. The expression expr1 should have type unit (though this is a warning
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rather than a hard restriction. The -strict-sequence compiler �ag makes this a hard

restriction, which is generally a good idea), and the value of expr2 is returned as

the value of the entire sequence. For example, the sequence print_string "hello

world"; 1 + 2 �rst prints the string "hello world", then returns the integer 3.

Note also that we do all of the side-e�ecting operations at the very end of each

function. This is good practice because it minimizes the chance that such operations

will be interrupted with an exception, leaving the data structure in an inconsistent state.

9.2 Primitive Mutable Data

Now that we've looked at a complete example, let's take a more systematic look at

imperative programming in OCaml. We encountered two di�erent forms of mutable

data above: records with mutable �elds and arrays. We'll now discuss these in more

detail, along with the other primitive forms of mutable data that are available in OCaml.

9.2.1 Array-Like Data

OCaml supports a number of array-like data structures; i.e., mutable integer-indexed

containers that provide constant-time access to their elements. We'll discuss several of

them in this section.

Ordinary arrays

The array type is used for general-purpose polymorphic arrays. The Array module

has a variety of utility functions for interacting with arrays, including a number of

mutating operations. These include Array.set, for setting an individual element, and

Array.blit, for e�ciently copying values from one range of indices to another.

Arrays also come with special syntax for retrieving an element from an array:

<array_expr>.(<index_expr>)

and for setting an element in an array:

<array_expr>.(<index_expr>) <- <value_expr>

Out-of-bounds accesses for arrays (and indeed for all the array-like data structures)

will lead to an exception being thrown.

Array literals are written using [| and |] as delimiters. Thus, [| 1; 2; 3 |] is a

literal integer array.

bytes and strings.
The strings we've encountered thus far are essentially byte arrays, and are most often

used for textual data. You could imagine using a char array (a char represents an

8-bit character) for the same purpose, but strings are considerably more space-e�cient;

an array uses one 8-byte word on a 64-bit machine�to store a single entry, whereas

strings use one byte per character.
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Unlike arrays, though, strings are immutable, and sometimes, it's convenient to have

a space-e�cient, mutable array of bytes. Happily, OCaml has that, via the bytes type.

You can set individual characters using Bytes.set, and a value of type bytes can

be converted to and from the string type.

# let b = Bytes.of_string "foobar";;
val b : bytes = "foobar"

# Bytes.set b 0 (Char.uppercase (Bytes.get b 0));;
- : unit = ()

# Bytes.to_string b;;
- : string = "Foobar"

Bigarrays

A Bigarray.t is a handle to a block of memory stored outside of the OCaml heap.

These are mostly useful for interacting with C or Fortran libraries, and are discussed in

Chapter 24 (Memory Representation of Values). Bigarrays too have their own getting

and setting syntax:

<bigarray_expr>.{<index_expr>}
<bigarray_expr>.{<index_expr>} <- <value_expr>

9.2.2 Mutable Record and Object Fields and Ref Cells

As we've seen, records are immutable by default, but individual record �elds can

be declared as mutable. These mutable �elds can be set using the <- operator, i.e.,

record.field <- expr.

As we'll see in Chapter 13 (Objects), �elds of an object can similarly be declared

as mutable, and can then be modi�ed in much the same way as record �elds.

Ref cells

Variables in OCaml are never mutable�they can refer to mutable data, but what the

variable points to can't be changed. Sometimes, though, you want to do exactly what

you would do with a mutable variable in another language: de�ne a single, mutable

value. In OCaml this is typically achieved using a ref, which is essentially a container

with a single mutable polymorphic �eld.

The de�nition for the ref type is as follows:

# type 'a ref = { mutable contents : 'a };;
type 'a ref = { mutable contents : 'a; }

The standard library de�nes the following operators for working with refs.

ref expr Constructs a reference cell containing the value de�ned by the expression

expr.

!refcell Returns the contents of the reference cell.

refcell := expr Replaces the contents of the reference cell.

You can see these in action:
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# let x = ref 1;;
val x : int ref = {Base.Ref.contents = 1}

# !x;;
- : int = 1

# x := !x + 1;;
- : unit = ()

# !x;;
- : int = 2

The preceding are just ordinary OCaml functions, which could be de�ned as follows:

# let ref x = { contents = x };;
val ref : 'a -> 'a ref = <fun>

# let (!) r = r.contents;;
val ( ! ) : 'a ref -> 'a = <fun>

# let (:=) r x = r.contents <- x;;
val ( := ) : 'a ref -> 'a -> unit = <fun>

This re�ects the fact that ref cells are really just a special case of mutable record

�elds.

9.2.3 Foreign Functions

Another source of imperative operations in OCaml is resources that come from inter-

facing with external libraries through OCaml's foreign function interface (FFI). The

FFI opens OCaml up to imperative constructs that are exported by system calls or other

external libraries. Many of these come built in, like access to the write system call or

to the clock, while others come from user libraries. OCaml's FFI is discussed in more

detail in Chapter 23 (Foreign Function Interface).

9.3 For and While Loops

OCaml provides support for traditional imperative looping constructs, in particular,

for and while loops. Neither of these constructs is strictly necessary, since they can

be simulated with recursive functions. Nonetheless, explicit for and while loops are

both more concise and more idiomatic when programming imperatively.

The for loop is the simpler of the two. Indeed, we've already seen the for loop in

action�the iter function in Dictionary is built using it. Here's a simple example of

for. Note that we open the Stdio library to get access to the printf function.

# open Stdio;;
# for i = 0 to 3 do printf "i = %d\n" i done;;
i = 0

i = 1

i = 2

i = 3

- : unit = ()

As you can see, the upper and lower bounds are inclusive. We can also use downto

to iterate in the other direction:
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# for i = 3 downto 0 do printf "i = %d\n" i done;;
i = 3

i = 2

i = 1

i = 0

- : unit = ()

Note that the loop variable of a for loop, i in this case, is immutable in the scope

of the loop and is also local to the loop, i.e., it can't be referenced outside of the loop.

OCaml also supports while loops, which include a condition and a body. The loop

�rst evaluates the condition, and then, if it evaluates to true, evaluates the body and

starts the loop again. Here's a simple example of a function for reversing an array in

place:

# let rev_inplace ar =
let i = ref 0 in
let j = ref (Array.length ar - 1) in
(* terminate when the upper and lower indices meet *)
while !i < !j do
(* swap the two elements *)
let tmp = ar.(!i) in
ar.(!i) <- ar.(!j);
ar.(!j) <- tmp;
(* bump the indices *)
Int.incr i;
Int.decr j

done;;
val rev_inplace : 'a array -> unit = <fun>

# let nums = [|1;2;3;4;5|];;
val nums : int array = [|1; 2; 3; 4; 5|]

# rev_inplace nums;;
- : unit = ()

# nums;;
- : int array = [|5; 4; 3; 2; 1|]

In the preceding example, we used Int.incr and Int.decr, which are built-in

functions for incrementing and decrementing an int ref by one, respectively.

9.4 Example: Doubly Linked Lists

Another common imperative data structure is the doubly linked list. Doubly linked

lists can be traversed in both directions, and elements can be added and removed

from the list in constant time. Core de�nes a doubly linked list (the module is called

Doubly_linked), but we'll de�ne our own linked list library as an illustration.

Here's the mli of the module we'll build:

open Base

type 'a t
type 'a element

(** Basic list operations *)
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val create : unit -> 'a t
val is_empty : 'a t -> bool

(** Navigation using [element]s *)

val first : 'a t -> 'a element option
val next : 'a element -> 'a element option
val prev : 'a element -> 'a element option
val value : 'a element -> 'a

(** Whole-data-structure iteration *)

val iter : 'a t -> f:('a -> unit) -> unit
val find_el : 'a t -> f:('a -> bool) -> 'a element option

(** Mutation *)

val insert_first : 'a t -> 'a -> 'a element
val insert_after : 'a element -> 'a -> 'a element
val remove : 'a t -> 'a element -> unit

Note that there are two types de�ned here: 'a t, the type of a list; and 'a element,

the type of an element. Elements act as pointers to the interior of a list and allow us to

navigate the list and give us a point at which to apply mutating operations.

Now let's look at the implementation. We'll start by de�ning 'a element and 'a t:

open Base

type 'a element =
{ value : 'a
; mutable next : 'a element option
; mutable prev : 'a element option
}

type 'a t = 'a element option ref

An 'a element is a record containing the value to be stored in that node as well

as optional (and mutable) �elds pointing to the previous and next elements. At the

beginning of the list, the prev �eld is None, and at the end of the list, the next �eld is

None.

The type of the list itself, 'a t, is a mutable reference to an optional element. This

reference is None if the list is empty, and Some otherwise.

Now we can de�ne a few basic functions that operate on lists and elements:

let create () = ref None
let is_empty t = Option.is_none !t
let value elt = elt.value
let first t = !t
let next elt = elt.next
let prev elt = elt.prev

These all follow relatively straightforwardly from our type de�nitions.
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Cyclic Data Structures

Doubly linked lists are a cyclic data structure, meaning that it is possible to follow

a nontrivial sequence of pointers that closes in on itself. In general, building cyclic

data structures requires the use of side e�ects. This is done by constructing the data

elements �rst, and then adding cycles using assignment afterward.

There is an exception to this, though: you can construct �xed-size cyclic data

structures using let rec:

# let rec endless_loop = 1 :: 2 :: 3 :: endless_loop;;
val endless_loop : int list = [1; 2; 3; <cycle>]

This approach is quite limited, however. General-purpose cyclic data structures

require mutation.

9.4.1 Modifying the List

Now, we'll start considering operations that mutate the list, starting with insert_first,

which inserts an element at the front of the list:

let insert_first t value =
let new_elt = { prev = None; next = !t; value } in
(match !t with
| Some old_first -> old_first.prev <- Some new_elt
| None -> ());
t := Some new_elt;
new_elt

insert_first �rst de�nes a new element new_elt, and then links it into the list,

�nally setting the list itself to point to new_elt. Note that the precedence of a match

expression is very low, so to separate it from the following assignment (t := Some

new_elt), we surround thematchwith parentheses.We could have used begin ... end

for the same purpose, but without some kind of bracketing, the �nal assignment would

incorrectly become part of the None case.

We can use insert_after to insert elements later in the list. insert_after takes as

arguments both an element after which to insert the new node and a value to insert:

let insert_after elt value =
let new_elt = { value; prev = Some elt; next = elt.next } in
(match elt.next with
| Some old_next -> old_next.prev <- Some new_elt
| None -> ());
elt.next <- Some new_elt;
new_elt

We also need a remove function:

let remove t elt =
let { prev; next; _ } = elt in
(match prev with
| Some prev -> prev.next <- next
| None -> t := next);
(match next with
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| Some next -> next.prev <- prev
| None -> ());
elt.prev <- None;
elt.next <- None

Note that the preceding code is careful to change the prev pointer of the following

element and the next pointer of the previous element, if they exist. If there's no previous

element, then the list pointer itself is updated. In any case, the next and previous pointers

of the element itself are set to None.

These functions are more fragile than they may seem. In particular, misuse of the

interface may lead to corrupted data. For example, double-removing an element will

cause the main list reference to be set to None, thus emptying the list. Similar problems

arise from removing an element from a list it doesn't belong to.

This shouldn't be a big surprise. Complex imperative data structures can be quite

tricky, considerably trickier than their pure equivalents. The issues described previously

can be dealt with bymore careful error detection, and such error correction is taken care

of in modules like Core's Doubly_linked. You should use imperative data structures

from a well-designed library when you can. And when you can't, you should make

sure to put great care into your error handling.

9.4.2 Iteration Functions

When de�ning containers like lists, dictionaries, and trees, you'll typically want to

de�ne a set of iteration functions like iter, map, and fold, which let you concisely

express common iteration patterns.

Dlist has two such iterators: iter, the goal of which is to call a unit-producing

function on every element of the list, in order; and find_el, which runs a provided test

function on each value stored in the list, returning the �rst element that passes the test.

Both iter and find_el are implemented using simple recursive loops that use next to

walk from element to element and value to extract the element from a given node:

let iter t ~f =
let rec loop = function
| None -> ()
| Some el ->
f (value el);
loop (next el)

in
loop !t

let find_el t ~f =
let rec loop = function
| None -> None
| Some elt -> if f (value elt) then Some elt else loop (next elt)

in
loop !t

This completes our implementation, but there's still considerably more work to be

done to make a really usable doubly linked list. As mentioned earlier, you're probably

better o� using something like Core Doubly_linked module that has a more complete
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interface and has more of the tricky corner cases worked out. Nonetheless, this example

should serve to demonstrate some of the techniques you can use to build nontrivial

imperative data structure in OCaml, as well as some of the pitfalls.

9.5 Laziness and Other Benign E�ects

There are many instances where you basically want to program in a pure style, but

you want to make limited use of side e�ects to improve the performance of your code.

Such side e�ects are sometimes called benign e�ects, and they are a useful way of

leveraging OCaml's imperative features while still maintaining most of the bene�ts of

pure programming.

One of the simplest benign e�ects is laziness. A lazy value is one that is not

computed until it is actually needed. In OCaml, lazy values are created using the lazy

keyword, which can be used to convert any expression of type s into a lazy value of type

s lazy_t. The evaluation of that expression is delayed until forced with Lazy.force:

# let v = lazy (print_endline "performing lazy computation";
Float.sqrt 16.);;

val v : float lazy_t = <lazy>

# Lazy.force v;;
performing lazy computation

- : float = 4.

# Lazy.force v;;
- : float = 4.

You can see from the print statement that the actual computation was performed

only once, and only after force had been called.

To better understand how laziness works, let's walk through the implementation of

our own lazy type. We'll start by declaring types to represent a lazy value:

# type 'a lazy_state =
| Delayed of (unit -> 'a)
| Value of 'a
| Exn of exn;;

type 'a lazy_state = Delayed of (unit -> 'a) | Value of 'a | Exn of exn

# type 'a our_lazy = { mutable state : 'a lazy_state };;
type 'a our_lazy = { mutable state : 'a lazy_state; }

A lazy_state represents the possible states of a lazy value. A lazy value is Delayed

before it has been run, where Delayed holds a function for computing the value in

question. A lazy value is in the Value state when it has been forced and the computation

ended normally. The Exn case is for when the lazy value has been forced, but the

computation ended with an exception. A lazy value is simply a record with a single

mutable �eld containing a lazy_state, where the mutability makes it possible to

change from being in the Delayed state to being in the Value or Exn states.

We can create a lazy value from a thunk, i.e., a function that takes a unit argument.

Wrapping an expression in a thunk is another way to suspend the computation of an

expression:
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# let our_lazy f = { state = Delayed f };;
val our_lazy : (unit -> 'a) -> 'a our_lazy = <fun>

# let v =
our_lazy (fun () ->
print_endline "performing lazy computation"; Float.sqrt 16.);;

val v : float our_lazy = {state = Delayed <fun>}

Now we just need a way to force a lazy value. The following function does just that.

# let our_force l =
match l.state with
| Value x -> x
| Exn e -> raise e
| Delayed f ->
try
let x = f () in
l.state <- Value x;
x

with exn ->
l.state <- Exn exn;
raise exn;;

val our_force : 'a our_lazy -> 'a = <fun>

Which we can use in the same way we used Lazy.force:

# our_force v;;
performing lazy computation

- : float = 4.

# our_force v;;
- : float = 4.

The main user-visible di�erence between our implementation of laziness and the

built-in version is syntax. Rather than writing our_lazy (fun () -> sqrt 16.), we

can (with the built-in lazy) just write lazy (sqrt 16.), avoiding the necessity of

declaring a function.

9.5.1 Memoization and Dynamic Programming

Another benign e�ect is memoization. A memoized function remembers the result

of previous invocations of the function so that they can be returned without further

computation when the same arguments are presented again.

Here's a function that takes as an argument an arbitrary single-argument function

and returns amemoized version of that function. Herewe'll use Base's Hashtblmodule,

rather than our toy Dictionary.

This implementation requires an argument of a Hashtbl.Key.t, which plays the role

of the hash and equal from Dictionary. Hashtbl.Key.t is an example of what's called

a �rst-class module, which we'll see more of in Chapter 12 (First-Class Modules).

# let memoize m f =
let memo_table = Hashtbl.create m in
(fun x ->
Hashtbl.find_or_add memo_table x ~default:(fun () -> f x));;

val memoize : 'a Hashtbl.Key.t -> ('a -> 'b) -> 'a -> 'b = <fun>
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The preceding code is a bit tricky. memoize takes as its argument a function f

and then allocates a polymorphic hash table (called memo_table), and returns a new

function which is the memoized version of f. When called, this new function uses

Hashtbl.find_or_add to try to �nd a value in the memo_table, and if it fails, to call f

and store the result. Note that memo_table is referred to by the function, and so won't

be collected until the function returned by memoize is itself collected.

Memoization can be useful whenever you have a function that is expensive to

recompute and you don't mind caching old values inde�nitely. One important caution:

a memoized function by its nature leaks memory. As long as you hold on to the

memoized function, you're holding every result it has returned thus far.

Memoization is also useful for e�ciently implementing some recursive algorithms.

One good example is the algorithm for computing the edit distance (also called the

Levenshtein distance) between two strings. The edit distance is the number of single-

character changes (including letter switches, insertions, and deletions) required to

convert one string to the other. This kind of distance metric can be useful for a variety

of approximate string-matching problems, like spellcheckers.

Consider the following code for computing the edit distance. Understanding the

algorithm isn't important here, but you should pay attention to the structure of the

recursive calls:

# let rec edit_distance s t =
match String.length s, String.length t with
| (0,x) | (x,0) -> x
| (len_s,len_t) ->
let s' = String.drop_suffix s 1 in
let t' = String.drop_suffix t 1 in
let cost_to_drop_both =
if Char.(=) s.[len_s - 1] t.[len_t - 1] then 0 else 1

in
List.reduce_exn ~f:Int.min
[ edit_distance s' t + 1
; edit_distance s t' + 1
; edit_distance s' t' + cost_to_drop_both
];;

val edit_distance : string -> string -> int = <fun>

# edit_distance "OCaml" "ocaml";;
- : int = 2

The thing to note is that if you call edit_distance "OCaml" "ocaml", then that will

in turn dispatch the following calls:

And these calls will in turn dispatch other calls:
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As you can see, some of these calls are repeats. For example, there are two di�erent

calls to edit_distance "OCam" "oca". The number of redundant calls grows exponen-

tially with the size of the strings, meaning that our implementation of edit_distance

is brutally slow for large strings. We can see this by writing a small timing function,

using Core's Time module.

# let time f =
let open Core in
let start = Time.now () in
let x = f () in
let stop = Time.now () in
printf "Time: %F ms\n" (Time.diff stop start |> Time.Span.to_ms);
x;;

val time : (unit -> 'a) -> 'a = <fun>

And now we can use this to try out some examples:

# time (fun () -> edit_distance "OCaml" "ocaml");;
Time: 0.655651092529 ms

- : int = 2

# time (fun () -> edit_distance "OCaml 4.13" "ocaml 4.13");;
Time: 2541.6533947 ms

- : int = 2

Just those few extra characters made it thousands of times slower!

Memoization would be a huge help here, but to �x the problem, we need to memoize

the calls that edit_distance makes to itself. Such recursive memoization is closely

related to a common algorithmic technique called dynamic programming, except that

with dynamic programming, you do the necessary sub-computations bottom-up, in

anticipation of needing them. With recursive memoization, you go top-down, only

doing a sub-computation when you discover that you need it.

To see how to do this, let's step away from edit_distance and instead consider

a much simpler example: computing the nth element of the Fibonacci sequence. The

Fibonacci sequence by de�nition starts out with two 1s, with every subsequent element

being the sum of the previous two. The classic recursive de�nition of Fibonacci is as

follows:

# let rec fib i =
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if i <= 1 then i else fib (i - 1) + fib (i - 2);;
val fib : int -> int = <fun>

This is, however, exponentially slow, for the same reason that edit_distance was

slow: we end up making many redundant calls to fib. It shows up quite dramatically

in the performance:

# time (fun () -> fib 20);;
Time: 1.14369392395 ms

- : int = 6765

# time (fun () -> fib 40);;
Time: 14752.7184486 ms

- : int = 102334155

As you can see, fib 40 takes thousands of times longer to compute than fib 20.

So, how can we use memoization to make this faster? The tricky bit is that we need

to insert the memoization before the recursive calls within fib. We can't just de�ne

fib in the ordinary way and memoize it after the fact and expect the �rst call to fib to

be improved.

# let fib = memoize (module Int) fib;;
val fib : int -> int = <fun>

# time (fun () -> fib 40);;
Time: 18174.5970249 ms

- : int = 102334155

# time (fun () -> fib 40);;
Time: 0.00524520874023 ms

- : int = 102334155

In order to make fib fast, our �rst step will be to rewrite fib in a way that unwinds

the recursion. The following version expects as its �rst argument a function (called

fib) that will be called in lieu of the usual recursive call.

# let fib_norec fib i =
if i <= 1 then i
else fib (i - 1) + fib (i - 2);;

val fib_norec : (int -> int) -> int -> int = <fun>

We can now turn this back into an ordinary Fibonacci function by tying the recursive

knot:

# let rec fib i = fib_norec fib i;;
val fib : int -> int = <fun>

# fib 20;;
- : int = 6765

We can even write a polymorphic function that we'll call make_rec that can tie the

recursive knot for any function of this form:

# let make_rec f_norec =
let rec f x = f_norec f x in
f;;

val make_rec : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>

# let fib = make_rec fib_norec;;
val fib : int -> int = <fun>

# fib 20;;
- : int = 6765
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This is a pretty strange piece of code, and it may take a few moments of thought

to �gure out what's going on. Like fib_norec, the function f_norec passed in to

make_rec is a function that isn't recursive but takes as an argument a function that it

will call. What make_rec does is to essentially feed f_norec to itself, thus making it a

true recursive function.

This is clever enough, but all we've really done is �nd a new way to implement the

same old slow Fibonacci function. To make it faster, we need a variant of make_rec that

inserts memoization when it ties the recursive knot. We'll call that function memo_rec:

# let memo_rec m f_norec x =
let fref = ref (fun _ -> assert false) in
let f = memoize m (fun x -> f_norec !fref x) in
fref := f;
f x;;

val memo_rec : 'a Hashtbl.Key.t -> (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b =

<fun>

Note that memo_rec has almost the same signature as make_rec.

We're using the reference here as a way of tying the recursive knot without using a

let rec, which for reasons we'll describe later wouldn't work here.

Using memo_rec, we can now build an e�cient version of fib:

# let fib = memo_rec (module Int) fib_norec;;
val fib : int -> int = <fun>

# time (fun () -> fib 40);;
Time: 0.121355056763 ms

- : int = 102334155

As you can see, the exponential time complexity is now gone.

The memory behavior here is important. If you look back at the de�nition of

memo_rec, you'll see that the call memo_rec fib_norec does not trigger a call to memoize.

Only when fib is called and thereby the �nal argument to memo_rec is presented does

memoize get called. The result of that call falls out of scope when the fib call returns,

and so calling memo_rec on a function does not create amemory leak�thememoization

table is collected after the computation completes.

We can use memo_rec as part of a single declaration that makes this look like it's

little more than a special form of let rec:

# let fib = memo_rec (module Int) (fun fib i ->
if i <= 1 then 1 else fib (i - 1) + fib (i - 2));;

val fib : int -> int = <fun>

Memoization is overkill for implementing Fibonacci, and indeed, the fib de�ned

above is not especially e�cient, allocating space linear in the number passed into fib.

It's easy enough to write a Fibonacci function that takes a constant amount of space.

But memoization is a good approach for optimizing edit_distance, and we can

apply the same approach we used on fib here. We will need to change edit_distance

to take a pair of strings as a single argument, since memo_rec only works on single-

argument functions. (We can always recover the original interface with a wrapper

function.) With just that change and the addition of the memo_rec call, we can get a

memoized version of edit_distance. The memoization key is going to be a pair of
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strings, so we need to get our hands on a module with the necessary functionality for

building a hash-table in Base.

Writing hash-functions and equality tests and the like by hand can be tedious and

error prone, so instead we'll use a few di�erent syntax extensions for deriving the

necessary functionality automatically. By enabling ppx_jane, we pull in a collection

of such derivers, three of which we use in de�ning String_pair below.

# #require "ppx_jane";;
# module String_pair = struct

type t = string * string [@@deriving sexp_of, hash, compare]
end;;

module String_pair :

sig

type t = string * string

val sexp_of_t : t -> Sexp.t

val hash_fold_t : Hash.state -> t -> Hash.state

val hash : t -> int

val compare : t -> t -> int

end

With that in hand, we can de�ne our optimized form of edit_distance.

# let edit_distance = memo_rec (module String_pair)
(fun edit_distance (s,t) ->
match String.length s, String.length t with
| (0,x) | (x,0) -> x
| (len_s,len_t) ->
let s' = String.drop_suffix s 1 in
let t' = String.drop_suffix t 1 in
let cost_to_drop_both =
if Char.(=) s.[len_s - 1] t.[len_t - 1] then 0 else 1

in
List.reduce_exn ~f:Int.min
[ edit_distance (s',t ) + 1
; edit_distance (s ,t') + 1
; edit_distance (s',t') + cost_to_drop_both

]);;
val edit_distance : String_pair.t -> int = <fun>

This new version of edit_distance is much more e�cient than the one we started

with; the following call is many thousands of times faster than it was without memo-

ization.

# time (fun () -> edit_distance ("OCaml 4.09","ocaml 4.09"));;
Time: 0.964403152466 ms

- : int = 2

Limitations of let rec

You might wonder why we didn't tie the recursive knot in memo_rec using let rec, as

we did for make_rec earlier. Here's code that tries to do just that:

# let memo_rec m f_norec =
let rec f = memoize m (fun x -> f_norec f x) in
f;;

Line 2, characters 17-49:
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Error: This kind of expression is not allowed as right-hand side of

`let rec'

OCaml rejects the de�nition because OCaml, as a strict language, has limits on what

it can put on the right-hand side of a let rec. In particular, imagine how the following

code snippet would be compiled:

let rec x = x + 1

Note that x is an ordinary value, not a function. As such, it's not clear how this

de�nition should be handled by the compiler. You could imagine it compiling down to

an in�nite loop, but x is of type int, and there's no int that corresponds to an in�nite

loop. As such, this construct is e�ectively impossible to compile.

To avoid such impossible cases, the compiler only allows three possible constructs to

show up on the right-hand side of a let rec: a function de�nition, a constructor, or the

lazy keyword. This excludes some reasonable things, like our de�nition of memo_rec,

but it also blocks things that don't make sense, like our de�nition of x.

It's worth noting that these restrictions don't show up in a lazy language like Haskell.

Indeed,we canmake something like our de�nition of xwork ifwe useOCaml's laziness:

# let rec x = lazy (force x + 1);;
val x : int lazy_t = <lazy>

Of course, actually trying to compute this will fail. OCaml's lazy throws an excep-

tion when a lazy value tries to force itself as part of its own evaluation.

# force x;;
Exception: Lazy.Undefined

But we can also create useful recursive de�nitions with lazy. In particular, we can

use laziness to make our de�nition of memo_rec work without explicit mutation:

# let lazy_memo_rec m f_norec x =
let rec f = lazy (memoize m (fun x -> f_norec (force f) x)) in
(force f) x;;

val lazy_memo_rec : 'a Hashtbl.Key.t -> (('a -> 'b) -> 'a -> 'b) -> 'a ->

'b =

<fun>

# time (fun () -> lazy_memo_rec (module Int) fib_norec 40);;
Time: 0.181913375854 ms

- : int = 102334155

Laziness is more constrained than explicit mutation, and so in some cases can lead

to code whose behavior is easier to think about.

9.6 Input and Output

Imperative programming is aboutmore thanmodifying in-memory data structures. Any

function that doesn't boil down to a deterministic transformation from its arguments

to its return value is imperative in nature. That includes not only things that mutate

your program's data, but also operations that interact with the world outside of your
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program. An important example of this kind of interaction is I/O, i.e., operations for

reading or writing data to things like �les, terminal input and output, and network

sockets.

There are multiple I/O libraries in OCaml. In this section we'll discuss OCaml's

bu�ered I/O library that can be used through the In_channel and Out_channel mod-

ules in Stdio. Other I/O primitives are also available through the Unix module in Core

as well as Async, the asynchronous I/O library that is covered in Chapter 17 (Concur-

rent Programming with Async). Most of the functionality in Core's In_channel and

Out_channel (and in Core's Unix module) derives from the standard library, but we'll

use Core's interfaces here.

9.6.1 Terminal I/O

OCaml's bu�ered I/O library is organized around two types: in_channel, for channels

you read from, and out_channel, for channels you write to. The In_channel and

Out_channelmodules only have direct support for channels corresponding to �les and

terminals; other kinds of channels can be created through the Unix module.

We'll start our discussion of I/O by focusing on the terminal. Following the UNIX

model, communication with the terminal is organized around three channels, which

correspond to the three standard �le descriptors in Unix:

In_channel.stdin The �standard input� channel. By default, input comes from the

terminal, which handles keyboard input.

Out_channel.stdout The �standard output� channel. By default, output written to

stdout appears on the user terminal.

Out_channel.stderr The �standard error� channel. This is similar to stdout but is

intended for error messages.

The values stdin, stdout, and stderr are useful enough that they are also avail-

able in the top level of Core's namespace directly, without having to go through the

In_channel and Out_channel modules.

Let's see this in action in a simple interactive application. The following program,

time_converter, prompts the user for a time zone, and then prints out the current time

in that time zone. Here, we use Core's Zone module for looking up a time zone, and

the Time module for computing the current time and printing it out in the time zone in

question:

open Core

let () =
Out_channel.output_string stdout "Pick a timezone: ";
Out_channel.flush stdout;
match In_channel.(input_line stdin) with
| None -> failwith "No timezone provided"
| Some zone_string ->
let zone = Time.Zone.find_exn zone_string in
let time_string = Time.to_string_abs (Time.now ()) ~zone in
Out_channel.output_string stdout
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(String.concat
["The time in ";Time.Zone.to_string zone;" is

";time_string;".\n"]);
Out_channel.flush stdout

We can build this program using dune and run it, though you'll need to add a

dune-project and dune �le, as described in Chapter 5 (Files, Modules, and Programs).

You'll see that it prompts you for input, as follows:

$ dune exec ./time_converter.exe
Pick a timezone:

You can then type in the name of a time zone and hit Return, and it will print out

the current time in the time zone in question:

Pick a timezone: Europe/London
The time in Europe/London is 2013-08-15 00:03:10.666220+01:00.

Wecalled Out_channel.flush on stdout because out_channels are bu�ered, which

is to say that OCaml doesn't immediately do a write every time you call output_string.

Instead, writes are bu�ered until either enough has been written to trigger the �ushing

of the bu�ers, or until a �ush is explicitly requested. This greatly increases the e�ciency

of the writing process by reducing the number of system calls.

Note that In_channel.input_line returns a string option, with None in-

dicating that the input stream has ended (i.e., an end-of-�le condition).

Out_channel.output_string is used to print the �nal output, and Out_channel.flush

is called to �ush that output to the screen. The �nal �ush is not technically required,

since the program ends after that instruction, at which point all remaining output will

be �ushed anyway, but the explicit �ush is nonetheless good practice.

9.6.2 Formatted Output with printf

Generating output with functions like Out_channel.output_string is simple and easy

to understand, but can be a bit verbose. OCaml also supports formatted output using

the printf function, which is modeled after printf in the C standard library. printf

takes a format string that describes what to print and how to format it, as well as

arguments to be printed, as determined by the formatting directives embedded in the

format string. So, for example, we can write:

# printf
"%i is an integer, %F is a float, \"%s\" is a string\n"

3 4.5 "five";;
3 is an integer, 4.5 is a float, "five" is a string

- : unit = ()

Unlike C's printf, the printf in OCaml is type-safe. In particular, if we provide

an argument whose type doesn't match what's presented in the format string, we'll get

a type error:

# printf "An integer: %i\n" 4.5;;
Line 1, characters 27-30:
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Error: This expression has type float but an expression was expected

of type

int

Understanding Format Strings

The format strings used by printf turn out to be quite di�erent from ordinary strings.

This di�erence ties to the fact that OCaml's printf facility, unlike the equivalent in C,

is type-safe. In particular, the compiler checks that the types referred to by the format

string match the types of the rest of the arguments passed to printf.

To check this, OCaml needs to analyze the contents of the format string at compile

time, which means the format string needs to be available as a string literal at compile

time. Indeed, if you try to pass an ordinary string to printf, the compiler will complain:

# let fmt = "%i is an integer\n";;
val fmt : string = "%i is an integer\n"

# printf fmt 3;;
Line 1, characters 8-11:

Error: This expression has type string but an expression was expected

of type

('a -> 'b, Stdio.Out_channel.t, unit) format =

('a -> 'b, Stdio.Out_channel.t, unit, unit, unit, unit)

format6

If OCaml infers that a given string literal is a format string, then it parses it at

compile time as such, choosing its type in accordance with the formatting directives

it �nds. Thus, if we add a type annotation indicating that the string we're de�ning is

actually a format string, it will be interpreted as such. (Here, we open the Camlinter-

nalFormatBasics so that the representation of the format string that's printed out won't

�ll the whole page.)

# open CamlinternalFormatBasics;;
# let fmt : ('a, 'b, 'c) format =
"%i is an integer\n";;

val fmt : (int -> 'c, 'b, 'c) format =

Format

(Int (Int_i, No_padding, No_precision,

String_literal (" is an integer\n", End_of_format)),

"%i is an integer\n")

And accordingly, we can pass it to printf:

# printf fmt 3;;
3 is an integer

- : unit = ()

If this looks di�erent from everything else you've seen so far, that's because it is.

This is really a special case in the type system. Most of the time, you don't need to

know about this special handling of format strings�you can just use printf and not

worry about the details. But it's useful to keep the broad outlines of the story in the

back of your head.
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Now let's see how we can rewrite our time conversion program to be a little more

concise using printf:

open Core

let () =
printf "Pick a timezone: %!";
match In_channel.input_line In_channel.stdin with
| None -> failwith "No timezone provided"
| Some zone_string ->
let zone = Time.Zone.find_exn zone_string in
let time_string = Time.to_string_abs (Time.now ()) ~zone in
printf "The time in %s is %s.\n%!" (Time.Zone.to_string zone)
time_string

In the preceding example, we've used only two formatting directives: %s, for includ-

ing a string, and %! which causes printf to �ush the channel.

printf's formatting directives o�er a signi�cant amount of control, allowing you

to specify things like:

• Alignment and padding

• Escaping rules for strings

• Whether numbers should be formatted in decimal, hex, or binary

• Precision of �oat conversions

There are also printf-style functions that target outputs other than stdout, includ-

ing:

• eprintf, which prints to stderr
• fprintf, which prints to an arbitrary out_channel
• sprintf, which returns a formatted string

All of this, and a good deal more, is described in the API documentation for the

Printf module in the OCaml Manual.

9.6.3 File I/O

Another common use of in_channels and out_channels is for working with �les. Here

are a couple of functions�one that creates a �le full of numbers, and the other that

reads in such a �le and returns the sum of those numbers:

# let create_number_file filename numbers =
let outc = Out_channel.create filename in
List.iter numbers ~f:(fun x -> Out_channel.fprintf outc "%d\n" x);
Out_channel.close outc;;

val create_number_file : string -> int list -> unit = <fun>

# let sum_file filename =
let file = In_channel.create filename in
let numbers = List.map ~f:Int.of_string (In_channel.input_lines
file) in
let sum = List.fold ~init:0 ~f:(+) numbers in
In_channel.close file;
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sum;;
val sum_file : string -> int = <fun>

# create_number_file "numbers.txt" [1;2;3;4;5];;
- : unit = ()

# sum_file "numbers.txt";;
- : int = 15

For both of these functions, we followed the same basic sequence: we �rst create the

channel, then use the channel, and �nally close the channel. The closing of the channel

is important, since without it, we won't release resources associated with the �le back

to the operating system.

One problem with the preceding code is that if it throws an exception in the middle

of its work, it won't actually close the �le. If we try to read a �le that doesn't actually

contain numbers, we'll see such an error:

# sum_file "/etc/hosts";;
Exception:

(Failure

"Int.of_string: \"127.0.0.1 localhost localhost.localdomain

localhost4 localhost4.localdomain4\"")

And if we do this over and over in a loop, we'll eventually run out of �le descriptors:

# for i = 1 to 10000 do try ignore (sum_file "/etc/hosts") with _ ->
() done;;

- : unit = ()

# sum_file "numbers.txt";;
Error: I/O error: ...: Too many open files

And now, you'll need to restart your toplevel if you want to open any more �les!

To avoid this, we need to make sure that our code cleans up after itself. We can do

this using the protect function described in Chapter 8 (Error Handling), as follows:

# let sum_file filename =
let file = In_channel.create filename in
Exn.protect ~f:(fun () ->
let numbers = List.map ~f:Int.of_string (In_channel.input_lines
file) in
List.fold ~init:0 ~f:(+) numbers)
~finally:(fun () -> In_channel.close file);;

val sum_file : string -> int = <fun>

And now, the �le descriptor leak is gone:

# for i = 1 to 10000 do try ignore (sum_file "/etc/hosts" : int) with
_ -> () done;;

- : unit = ()

# sum_file "numbers.txt";;
- : int = 15

This is really an example of a more general issue with imperative programming and

exceptions. If you're changing the internal state of your program and you're interrupted

by an exception, you need to consider quite carefully if it's safe to continue working

from your current state.

In_channel has functions that automate the handling of some of these details. For
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example, In_channel.with_file takes a �lename and a function for processing data

from an in_channel and takes care of the bookkeeping associated with opening and

closing the �le. We can rewrite sum_file using this function, as shown here:

# let sum_file filename =
In_channel.with_file filename ~f:(fun file ->
let numbers = List.map ~f:Int.of_string (In_channel.input_lines
file) in
List.fold ~init:0 ~f:(+) numbers);;

val sum_file : string -> int = <fun>

Another misfeature of our implementation of sum_file is that we read the entire

�le into memory before processing it. For a large �le, it's more e�cient to process a

line at a time. You can use the In_channel.fold_lines function to do just that:

# let sum_file filename =
In_channel.with_file filename ~f:(fun file ->
In_channel.fold_lines file ~init:0 ~f:(fun sum line ->
sum + Int.of_string line));;

val sum_file : string -> int = <fun>

This is just a taste of the functionality of In_channel and Out_channel. To get a

fuller understanding, you should review the API documentation.

9.7 Order of Evaluation

The order in which expressions are evaluated is an important part of the de�nition of

a programming language, and it is particularly important when programming impera-

tively. Most programming languages you're likely to have encountered are strict, and

OCaml is too. In a strict language, when you bind an identi�er to the result of some

expression, the expression is evaluated before the variable is bound. Similarly, if you

call a function on a set of arguments, those arguments are evaluated before they are

passed to the function.

Consider the following simple example. Here, we have a collection of angles, and

we want to determine if any of them have a negative sin. The following snippet of

code would answer that question:

# let x = Float.sin 120. in
let y = Float.sin 75. in
let z = Float.sin 128. in
List.exists ~f:(fun x -> Float.O.(x < 0.)) [x;y;z];;

- : bool = true

In some sense, we don't really need to compute the sin 128 because sin 75 is

negative, so we could know the answer before even computing sin 128.

It doesn't have to be this way. Using the lazy keyword, we can write the original

computation so that sin 128 won't ever be computed:

# let x = lazy (Float.sin 120.) in
let y = lazy (Float.sin 75.) in
let z = lazy (Float.sin 128.) in
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List.exists ~f:(fun x -> Float.O.(Lazy.force x < 0.)) [x;y;z];;
- : bool = true

We can con�rm that fact by a few well-placed printfs:

# let x = lazy (printf "1\n"; Float.sin 120.) in
let y = lazy (printf "2\n"; Float.sin 75.) in
let z = lazy (printf "3\n"; Float.sin 128.) in
List.exists ~f:(fun x -> Float.O.(Lazy.force x < 0.)) [x;y;z];;

1

2

- : bool = true

OCaml is strict by default for a good reason: lazy evaluation and imperative pro-

gramming generally don't mix well because laziness makes it harder to reason about

when a given side e�ect is going to occur. Understanding the order of side e�ects is

essential to reasoning about the behavior of an imperative program.

Because OCaml is strict, we know that expressions that are bound by a sequence

of let bindings will be evaluated in the order that they're de�ned. But what about the

evaluation order within a single expression? O�cially, the answer is that evaluation

order within an expression is unde�ned. In practice, OCaml has only one compiler,

and that behavior is a kind of de facto standard. Unfortunately, the evaluation order in

this case is often the opposite of what one might expect.

Consider the following example:

# List.exists ~f:(fun x -> Float.O.(x < 0.))
[ (printf "1\n"; Float.sin 120.);
(printf "2\n"; Float.sin 75.);
(printf "3\n"; Float.sin 128.); ];;

3

2

1

- : bool = true

Here, you can see that the subexpression that came last was actually evaluated �rst!

This is generally the case for many di�erent kinds of expressions. If you want to make

sure of the evaluation order of di�erent subexpressions, you should express them as a

series of let bindings.

9.8 Side E�ects and Weak Polymorphism

Consider the following simple, imperative function:

# let remember =
let cache = ref None in
(fun x ->
match !cache with
| Some y -> y
| None -> cache := Some x; x);;

val remember : '_weak1 -> '_weak1 = <fun>

remember simply caches the �rst value that's passed to it, returning that value on
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every call. That's because cache is created and initialized once and is shared across

invocations of remember.

remember is not a terribly useful function, but it raises an interesting question: what

should its type be?

On its �rst call, remember returns the same value it's passed, which means its input

type and return type should match. Accordingly, remember should have type t -> t for

some type t. There's nothing about remember that ties the choice of t to any particular

type, so you might expect OCaml to generalize, replacing t with a polymorphic type

variable. It's this kind of generalization that gives us polymorphic types in the �rst

place. The identity function, as an example, gets a polymorphic type in this way:

# let identity x = x;;
val identity : 'a -> 'a = <fun>

# identity 3;;
- : int = 3

# identity "five";;
- : string = "five"

As you can see, the polymorphic type of identity lets it operate on values with

di�erent types.

This is not what happens with remember, though. As you can see from the above

examples, the type that OCaml infers for remember looks almost, but not quite, like the

type of the identity function. Here it is again:

val remember : '_weak1 -> '_weak1 = <fun>

The underscore in the type variable '_weak1 tells us that the variable is only weakly

polymorphic, which is to say that it can be used with any single type. That makes sense

because, unlike identity, remember always returns the value it was passed on its �rst

invocation, which means its return value must always have the same type.

OCaml will convert a weakly polymorphic variable to a concrete type as soon as it

gets a clue as to what concrete type it is to be used as:

# let remember_three () = remember 3;;
val remember_three : unit -> int = <fun>

# remember;;
- : int -> int = <fun>

# remember "avocado";;
Line 1, characters 10-19:

Error: This expression has type string but an expression was expected

of type

int

Note that the type of remember was settled by the de�nition of remember_three, even

though remember_three was never called!

9.8.1 The Value Restriction

So, when does the compiler infer weakly polymorphic types? As we've seen, we need

weakly polymorphic types when a value of unknown type is stored in a persistent

mutable cell. Because the type system isn't precise enough to determine all cases
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where this might happen, OCaml uses a rough rule to �ag cases that don't introduce

any persistent mutable cells, and to only infer polymorphic types in those cases. This

rule is called the value restriction.

The core of the value restriction is the observation that some kinds of expressions,

which we'll refer to as simple values, by their nature can't introduce persistent mutable

cells, including:

• Constants (i.e., things like integer and �oating-point literals)

• Constructors that only contain other simple values

• Function declarations, i.e., expressions that begin with fun or function, or the

equivalent let binding, let f x = ...

• let bindings of the form let var = expr1 in expr2, where both expr1 and expr2 are

simple values

Thus, the following expression is a simple value, and as a result, the types of values

contained within it are allowed to be polymorphic:

# (fun x -> [x;x]);;
- : 'a -> 'a list = <fun>

But, if we write down an expression that isn't a simple value by the preceding

de�nition, we'll get di�erent results.

# identity (fun x -> [x;x]);;
- : '_weak2 -> '_weak2 list = <fun>

In principle, it would be safe to infer a fully polymorphic variable here, but because

OCaml's type system doesn't distinguish between pure and impure functions, it can't

separate those two cases.

The value restriction doesn't require that there is no mutable state, only that there is

no persistent mutable state that could share values between uses of the same function.

Thus, a function that produces a fresh reference every time it's called can have a fully

polymorphic type:

# let f () = ref None;;
val f : unit -> 'a option ref = <fun>

But a function that has a mutable cache that persists across calls, like memoize, can

only be weakly polymorphic.

9.8.2 Partial Application and the Value Restriction

Most of the time, when the value restriction kicks in, it's for a good reason, i.e., it's

because the value in question can actually only safely be used with a single type. But

sometimes, the value restriction kicks in when you don't want it. The most common

such case is partially applied functions. A partially applied function, like any function

application, is not a simple value, and as such, functions created by partial application

are sometimes less general than you might expect.

Consider the List.init function, which is used for creating lists where each element

is created by calling a function on the index of that element:
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# List.init;;
- : int -> f:(int -> 'a) -> 'a list = <fun>

# List.init 10 ~f:Int.to_string;;
- : string list = ["0"; "1"; "2"; "3"; "4"; "5"; "6"; "7"; "8"; "9"]

Imagine we wanted to create a specialized version of List.init that always created

lists of length 10. We could do that using partial application, as follows:

# let list_init_10 = List.init 10;;
val list_init_10 : f:(int -> '_weak3) -> '_weak3 list = <fun>

As you can see, we now infer a weakly polymorphic type for the resulting function.

That's because there's nothing that guarantees that List.init isn't creating a persistent

ref somewhere inside of it that would be shared across multiple calls to list_init_10.

We can eliminate this possibility, and at the same time get the compiler to infer a

polymorphic type, by avoiding partial application:

# let list_init_10 ~f = List.init 10 ~f;;
val list_init_10 : f:(int -> 'a) -> 'a list = <fun>

This transformation is referred to as eta expansion and is often useful to resolve

problems that arise from the value restriction.

9.8.3 Relaxing the Value Restriction

OCaml is actually a little better at inferring polymorphic types than was suggested

previously. The value restriction as we described it is basically a syntactic check: you

can do a few operations that count as simple values, and anything that's a simple value

can be generalized.

But OCaml actually has a relaxed version of the value restriction that can make use

of type information to allow polymorphic types for things that are not simple values.

For example, we saw that a function application, even a simple application of the

identity function, is not a simple value and thus can turn a polymorphic value into a

weakly polymorphic one:

# identity (fun x -> [x;x]);;
- : '_weak4 -> '_weak4 list = <fun>

But that's not always the case. When the type of the returned value is immutable,

then OCaml can typically infer a fully polymorphic type:

# identity [];;
- : 'a list = []

On the other hand, if the returned type is mutable, then the result will be weakly

polymorphic:

# [||];;
- : 'a array = [||]

# identity [||];;
- : '_weak5 array = [||]

A more important example of this comes up when de�ning abstract data types.

Consider the following simple data structure for an immutable list type that supports

constant-time concatenation:
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# module Concat_list : sig
type 'a t
val empty : 'a t
val singleton : 'a -> 'a t
val concat : 'a t -> 'a t -> 'a t (* constant time *)
val to_list : 'a t -> 'a list (* linear time *)

end = struct

type 'a t = Empty | Singleton of 'a | Concat of 'a t * 'a t

let empty = Empty
let singleton x = Singleton x
let concat x y = Concat (x,y)

let rec to_list_with_tail t tail =
match t with
| Empty -> tail
| Singleton x -> x :: tail
| Concat (x,y) -> to_list_with_tail x (to_list_with_tail y tail)

let to_list t =
to_list_with_tail t []

end;;
module Concat_list :

sig

type 'a t

val empty : 'a t

val singleton : 'a -> 'a t

val concat : 'a t -> 'a t -> 'a t

val to_list : 'a t -> 'a list

end

The details of the implementation don't matter so much, but it's important to note

that a Concat_list.t is unquestionably an immutable value. However, when it comes

to the value restriction, OCaml treats it as if it were mutable:

# Concat_list.empty;;
- : 'a Concat_list.t = <abstr>

# identity Concat_list.empty;;
- : '_weak6 Concat_list.t = <abstr>

The issue here is that the signature, by virtue of being abstract, has obscured the fact

that Concat_list.t is in fact an immutable data type. We can resolve this in one of two

ways: either by making the type concrete (i.e., exposing the implementation in the mli),

which is often not desirable; or by marking the type variable in question as covariant.

We'll learn more about covariance and contravariance in Chapter 13 (Objects), but for

now, you can think of it as an annotation that can be put in the interface of a pure data

structure.

In particular, if we replace type 'a t in the interface with type +'a t, that will

make it explicit in the interface that the data structure doesn't contain any persistent

references to values of type 'a, at which point, OCaml can infer polymorphic types for

expressions of this type that are not simple values:

# module Concat_list : sig
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type +'a t
val empty : 'a t
val singleton : 'a -> 'a t
val concat : 'a t -> 'a t -> 'a t (* constant time *)
val to_list : 'a t -> 'a list (* linear time *)

end = struct

type 'a t = Empty | Singleton of 'a | Concat of 'a t * 'a t

let empty = Empty
let singleton x = Singleton x
let concat x y = Concat (x,y)

let rec to_list_with_tail t tail =
match t with
| Empty -> tail
| Singleton x -> x :: tail
| Concat (x,y) -> to_list_with_tail x (to_list_with_tail y tail)

let to_list t =
to_list_with_tail t []

end;;
module Concat_list :

sig

type +'a t

val empty : 'a t

val singleton : 'a -> 'a t

val concat : 'a t -> 'a t -> 'a t

val to_list : 'a t -> 'a list

end

Now, we can apply the identity function to Concat_list.empty without losing any

polymorphism:

# identity Concat_list.empty;;
- : 'a Concat_list.t = <abstr>

9.9 Summary

This chapter has covered quite a lot of ground, including:

• Discussing the building blocks of mutable data structures as well as the basic imper-

ative constructs like for loops, while loops, and the sequencing operator ;

• Walking through the implementation of a couple of classic imperative data structures

• Discussing so-called benign e�ects like memoization and laziness

• Covering OCaml's API for blocking I/O

• Discussing how language-level issues like order of evaluation and weak polymor-

phism interact with OCaml's imperative features

The scope and sophistication of the material here is an indication of the importance

of OCaml's imperative features. The fact that OCaml defaults to immutability shouldn't
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obscure the fact that imperative programming is a fundamental part of building any

serious application, and that if you want to be an e�ective OCaml programmer, you

need to understand OCaml's approach to imperative programming.
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