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Abstract
We give a definition of Q-net, a generalization of Petri nets based on a Lawvere theory Q, for which many
existing variants of Petri nets are a special case. This definition is functorial with respect to change in
Lawvere theory, and we exploit this to explore the relationships between different kinds of Q-nets. To
justify our definition ofQ-net, we construct a family of adjunctions for each Lawvere theory explicating the
way in which Q-nets present free models of Q in Cat. This gives a functorial description of the operational
semantics for an arbitrary category of Q-nets. We show how this can be used to construct the semantics
for Petri nets, pre-nets, integer nets, and elementary net systems.
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1. Introduction
Following the introduction of Petri nets in Carl Petri’s 1962 thesis (Petri, 1966), there has been
an explosion of work on Petri nets. The bibliography hosted by Petri Nets World has over 8500
citations (The Petri Net Bibliography, 2019). These papers include many variations of Petri nets
which change both the structure of the nets and their semantics. In this work, we help organize
these definitions by putting some of the more popular variants under a common framework.

Petri nets can be thought of as commutative monoidal graphs: graphs whose edges have ele-
ments of a free commutative monoid as their source and target. In this paper, we generalize this
to graphs which are based in some other algebraic gadget – as long as that gadget comes from
a Lawvere theory. Petri nets are given by a pair of functions from a set of transitions to the free
commutative monoid on a set of places. For a Lawvere theory Q, a Q-net is a pair of functions
from a set of transitions to a free model of Q in Set.

Many instances of this generalization are already studied. In 2000, Bruni et al. introduced pre-
nets; a type of Petri net that has a free non-commutative monoid on its places (Bruni et al.,
2001). The semantics of these showcase the individual token philosophy, which distinguishes
between identical tokens and keeps track of causality within sequences of processes. In 2018,
Herold and Genovese introduced integer nets, a type of Petri net which has a free abelian group
of places (Genovese and Herold, 2018) and are similar to lending nets introduced in Bartoletti
et al. (2015). These are useful for modeling credit in propositional contract logic (Bartoletti and
Zunino, 2010). The last example of Q-nets that we consider are elementary net systems (Rozenberg
and Thiagarajan, 1986). These are Petri nets that can have a maximum of one token in each place.
The above three examples give categories PreNet, Z-Net, and SLAT-Net of pre-nets, integer nets,
and elementary net systems, respectively. These are given by setting Q equal to MON the Lawvere
theory of monoids, ABGRP the Lawvere theory of abelian groups, and SLAT the Lawvere theory of
semi-lattices in the definition of Q-Net.
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To elegantly illustrate the power of Petri nets, Messeguer andMontanari show that they present
free monoidal categories (Meseguer and Montanari, 1990). The objects in these monoidal cate-
gories are given by the markings of our Petri net, and the morphisms represent all possible firing
sequences of the transitions in sequence and in parallel. In general, a description of the operational
semantics of Petri nets consists of an adjunction between a category of Petri nets and a category of
strictly commutative, strictly associative monoidal categories (see Definition 2.6). There are many
ways to do this. In Baez and Master (2020), the authors construct an adjunction from Petri into a
particular subcategory of CMC, the category of commutative monoidal categories. Here we analyze
and alter this adjunction to get an adjunction

Petri CMC

F

⊥
U

To justify our definition of Q-nets, we take a similar tack. We show that every Q-net presents a
free model of the Lawvere theory Q in Cat by constructing an adjunction

Q-Net Mod(Q, Cat)

FQ

⊥
UQ

where Mod(Q, Cat) is the category of models of Q in Cat. To turn a Q-net into a free model of Q
in Cat, there are two steps which must be completed:

• the transitions of the Q-net must be freely closed under the operations of Q, and
• the transitions must be freely turned into a category by freely adding identities and
composites.

Thus, the adjunction FQ �UQ is constructed as the composite of two smaller adjunctions corre-
sponding to these steps. This adjunction defines an operational semantics for Q-nets. The objects
and morphisms in the free Q-category on a Q-net represent all the possible firing sequences which
can be built using composition and the operations and axioms of the Lawvere theory Q.

An outline of this paper is as follows:

• In Section 2, we review definitions for Petri nets and their categorical semantics.
• In Section 3, we define Q-nets, and we extend this definition to a functor from the category of
Lawvere theories to CAT. This allows us to explore various functors between different kinds
of Q-nets. We also show that the category Q-Net is complete and cocomplete.

• In Section 4, we construct a semantics functor for Petri nets as a two part composite. This
serves as a blueprint for the more general construction.

• In Section 5, we prove the main theorem of this paper. For every Lawvere theory Q, there is
an adjunction

Q-Net Q-Cat

FQ

⊥
UQ

which gives the operational semantics of Q-nets.
• In Section 6, we show how our main theorem can give categorical descriptions of existing
forms of semantics for various types of Q-nets. We show how to build the semantics of Petri
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nets, pre-nets, and integer nets using the individual and collective token philosophies. We
also construct an operational semantics functor for elementary net systems.

• In Appendix A, we give a brief introduction to Lawvere theories.

2. Petri Nets and Their Executions
Definition 2.1. Let L : Set→ CMon be the free commutative monoid functor, that is, the left adjoint
of the functor R : CMon→ Set that sends commutative monoids to their underlying sets andmonoid
homomorphisms to their underlying functions. Let

N : Set→ Set

be the free commutative monoid monad given by the composite R ◦ L.
For any set X, N[X] is the set of formal finite linear combinations of elements of X with natural
number coefficients. The unit of N is given by the natural inclusion of X into N[X], and for any
function f : X→ Y , N[f ] : N[X]→N[Y] is the unique monoid homomorphism that extends f .

Definition 2.2. We define a Petri net to be a pair of functions of the following form:

T
t

��
s ��

N[S].

We call T the set of transitions, S the set of places, s the source function, and t the target function.

Definition 2.3. A Petri net morphism from the Petri net T
t

��
s ��

N[S] to the Petri net

T′
t′

��
s′ ��

N[S′] is a pair of functions ( f : T→ T′, g : S→ S′) such that the diagrams

T

f
��

s �� N[S]

N[g]
��

T′
s′

�� N[S′]

T

f
��

t �� N[S]

N[g]
��

T′
t′

�� N[S′].

commute.

Definition 2.4. Let Petri be the category of Petri nets and Petri net morphisms, with composition
defined by

( f , g) ◦ ( f ′, g′)= ( f ◦ f ′, g ◦ g′).
Our definition of Petri net morphism differs from the earlier definition used by Degano–
Meseguer–Montanari (Degano et al., 1989) and Sassone (Bruni et al., 2001; Sassone, 1995, 1996).
The difference is that our definition requires that the homomorphism between free commutative
monoids come from a function between the sets of places, whereas the above references allow
arbitrary commutative monoid homomorphisms. This difference of definition is present in our
definition of the category of Q-nets as well. With this change, the categories Petri and Q-Net
become complete and cocomplete as shown in Proposition 3.11.

Petri nets have a natural semantics which is described by the token game. This is a game where
each place of a Petri net is equipped with a natural number of tokens. Players are then allowed
to shuffle the tokens around in proportion given by their source and target. The token game is
formalized by the notions of marking and firing.
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Definition 2.5. A marking of a Petri net P= T N[S]
s

t
is an element m ∈N[S], or equiv-

alently, a function m : S→N which is zero on all but a finite number of elements. A firing of P
is a tuple (τ , x, y), where τ is a transition and x and y are markings of P with x− s(τ )≥ 0 and
x− s(τ )+ t(τ )= y.

Firings can be chained together in sequence: for a firing (τ , x, y) and a firing (σ , y, z) we
can define their composite as a tuple (σ ◦ τ , x, z) where ◦ is a formal symbol. Firings can
also be performed in parallel: for two firings (τ , x, y) and (τ ′, x′, y′), there is a parallelization
(τ + τ ′, x+ x′, y+ y′). This suggests that firings of a Petri net have the structure of a monoidal
category. Meseguer and Montanari were the first to notice this and show how Petri nets can be
turned into commutative monoidal categories (Meseguer and Montanari, 1990).

Definition 2.6. A commutative monoidal category is a commutative monoid object internal to Cat.
Explicitly, a commutative monoidal category is a strict monoidal category (C,⊗, I), such that, for all
objects a, b and morphisms f , g in C

a⊗ b= b⊗ a and f ⊗ g = g ⊗ f .

Note that a commutative monoidal category is the same as a strict symmetric monoidal category
where the symmetry isomorphisms σa,b : a⊗ b ∼−→ b⊗ a are all identity morphisms. In fact, a
commutative monoidal category is precisely a category where the objects and morphisms form
commutative monoids and the structure maps are commutative monoid homomorphisms. A
commutativemonoidal category where themorphisms represent sequences of firings of a Petri net
P will be referred to as a semantics for P. In this paper, we characterize this semantics construction
as an adjunction between the category of Petri nets and the following category.

Definition 2.7. Let CMC be the category whose objects are commutative monoidal categories and
whose morphisms are strict monoidal functors.

Note that every monoidal functor between commutative monoidal categories is automatically
a strict symmetric monoidal functor, so the adjective symmetric is not included in the above
definition.

3. Q-Nets
Petri nets need not have a free commutative monoid of places, and this aspect can be generalized
using Lawvere theories. A review of the basic definitions and properties of Lawvere theories can
be found in the appendix. As in Definition A.4, let Mod(Q) be the category of models of Q in Set,

Set Mod(Q)

LQ

⊥
RQ

be the adjunction generating free models of Q and letMQ be the composite RQ ◦ LQ.
Definition 3.1. Let Q-Net be the category where

• objects are Q-nets, i.e., pairs of functions of the form

T MQS
s

t
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• a morphism from the Q-net T
t

��
s �� MQS to the Q-net T′

t′
��

s′ �� MQS′ is a pair of functions

( f : T→ T′, g : S→ S′) such that the following diagrams commute:

T

f
��

s �� MQS

MQg
��

T′
s′

�� MQS′

T

f
��

t �� MQS

MQg
��

T′
t′

�� MQS′.

This definition is a construction. LetMQ be as before and letMR : Set→ Set be corresponding
monad induced by a Lawvere theory R. Every morphism of Lawvere theories f : Q→ R induces a
functor

f∗ : Mod(R)→Mod(Q)

which composes every model of R with f . A left adjoint

f ∗ : Mod(Q)→Mod(R)

is given by the left Kan extension of each model along f (Barr and Wells, 1985; Buckley, 2008).
Now, we have the following commutative diagram of functors

Mod(Q)

RQ ���
��

��
���

� Mod(R)
f∗

��

RR�����
���

���

Set

all of which have left adjoints. Given this set of assumptions, there is a morphism of monads Mf

given by

Mf = RQηLQ : MQ⇒MR

where η is the unit of the adjunction f ∗ � f∗. This can either be verified directly or by using the
adjoint triangle theorem (Dubuc, 1968). In what follows, we will use this morphism of monads to
translate between different types of generalized Q-nets.

Definition 3.2. Let

(− )-Net : Law→ Cat

be the functor which sends a Lawvere theory Q to the category Q-Net and sends a morphism f : Q→
R of Lawvere theories to the functor f -Net : Q-Net→ R-Net which sends a Q-net

T MQS
s

t

to the R-net

T MQS MRS
s

t

Mf
S

For a morphism of Q-nets (g : T→ T′, h : S→ S′), f -Net(g, h) is (g, h). This is well defined because
of the naturality of Mf .

Varying the Lawvere theory Q gives many known types of Petri nets.
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Example 3.3. Setting Q equal to CMON, the Lawvere theory for commutative monoids, we obtain
the category of Petri nets.

Definition 3.4. Let (− )∗ : Set→ Set denote the monad that the Lawvere theory MON induces via
the correspondence in Linton (1966). For a set X, X∗ is given by the underlying set of the free monoid
on X. A pre-net is a pair of functions of the form

T S∗
s

t

A morphism of pre-nets from a pre-net (s, t : T→ S∗) to a pre-net (s′, t′ : T′ → S′∗) is a pair of
functions ( f : T→ T′, g : S→ S′) which preserves the source and target as in Definition 2.3. This
defines a category PreNet.

Example 3.5. If we take Q=MON, the Lawvere theory of monoids, we get the category PreNet.

A description of MON can be found in the Appendix. PreNet has the same objects as the category
introduced in FunctorialModels for Petri Nets (Bruni et al., 2001), but themorphisms are restricted
as in Definition 2.3. Pre-nets are the same as tensor schemes introduced by Joyal and Street in
“The Geometry of Tensor Calculus I” (Joyal and Street, 1991). The authors define a notion of
free category on a tensor scheme and Bruni et al. construct an adjunction between pre-nets and a
subcategory of the category of strict symmetric monoidal categories SMC (Bruni et al., 2001).

In Section 6.1, we construct a closely related adjunction

PreNet SMC

Z

⊥
K

which does not require the restriction to a subcategory of SMC. Pre-nets are useful because after
forming an appropriate quotient, the category Z(P) for a pre-net P is equivalent the category of
strongly concatenable processes which can be performed on the net. This equivalence is important
for realizing the individual token philosophy (Bruni et al., 2001). The individual token philosophy,
as opposed to the collective token philosophy, gives identities to the individual tokens and keeps
track of the causality in the executions of a Petri net.

Example 3.6. In 2013, Bartoletti et al. introduced lending Petri nets (Bartoletti et al., 2015). These
are Petri nets where arcs can have a negative multiplicity and tokens can be borrowed in order to
fire a transition. Lending nets are also equipped with a partial labeling of the places and transitions
so they can be composed and are required to have no transitions which can be fired sponta-
neously. In 2018, Genovese and Herold introduced integer nets (Genovese and Herold, 2018). Let
ABGRP be the Lawvere theory of abelian groups. This Lawvere theory contains three generating
operations

e : 0→ 1, i : 1→ 1, andm : 2→ 1

representing the identies, inverses, and multiplication of an abelian group. These generating mor-
phisms are required to satisfy the axioms of an abelian group; associativity, commutativity, and
the existence of inverses and an identity. The category of integer nets, modulo a change in the
definition of morphisms, can be obtained by taking Q= ABGRP in the definition of Q-Net.

Definition 3.7. Let Z : Set→ Set be the free abelian group monad which for a set X generates
the free abelian group Z[X] on the set X. Note that Z is the monad induced by the Lawvere theory
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ABGRP via the correspondence in Linton (1966). An integer net is a pair of functions of the form

T
t

��
s ��

Z[S].

A morphism of integer nets is a pair ( f : T→ T′, g : S→ S′) which makes the diagrams analogous
to the definition of Petri net morphism (Definition 2.3) commute. Let Z-Net be the category where
objects are integer nets and morphism are morphisms of integer nets.

Integer nets are useful for modeling the concepts of credit and borrowing. There is a corre-
spondence between lending Petri nets and propositional contract logic; a form of logic useful
for ensuring that complex networks of contracts are honored (Bartoletti et al., 2015). Genovese
and Herold constructed a categorical semantics for integer nets (Genovese and Herold, 2018).
In Section 6, we will construct a variation of this semantics which uses the general framework
developed in this paper.

Example 3.8. Elementary net systems, introduced by Rozenberg and Thiagarajan in 1986, are
are Petri nets with a maximum of one edge between a given place and transition (Rozenberg and
Thiagarajan, 1986).

Definition 3.9. An elementary net system is a pair of functions

T 2S
s

t

where 2S denotes the power set of S.

Elementary net systems can be obtained from our general formalism. Let SLAT be the Lawvere
theory for semi-lattices, i.e., commutative idempotent monoids. This Lawvere theory contains
morphisms

m : 2→ 1 and e : 0→ 1
as inMON the theory of monoids. Also similar toMON, SLAT is quotiented by the associativity and
unitality axioms given in Example A.2. In addition, SLAT has the following axioms representing
commutativity and idempotence

2 2

1

σ

m m

1 2

1

�

id m

where σ : 2→ 2 is the braiding of the cartesian product and� : 1→ 2 is the diagonal. For models
in Set, The first diagram says that you can multiply two elements in either order and the get the
same thing. The second diagram says that if you multiply an element by itself you get itself. As
in Definition A.4, SLAT corresponds to a monad on Set. It is well known that this monad is the
covariant power set monad

2(−) : Set→ Set
which sends a set X to its power set and a function to the mapping which sends subsets of X to
their image. This motivates the following:

Definition 3.10. Let SLAT-Net be the category of elementary net systems obtained as in Definition
3 for Q= SLAT.

The functorial nature of Definition 3 can be exploited to generate functors between different
categories of Q-nets. There is the diagram in Law
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SLAT

CMON ABGRP

MON GRP

b
a

c

d

e

where all the morphisms send their generating operations to their counterparts in the Lawvere
theory of their codomain. These target Lawvere theories either have extra axioms or operations
making the above functors not necessarily full or faithful:

• a sends the morphismm ◦� in CMON to id1 : 1→ 1 in SLAT to impose the idempotent law.
All other other generating components are sent to their natural counterparts.

• b and d send every object andmorphism to its natural analog. However, ABGRP andGRP have
an extra operation i : 1→ 1 representing inverses. This makes the functors b and d faithful
but not full.

• c and e add the commutativity law; they send both the multiplication m : 2→ 1 and the
composite σ ◦m : 2→ 2 of the braiding σ : 2→ 2 to the multiplication map m : 2→ 2 in
the target Lawvere theory. This makes c and e not faithful.

Definition 3.2 can be used to give a network between different flavors of Q-nets. By applying
(− )-Net to the above diagram, we get the diagram of categories

SLAT-Net

Petri Z-Net

PreNet GRP-Net

b-Net
a-Net

c-Net

d-Net

e-Net

The functors in this diagram are described as follows:

c-Net : PreNet→ Petri

is often called abelianization because it sends a pre-net to the Petri net which forgets about the
ordering on the input and output of each transition. The authors of Bruni et al. (2001) use c-Net
to explore the relationship between pre-nets and Petri nets. The functor e-Net : GRP-Net→Z-Net
gives the analogous relationship for integer nets.

b-Net : Petri→Z-Net

is the functor which does not change the source and target of a given place. The only difference is
that the markings of a Z-net coming from a Petri net are thought of as elements of a free abelian
group rather than a free abelian monoid. d-Net is the analogous functor for pre-nets.

a-Net : Petri→ SLAT-Net

is the functor which sends a Petri net to the SLAT-net which forgets about the multiplicity of the
edges between a given source and transition.

Before moving on to the semantics of Q-nets, we discuss a property of the category Q-Net.

Proposition 3.11. Q-Net is cocomplete.
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Proof. We can construct Q-Net as the comma category.

Set ↓ (× ◦� ◦MQ)

whereMQ : Set→ Set is the monad corresponding to the Lawvere theory Q,� : Set→ Set× Set
is the diagonal, and×: Set× Set→ Set is the cartesian product in Set. An object in this category
is a map

T→MQS×MQS

which corresponds to a pair of maps s, t : T→MQS which become the source and target maps of
a Q-net. Morphisms in this comma category are commutative squares

T ��

f
��

MQS×MQS

MQg×MQg
��

T′ �� MQS′ ×MQS′

giving a map of Q-nets ( f : T→ T′, g : S→ S′). The commutativity of the above square ensures
that this map of Q-nets is well defined.

Theorem 3, Section 5.2 of Computational Category Theory (Rydeheard and Burstall, 1988) says
that given S : A→ C and T : B→ C, then the comma category (S ↓ T) is cocomplete if

• S is cocontinuous and,
• A and B are cocomplete,

Because Set is cocomplete, and the identity functor 1Set : Set→ Set preserves all colimits, we
have that Set ↓ (× ◦� ◦MQ) is cocomplete. Because Q-Net is equivalent to this category, it is
cocomplete as well.

4. Generating Free Commutative Monoidal Categories From Petri Nets
In this section, we examine in detail the motivating example for the main result of this paper, an
adjunction generating the semantics of Q-nets for every Lawvere theory Q. This result can feel
abstract on its own and the example of Petri nets provides invaluable intuition. A confident reader
may skip this section, as it is not strictly necessary for the rest of this paper.

The operational semantics for Petri nets will take the form of an adjunction

Petri CMC

F

⊥
U

For a given Petri net P, this adjunction will be constructed in two steps: first the transitions of Pwill
be freely closed under a commutative monoidal sum and then freely closed under composition.
This will take the form of factoring the adjunction into the composite

Petri Grph(CMon) CMC.

•A

⊥
A•

⊥
•B

B•

Here a left adjoint is indicated by a bullet on the left and a right adjoint is indicated by a bullet on
the right. Grph(CMon) is the category of graphs internal to CMon.
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Definition 4.1. A commutative monoidal graph is a graph

E V
s

t

where E and V are commutative monoids, and s and t are commutative monoid homomorphisms.
A morphism of commutative monoidal graphs is a tuple of commutative monoid homomorphisms
( f : E→ E′, g : V→V ′)making the diagrams

E

f
��

s �� V
g
��

E′
s′

�� V ′

E

f
��

t �� V
g
��

E′
t′

�� V ′

commute. This defines a category Grph(CMon)where objects are commutative monoidal graphs and
morphisms are as above. In short, Grph(CMon) is the category of graphs internal to CMon.

We will now define these adjunctions but omit the proofs that they are indeed well-
defined adjunctions, as this follows from the more general results of Section 5. The left adjoint
•A : Petri→ Grph(CMon) is defined as follows:

Definition 4.2. Let
•A : Petri→ Grph(CMon)

be the functor which sends a Petri net

P= T N[S]
s

t

to the commutative monoidal graph

•AP= LT LS
φ−1(s)

φ−1(t)

where L is the left adjoint of the adjunction in Definition 2.1 and φ : Hom(LT, LS) ∼−→Hom(T, RLS)
is the natural isomorphism of that adjunction. •A sends a morphism of Petri nets

( f : T→ T′, g : S→ S′)
to the morphism of commutative monoidal graphs given by

(Lf : LT→ LT′, Lg : LS→ LS′)
In words, •A freely generates a commutative monoidal structure on the transitions of a Petri

net and •A uniquely extends each component of a Petri net morphism to a commutative monoid
homomorphism. The right adjoint of this functor is non-trivial:

Definition 4.3. Let
A• : Grph(CMon)→ Petri

be the functor which sends a commutative monoidal graph

Q= E V
s

t

to the Petri net

A•Q= Ē N[RV]
s̄

t̄
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Ē is defined as
Ē= {(e, x, y) ∈ RE×N[RV]×N[RV]|RεV (x)= s(e) and RεV (y)= t(e)}

where εV is the counit of the adjunction L� R. s̄ and t̄ are given by the projection of Ē onto its first
and second coordinates, respectively. A• sends a morphism of commutative monoidal graphs

( f : E→ E′, g : V→V ′)
to the morphism of Petri nets

(h : Ē→ Ē′, Rg : RV→ RV ′)
where h is the function which makes the assignment

(e, x, y) �→ (φ( f )(e),N[Rg](x),N[Rg](y))

Remark 4.4. Petri nets must have a free commutativemonoid of places, so it is necessary to regard
RV as the set of places for A•Q rather than having V be the commutative monoid of places itself.
The reader at this point may guess a simpler formula for the right adjoint A• which keeps the RE as
the set of transitions and uses the unit ofN to construct the source and target maps. Unfortunately,
this construction is doomed to fail. For a commutative monoidal graph E V

s

t
, suppose that

the right adjoint •A sends this graph to the Petri net

RE N[RV].
η◦Rs
η◦Rt

A problem arises because this process unnaturally chunks the source and target of each transition.
To see this, consider the commutative monoidal graph

Q=N[τ ] N[{a, b, c}]∼=N
3

The edge τ in Q can be depicted as

a

b

cτ

With the above (faulty) description, A•Q is given by

N[τ ] N[N3]

To avoid confusion, we denote the outer sum in N[N3] by × and the sum in N
3 by +. Then, the

faulty A• would turn τ into the transition

a+ b cτ

To find a counit for this adjunction, we seek a morphism
•AA•Q→Q

Amorphism of this sort is defined by its assignment on generators. A natural choice of morphism
sends the places a+ b to the sum of the places a and b using the counit of L� R. However, then
the assignment of τ �→ τ does not respect the source of τ and is therefore not a morphism of
commutative monoidal graphs. The problem is that we want the source of τ in •AA•Q to be

https://doi.org/10.1017/S0960129520000262 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000262


844 J. Master

a× b and not a+ b. To fix this, we force the source of τ to be a× b by upgrading τ to the tuple
(τ , a× b, c) in N[τ ]×N[N3]×N[N3]. Now, the natural choice for the counit which sends a× b
to a+ b respects the source of τ .

The next part of the semantics adjunction for Petri nets freely generates the structure of a
category on a given commutative monoidal graph. In Section 5, this is accomplished by rephrasing
this construction in terms of free monoids. Here we provide an explicit description in the case of
Petri nets.

Definition 4.5. Let

B• : CMC→ Grph(CMon)

be the forgetful functor which sends a commutative monoidal category to its underlying commutative
monoidal graph and a strict monoidal functor to its underlying morphism of commutative monoidal
graphs. Then B• has a left adjoint

•B : Grph(CMon)→ CMC

which sends a commutative monoidal graph

Q= E V
s

t

to the commutative monoidal category •BQ with objects given by V and morphisms generated
inductively by the rules:

• for every edge e ∈ E a morphism e : s(e)→ t(e),
• for every pair of morphisms e : x→ y and d : y→ z, a morphism d ◦ e : x→ z,
• for every object v ∈V a morphism 1v : v→ v

This defines an evident composition operation ◦ on •BQ. There is also a sum on the •BQ defined
using the sum of V on objects. If e and e′ are edges of Q, then the morphisms e : x→ y and e′ : x′ → y′
already have a sum given by

e+ e′ : x+ x′ → y+ y′

The morphisms of •AQ are quotiented by the axioms:

• for all tuples of morphisms ( f : a→ b, g : b→ c, h : c→ d)

( f ◦ g) ◦ h= f ◦ (g ◦ h)
• for all morphisms f : x→ y

1y ◦ f = f = f ◦ 1x
• We require that composition is a commutative monoid homomorphism. For tuples of mor-
phisms (e : x→ y, d : y→ z, e′ : x′ → y′, d′ : y′ → z′), we can form their sum and composite in
two different ways. We quotient the morphisms of •BQ so that these are equal, i.e.,

(d ◦ e)+ (d′ ◦ e′)= (d+ d′) ◦ (e+ e′)

• We require that the assignment of identities is a commutative monoid homomorphism. For
objects x and x′ in V, we set

1x+x′ = 1x + 1′x
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5. Semantics Functors for Generalized Nets
In this section, we construct semantics categories for Q-nets; categories whose morphisms repre-
sent possible sequences of firings which can be performed using a given Q-net. Let Q be a Lawvere
theory and let

Set Mod(Q, Set)

L

⊥
R

be the adjunction it induces on Set. In this section, we will use this adjunction to construct an
adjunction

Q-Net Mod(Q, Cat)

FQ

⊥
UQ

which is analogous to the adjunction in Section 4 and whereMod(Q, Cat) is the category of models
of Q in Cat. This adjunction factors as

Q-Net Grph(Mod(Q)) Mod(Q, Cat)

•AQ

⊥
A•Q

•BQ

⊥
B•Q

where •AQ freely generates a model of Q on the transitions of a given Q-Net and •BQ freely
generates the structure of a category on a given Q-graph.

These adjunctions are heavily motivated by the case when Q= CMON as this gives Petri nets.
The main result of this paper is as follows:

Theorem 5.1. There is an adjunction

Q-Net Mod(Q, Cat).

FQ

⊥
UQ

The left adjoint can be described using inference rules. Let P be the Q-net

P= T MQS
s

t

The objects of FQ are given by LQS. That is, for every morphism o : n→m in Q and every tuple of
places x1, x2, . . . , xn there is an object o(x1, x2, x3, . . . , xn). For an equation of morphisms in Q

n

m k

f h

g

the objects generated by each path must be equal. This means that there are k equations of objects
gj(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn))= hj(x1, x2, . . . , xn)
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where the unlabeled index runs over the components of f and the index j runs over the
components of g and h. The morphisms of FQP are generated inductively by the rules

τ ∈ T
τ : s(τ )→ t(τ ) ∈Mor FQP

x ∈Ob FQP
1x : x→ x ∈Mor FQP

f : x→ y and g : y→ z ∈Mor FQP
g ◦ f : x→ z ∈Mor FQP

o : n→ 1 ∈MorQ and f1 : x1→ y1, f2 : x2→ y2, . . . fn : xn→ yn ∈Mor FQP
o( f1, f2, . . . , fn) : o(x1, x2, . . . , xn)→ o(y1, y2, . . . , yn)

and is quotiented to satisfy the following:

• The morphisms must satisfy the same equations that the objects satisfy. That is, for an
equation of morphisms in Q, the objects generated by each path must again be equal.

• Mor FQP is quotiented to satisfy the axioms of a category including the associative and unital
laws

( f ◦ g) ◦ h= f ◦ (g ◦ h) and 1y ◦ f = f = f ◦ 1x
for all morphisms f , g, and h in Mor FQP.

• Mor FQP is quotiented so that the structure maps of a category (source, target, identity, and
composition) are Q-model homomorphisms.

For a morphism of Q-nets, ( f , g) : P→ P′, the Q-functor
FQ( f , g) : FQP→ FQP′

is the unique extension of f and g which respects composition, unitality, and the operations of Q.
The proof will require several lemmas.

The first step is to construct an adjunction which freely closes the transitions of a Q-net under
the operations of Q. In this adjunction, we will write the monad MQ as RL and make use of the
natural isomorphism

φ : hom (LX, Y) ∼−→ hom (X, RY)

for all sets X and objects Y in Mod(Q).

Definition 5.2. Let
•AQ : Q-Net→ Grph(Mod(Q))

be the functor which makes the assignment

T RLS LT LS

T′ RLS′ LT′ LS′
f

s

t
RLg Lf

φ−1(s)

φ−1(t)
Lg

s′

t′
φ−1(s′)

φ−1(t′)

on objects and morphisms.

Lemma 5.3. •AQ is well defined.

The next few proofs will make heavy use of the naturality equations for φ and its inverse:

φ(a ◦ b ◦ Lc)= Ra ◦ φ(b) ◦ c
and

φ−1(Ra ◦ b ◦ c)= a ◦ φ−1(b) ◦ Lc.
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Proof. First we show that Le commutes with the source of •AQP. This follows from the chain of
equalities:

φ−1(s′) ◦ Lf
= φ−1(s′ ◦ f )
= φ−1(RLg ◦ s)
= Lg ◦ φ−1(s)

A similar equation holds for the target maps.

Let G be the Q-graph

E V .
s

t

Because V is not a free model of Q, there is no obvious forgetful way to turn this into a Q-net. A
first guess for the Q-net A•Q(G) might be the Q-net

RE MQ(RV)
ηRV◦s
ηRV◦t

where ηRV is the unit of the monad MQ applied to the set RV . However, as explained in Remark
4.4, this fails to be a right adjoint. An alternative approach was suggested by Mike Shulman in the
comments of an nCafé blog post (Master, 2019). This solution was inspired by the construction of
the free category on a tensor scheme introduced in The Geometry of Tensor Calculus I (Joyal and
Street, 1991). Instead of using RE as the set of transitions, we use

Ē= {(e, x, y) ∈ RE×MQRV ×MQRV | s(e)= RεV (x) and t(e)= RεV (y)}
where εV is the V component of the counit for MQ. Here and in what follows we are using s to
denote Rs and t to denote Rt for notational simplicity. The source and target maps of the resulting
Q-net are given by the projections of Ē onto its second and third coordinates. The set Ē can be
described formally using pullbacks.

Definition 5.4. Let
A•Q : Grph(Q)→Q-Net

be the functor which makes the assignment on objects and morphisms

E V Ē MQRV

E V Ē′ MQRV ′
f

s

t
g f̄

s̄

t̄
MQRg

s

t

s̄′

t̄′

where

• Ē is the pullback of sets

Ē

RE MQRV ×MQRV

RV × RV

i j

(s,t) RεV×RεV
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where (s, t) denotes the pairing of s and t, and εRV × εRV denotes the cartesian product of the
counits.

• s̄ : Ē→MQRV is the composite

Ē MQRV ×MQRV MQRV
j π1

and t̄ : Ē→MQRV is the composite

Ē MQRV ×MQRV MQRV
j π2

that is the maps which send an element (e, x, y) of Ē to its second and third coordinates.
• f̄ : Ē→ Ē′ is induced by the universal property of Ē as shown below

Ē

RE MQRV ×MQRV

RV × RV

RV ′ × RV ′

RE′ MQRV ′ ×MQRV ′

Ē′

i

f̄

j

Rf

(s,t) RεV×RεV

MQRg×MQRgRg×Rg

(s′,t′)
RεRV′×RεRV′

j′i′

More simply, f̄ makes the assignment
(e, x, y) �→ (Rf (e),MQRg(x),MQRg(y))

Lemma 5.5. A•Q is well defined.

Proof. We must show that (f̄ , Rg) is a well-defined morphism of Q-nets. f̄ and Rg commute with
the source and target maps. Indeed, using the elementary descriptions, we get that

s̄′ ◦ f̄ (τ , x, y)= s̄(Rf (τ ),MQRg(x),MQRg(y))

=MQRg(x)

=MQRg(s̄(τ , x, y))

A similar equation holds for the target maps. (f̄ , Rg) commutes with the identity maps:

f̄ ◦ ē(x)= f̄ (Re(x), ηRV (x), ηRV (x))

= (Rf ◦ Re(x),MQRg ◦ ηRV (x),MQRg ◦ ηRV (x))

= (Re′ ◦ Rg(x),MQRg ◦ ηRV (x),MQRg ◦ etaRV (x))
= (Re′ ◦ Rg(x), ηRV ′ ◦ Rg(x), ηRV ′ ◦ Rg(x))
= ē′ ◦ Rg(x)

where the last two steps follow from naturality of η and ( f , g) being a morphism of Q-graphs.
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Lemma 5.6. A•Q is a right adjoint to •AQ.

Proof. Let P be the Q-net

T RLS
s

t

and Q be the Q-graph

E V
s′

t′

We define a natural isomorphism

	 : Hom(•BP,Q) ∼−→Hom(P, B•QQ)
by the rule

LT LS T RLS

E V Ē RLRV

f

φ−1(s)

φ−1(t)
g h

s

t
RLφ(g)

s′

t′
s̄′

t̄′

h is defined by the universal property induced by Ē and the diagram

Ē

RE T RLRV × RLRV

RV × RV
(Rs′,Rt′)

φ( f )

h

(RLφ(g)◦s,RLφ(g)◦t)

RεV×RεV

This diagram is well defined because T is a competitor to the pullback Ē, i.e., it makes the lowest
triangle commute. Checking this amounts to showing that the bottom square commutes and this
can be verified componentwise:

RεV ◦ RLφ(g) ◦ s= R(εV ◦ Lφ(g)) ◦ s
= R(φ−1(1RV) ◦ Lφ(g)) ◦ s
= R(φ−1(1RV ◦ φ(g))) ◦ s
= R(φ−1(φ(g))) ◦ s
= Rg ◦ s
= Rg ◦ φ(φ−1(s))

= φ(g ◦ φ−1(s))

= φ(s′ ◦ f )
= Rs′ ◦ φ( f )

and similar equations hold for the target maps. Therefore, h is well defined. Explicitly h is the map
which makes the assignment on transitions in T

τ �→ (φ( f )(τ ), RLφ(g) ◦ s(τ ), RLφ(g) ◦ t(τ )).
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(h, φ(g)) is a well-definedmorphism ofQ-graphs by construction. The source and target functions
map elements to their second and third coordinates so the equation

s̄′ ◦ h= RLφ(g) ◦ s
is true.

An inverse to 	,

	−1 : Hom(P, B•QQ)→Hom(•BQP,Q)

is defined as follows

T RLS LT LS

Ē RLRV E V

h

s

t
RLg φ−1(a)

φ−1(s)

φ−1(t)
φ−1(g)

s̄′

t̄′

s′

t′

a is defined by the universal property of Ē and the diagram

Ē

RE T RLRV × RLRV

RV × RV

i j

(Rs′,Rt′)

a
h

b

RεV×RεV

To show that (φ−1(a), φ−1(g)) is a well-defined morphism of Q-graphs, we perform the compu-
tation:

s′ ◦ φ−1(a)= φ−1(Rs′ ◦ a)
= φ−1(RεV ◦ π1 ◦ b)
= φ−1(RεV ◦ s̄′ ◦ h)

where π1 : RLRV × RLRV→ RLRV is the projection and the last two steps follow from the def-
inition of s̄′ and commutativity of the above diagram. This can be reduced using the fact that h
commutes with the source and target of P and B•QQ and naturality of φ−1. Indeed,

φ−1(RεV ◦ s̄′ ◦ h)= φ−1(RεV ◦ RLg ◦ s)
= φ−1(R(εV ◦ Lg) ◦ s)
= εV ◦ Lg ◦ φ−1(s)

= φ−1(1RV ) ◦ Lg ◦ φ−1(s)

= φ−1(1RV ◦ g) ◦ φ−1(s)

= φ−1(g) ◦ φ−1(s)

A similar equation holds for target so this is a well-defined morphism of Q-graphs. 	 is a natural
isomorphism if it is a natural and a bijection in the places component and the transitions compo-
nent. The places component is only an application of φ so it is both natural and a bijection. For
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the transition component let D : C→ Set be the diagram

RE MQRV ×MQRV

RV × RV
(Rs,Rt) RεV×RεV

where C is the walking cospan. Let �T : C→ Set be the constant diagram which sends every
object to T and every morphism to 1T . Then the universal property of Ē can be expressed as the
natural isomorphism


 : Nat(�T ,D)
∼−→Hom(T, Ē)

where Nat(�T ,D) denotes the set of natural transformations from�T toD. With this description,
the transition component of 	 can be described as follows:

	 : f �→ 
(〈φ( f ), (RLφ(g) ◦ s, RLφ(g) ◦ t)〉)
where the angle brackets encase the components of a natural transformation. Similarly, the
transition component of 	−1 can be described as

	−1 : h �→ φ−1(
−1(h)RE)
where the subscript RE indicates that we take the RE component of the natural transformation.
With this description, we can verify that they are inverses on the transition component.

f �→
(〈φ( f ), (RLφ(g) ◦ s, RLφ(g) ◦ t)〉)
�→ φ−1(
−1(
(〈φ( f ), (RLφ(g) ◦ s, RLφ(g) ◦ t)〉))RE)
= φ−1(〈φ( f ), (RLφ(g) ◦ s, RLφ(g) ◦ t)〉RE)
= φ−1(φ( f ))
= f

and the other direction
h �→ φ−1(
−1(h)RE)
�→
(〈φ(φ−1(
−1(h)RE)), (RLφ(g) ◦ s, RLφ(g) ◦ t)〉)
=

−1〈h, (RLφ(g) ◦ s, RLφ(g) ◦ t〉RE
= 〈h, (RLφ(g) ◦ s, RLφ(g) ◦ t〉RE
= h

The transition component of 	 and 	−1 are natural because they are made up of components
which are individually natural transformations.

The next step in the proof of Theorem 5.1 is to construct an adjunction between Grph(Mod(Q))
and Mod(Q, Cat). A general property of algebraic theories P and Q is the property that models of
P in the category of models of Q are the same as models of Q in the category of models of P. In
particular for a Lawvere theory Q, a model of Q in Cat is the same as a category internal toMod(Q)
and this extends to an equivalence of categories

Mod(Q, Cat)∼= Cat(Mod(Q)).
Therefore, the adjunction we seek is between the categories Grph(Mod(Q)) and Cat(Mod(Q)), i.e.,
a construction of free categories internal to Mod(Q). The free category construction in this gener-
ality was first given in Baues et al. (1997). However, to build this adjunction we use a Theorem of
Lack (Lack, 2010).
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Theorem 5.7. [Lack] Let (C,⊗) be a monoidal category with

• finite limits,
• countable colimits and,
• the functors−⊗A and A⊗− preserve reflexive coequalizers and colimits of countable chains.

Then C admits a free monoid construction, that is, a left adjoint to the forgetful functor
Mon(C)→ C

which sends every monoid to its underlying object of C.

By choosing an appropriate monoidal category, we can use this construction to get free
categories in Mod(Q). A span of Q-models of the form

E

V V

s t

is a graph in Mod(Q). This description can be used to describe a monoidal category of graphs
over V .

Definition 5.8. Let Span(V) be the monoidal category where

• objects are given by spans s, t : E→V in Mod(Q),
• morphisms are given by maps f : E→ E′ making the diagram

E

V V

E′

s

f

t

s′ t′

commute.
• monoidal product is given by chosen pullbacks. That is, for spans

E F

V V V V

a b c d

their monoidal product is the chosen pullback

E×V F

E F

V V V

a b c d

On morphisms f : E→ E′ and g : F→ F′ is the unique map
( f , g) : E×V F→ E′ ×V F′

induced by the universal property of E′ ×V F′.
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A monoid in this monoidal category is a span s, t : E→V along with multiplication and unit
maps

◦: E×V E→ E and e : V→ E
satisfying associativity and unitality. Interpreting ◦ as composition and e as the map assigning
identity morphisms, this gives a category internal toMod(Q). Indeed, a category with object model
V is exactly a monoid in the category Span(V) (Betti, 1996). Therefore, if Span(V) satisfies the
hypotheses of Theorem 5.7, it gives a construction of free categories in Mod(Q). The hypotheses
of Theorem 5.7 require that the following conditions hold:

• Span(V) has finite limits and countable colimits. Mod(Q) has these limits and colimits
as shown in Theorem 3.4.5 of Borceux (1994). The corresponding limits and colimits in
Span(V) are computed on the apex of each span.

• The monoidal product of Span(V) preserves colimits of countable chains. This is true if
pullbacks in Mod(Q) preserve these colimits.

• The monoidal product of Span(V) preserves reflexive coequalizers. This is true if pullbacks
in Mod(Q) preserve reflexive coequalizers.

Corollary 3.4.3 of Borceux (1994) states that finite limits commute with filtered colimits. In
particular, this means that pullbacks commute with colimits of countable chains and reflexive
coequalizers. Therefore, Theorem 5.7 gives an adjunction

Span(V) Cat(V)

•BV

B•V

However, we would like an adjunction between the category of all graphs and categories in
Mod(Q). To accomplish this, we use the Grothendieck construction (Borceux, 1994).

Definition 5.9. Let
Span(− ) : Mod(Q)→ Cat

be the functor which sends an object V to the category Span(V) of spans over V. For a morphism
f : V→W in Mod(Q), let

Span( f ) : Span(V)→ Span(W)
be the functor which makes the assignment

E

E V V

V V �→ W W

E′ V V

E′

kk

f f

f f

on objects and morphisms. Let
Cat(− ) : Mod(Q)→ Cat
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be the functor which sends an object V to the category of small categories internal to Mod(Q) with
object model of Q given by V. For a morphism f : V→W, let

Cat( f ) : Cat(V)→ Cat(W)

be the functor which which makes the assignment

Mor C V Mor C V W

Mor C′ V Mor C′ V W

k

s

t
id k

s

t
id

f

id
s′

t′
s′

t′ f

on the underlying graphs of objects and morphisms.

The adjunction derived from Theorem 5.7 can be reframed in this context.

Proposition 5.10. The family of adjunctions

Span(V) Cat(V)

•BV

B•V

form components of natural transformations

C : Span(− )⇒ Cat(− ) and B• : Cat(− )⇒ Span(− )

Furthermore, C and B• form an adjoint pair in the 2-category [Mod(Q), Cat] where

• objects are functors F : Mod(Q)→ Cat,
• morphisms are natural transformations α : F⇒G whose components αc : F(c)→G(c) are
functors and,

• 2-morphisms are modifications γ : α→ β. That is, for every object c in Mod(Q) a natural
transformation of the type

F(c)

G(c).

αc βc
γc

Proof. For naturality, it suffices to show that the squares

Span(V) Cat(V) Span(V) Cat(V)

Span(W) Cat(W) Span(W) Cat(W)

Span(f )

•BV

Cat(f ) Span(f )

B•V

Cat(f )

•BW B•V

commute. This is verified by direct computation. To show that •B and B• are an adjoint pair, we
need the following fact: •B is a left adjoint to B• in [Mod(Q), Cat] if and only if the components

Span(V) Cat(V)

•BV

B•V
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form an adjoint pair in Cat. The counit-unit definition of adjunction requires that we have
modifications ε : •B ◦ B• → 1Cat(−) and η : 1Span(−)→ B• ◦• B satisfying the snake equations.
Unpacking this gives components εV : •BV ◦ B•V⇒ 1Cat(V) and ηV : B•V ◦• BV⇒ 1Span(V) satis-
fying the snake equations. This is equivalent to each component being an adjunction. However,
Theorem 5.7 says that each component is an adjunction so the claim is shown.

So far we have the diagram

Mod(Q) Cat

Span(−)

Cat(−)

•B B•

of adjoint 1-cells in [Mod(Q), Cat]. We apply the Grothendieck construction to this diagram to get

∫
Span(− )

∫
Cat(− )

∫ • B

∫
B•

The Grothendieck construction is a 2-functor
∫ : [Mod(Q), CAT]→ CAT/Mod(Q) where CAT

denotes the 2-category of large categories, functors, and natural transformations. When com-
posed with the forgetful 2-functor CAT/Mod(Q)→ CAT which remembers only the domain of
each functor, we obtain the composite∫

: [Mod(Q), CAT]→ CAT

which we denote as
∫
in an abuse of notation.

A fundamental fact is that every 2-functor preserves adjunctions. Therefore, the above dia-
gram is an adjunction. Moreover, the following proposition shows that it is the adjunction we are
looking for.

Proposition 5.11. The category
∫
Span(− ) is equivalent to Grph(Mod(Q)), and the category∫

Cat(− ) is equivalent to Mod(Q, Cat).

Proof.
∫
Span(− ) has

• pairs (V ,V← E→V) as objects and,
• pairs ( f : V→V ′, g : E→ E′) such that the diagram

E

V V

V ′ V ′

E′

gf f

in Mod(Q) commutes as morphisms.
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An equivalence
∫
Span(− ) ∼−→ Grph(Mod(Q)) sends (V ,V← E→V) to the graph E V

and a morphism ( f , g) to the evident morphism of graphs ( f : E→ E′, g : V→V ′).∫
Cat(− ) has

• pairs (V , C) where C is a category over V as objects and,
• pairs ( f : V→V ′, g : C→ C′) where g is an object fixing functor from Cat( f )(C) to C′ as
morphisms.

An equivalence
∫
Cat(− ) ∼−→ Cat(Mod(Q) is given by sending objects (V , C) to their second com-

ponent and morphisms ( f , g) to the functor whose object component is f and whose morphism
component is the morphism component of g.

We denote the compositions of
∫ • B and

∫
B• with the above equivalences by •BQ and B•Q,

respectively.

Proof of Theorem 5.1. The composite adjunction FQ �UQ is constructed by setting FQ =• BQ ◦•
AQ and UQ = B•Q ◦A•Q.

6. Applications
Theorem 5.1 has many applications: it can be used to help understand existing constructions of
semantics for various Q-nets from a categorical perspective.

6.1 Semantics for pre-nets
In Bruni et al. (2001), the authors construct an adjunction for pre-nets which highlights the indi-
vidual token semantics. In this subsection, we characterize a variation of this adjunction using
Theorem 5.1. Theorem 5.1 gives the following adjunction for pre-nets:

Proposition 6.1. Let RMON : Mod(MON)→ Set be the underlying set functor and let LMON : Set→
Mod(MON) be its left adjoint. Recall that the composite RMON ◦ LMON is denoted by (− )∗. Let MC
be the category of strict monoidal categories and strict monoidal functors. Let

UMON : MC→ PreNet

be the functor which makes the assignment on objects and morphisms

C Mor C Ob C∗

D MorD ObD∗
F

whereMor C and the source and target maps are as defined in Definition 5.4. Then, UMON has a left
adjoint

FMON : PreNet→MC

which sends a pre-net

T
s ��

t
�� S∗

to the strict monoidal category where
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• the objects are given by the free monoid LMONS and,
• morphisms are defined inductively as the closure of T under composition ◦ and monoidal
product⊗. This is quotiented by the axioms
– ( f ⊗ g)⊗ h= f ⊗ (g ⊗ h) (the associative law)
– 1⊗ f = f ⊗ 1= f (the left and right unit laws)
– ( f1 ◦ g1)⊗ ( f2 ◦ g2)= ( f1 ⊗ f2) ◦ (g1 ⊗ g2) whenever all composites are defined (the inter-
change law).

For a morphism of pre-nets ( f , g), F( f , g) has object component given by LMONg and a morphism
component given by the unique composition preserving monoid homomorphism extending f .

Under the individual token philosophy, monoidal categories are not yet a sufficient semantics
for pre-nets. This is because in the individual token philosophy, the order of tokens going in and
out of a Petri net must be accounted for. To represent this ordering, we can freely add a swapping
morphism

γa,b : a⊗ b→ b⊗ a

for every pair of objects a and b in FMON(P). Every morphism in this new category, can now be
regarded as having some permutation of the multisets in its inputs and outputs composed on
either side. After choosing an initial ordering on your tokens, these permutations give an order
in which tokens flow in and out of each process. Strict monoidal categories equipped with coher-
ent swapping morphisms are called strict symmetric monoidal categories and there is a category
where they are objects.

Definition 6.2. Let SMC be the category where

• objects are strict symmetric monoidal categories and,
• morphisms are strict symmetric monoidal functors.

Symmetries can be freely added to the category FMON(P), and this process is a left adjoint.

Definition 6.3. Let

M : SMC→MC

be the forgetful functor which treats every symmetric strict monoidal category as a strict monoidal
category and every strict symmetric monoidal functor as a strict monoidal functor.

Proposition 6.4. M has a left adjoint.

Proof. Note that because everything here is strict, the construction of the adjunction between MC
and SMC is a simpler task than constructing an adjunction between their non-strict counterparts.
To find a left adjoint to the forgetful functor from symmetric monoidal categories to monoidal
categories, the tools of two-dimensional category theory must be used. On the other hand, due to
their strictness, the categories MC and SMC can be characterized as the category of models for a
finite limits theory (Adámek and Rosický, 1994, §3D). To construct these finite limit theories, we
start with Th(Cat): the well-known finite limit theory for categories. Th(Cat) has two sorts:M for
morphisms and O for objects. The generating operations of Th(Cat) are

M 0
s

t
i ◦: M×O M→M

which represent source, target, identity, and composition. These operations are quotiented to sat-
isfy the operations of a category. To get Th(SMC), the theory of strict monoidal categories, we
add the operations constituting the structure of a monoid on both the objects and the morphisms.
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These operations have typesM×M→M,O×O→O, 1→M, and 1→O representing the iden-
tity and multiplications of each monoid. These operations are quotiented to satisfy equations
expressing the monoid axioms and compatibility with the operations already in Th(Cat).
Th(SMC) can be further upgraded to obtain Th(SSMC), the finite limit theory for strict sym-

metric monoidal categories. Th(SSMC) contains all the generating objects and morphisms of
Th(SMC) in addition to a braiding operation with type O×O→M. This braiding is required
to satisfy the typical axioms of a symmetric monoidal category. Furthermore, there is an inclu-
sion i : Th(SMC)→ Th(SSMC) which sends every sort and operation of Th(SMC) to the sort and
operation in Th(SSMC) which plays the same role. In summary, there is a morphism of finite limit
theories

Th(SMC) i−→ Th(SSMC).

Gabriel–Ulmer duality (Adámek and Porst, 1998; Gabriel and Ulmer, 2006) establishes an
equivalence between this sort of morphism and filtered colimit preserving right adjoints

Mod(Th(SSMC), Set)→Mod(Th(SMC), Set).

This right adjoint is the functor in Definition 6.3.

To get the individual token semantics for pre-nets; first, we freely close the transitions under
composition and monoidal product using Theorem 5.1, then we freely add symmetries as shown
above.

PreNet MC SMC

FMON

UMON

N

M

This composite adjunction is the adjunction Z �K mentioned in Example 3.5. This does not yet
represent the standard individual token semantics for pre-nets. Let

f : a⊗ a′ → b

be a morphism in Z(P) for a pre-net P. Then, composing f with a permutation

γa′,a : a′ ⊗ a→ a⊗ a′

should only represent a new process if a= a′. This point could be argued, but the idea is that
permuting different places has no functional difference because it requires the same inputs and
outputs. Therefore, to get a category which is equivalent to the category of strongly concatenable
processes introduced in Sassone (1995), we must quotient Z(P) by requiring that

x y

x y

τ

a

τ

b

commutes for every transition τ : x→ y and permutations a : x→ x and b : y→ y. The key point
here is that the permutations are from an element to itself. This only occurs when the permutation
switches objects which are the same.

The difference between the adjunction Z �K and the adjunction introduced in Functorial
Models for Petri Nets has to do with a change in definition of the morphisms in the category
PreNet. We require that the places component come from a function between the sets of places
whereas the authors of Bruni et al. (2001) do not. This change is made so that the category PreNet
admits a smoother description of its semantics.
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For practical purposes, it useful to construct semantics for Petri nets rather than pre-nets which
have the individual token philosophy. For this we use the functor

e-Net : PreNet→ Petri
introduced in Section 3 which sends every pre-net to the Petri net which forgets about the ordering
on the input and output of each transtion.

In Bruni et al. (2001), the authors suggest that an individual token semantics for a Petri net P
can computed by choosing a linearization of P; a pre-net R in the preimage c-Net−1(P). Then,
the semantics category N ◦ FMONR is defined to be the individual token semantics of P. Note
that this process depends on a choice of linearization only up to isomorphism. Let R and R′ be
linearizations of P, then Theorem 2.5 of Bruni et al. (2001) proves that Z(R)∼= Z(R′).

Choosing a linearization and then applying Z gives an individual token semantics for Petri nets,
but it is unclear about how to extend this tomorphisms of Petri nets. For a functorial construction,
we can try to reverse the functor c-Net in the diagram:

Petri

PreNet MC SMC

c-Net
FMON N

An inverse to c-Net cannot be single valued because there are many linearizations of a given Petri
net. For given transition of a Petri net, there are many possible orderings of is source and target.
To avoid making a choice, you can make them all. Let P be a Petri net and let {(si, ti : T→ S∗)}ni=1
be the set of linearizations of P, that is the set c-Net−1(P). Let Q be the pre-net given by

n
�
i=1T S∗

�si

�ti

where �si and �ti denote the copairing of the functions si and ti, respectively. Then, the mapping
P �→N ◦ FMON (Q)

characterizes the category Q(P) introduced by Sassone in On the Category of Petri Net
Computations (Sassone, 1995). Unfortunately, Sassone showed that this at first only gives a pseud-
ofunctor (Sassone, 1995). This is because there is no obvious way to turn a morphism of Petri nets
into a functor between the fibers of their source and target. However, Sassone showed that after
performing the appropriate quotient on the target category, this mapping can be turned into a
functor and a left adjoint (Sassone, 1995).

6.2 Semantics for integer nets
In Executions in (Semi-)Integer Petri Nets are Compact Closed Categories, Genovese and Herold
show how compact closed symmetric monoidal categories give a categorical semantics for integer
nets (Genovese and Herold, 2018). Note that these categories are strictly compact closed but not
strictly symmetric, i.e., the braidings are not given by the identity. To get an operational seman-
tics for integer nets where the braidings are given by the identity, we can use Theorem 5.1. This
adjunction gives for each integer net a description of its semantics under the collective token phi-
losophy; the morphisms represent the possible executions of an integer net but do not keep track
of the identities of the individual tokens.

Proposition 6.5. Let

Set Mod(ABGRP)

L

⊥
R
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be the adjunction making up the free abelian group monad Z in Definition 3.4. Then there is a left
adjoint

FABGRP : Z-Net→Mod(ABGRP, Cat)
which sends a Z-net

P= T
s ��

t
�� RLS

to the ABGRP-category FABGRP(P) which has

• LS as its free abelian group of objects and,
• morphisms are given by the free closure of T under composition and identity, modulo the
axioms of a category, and under monoidal product and inverses, modulo the axioms of an
abelian group. We also require that the structure maps are abelian group homomorphisms.

For a morphism of Z-nets ( f , g) : P→ P′, FABGRP( f , g) is a morphism of ABGRP-categories
which is

• given by Lg on objects and,
• and morphisms it is given by the unique extension of f which respects the abelian group
operation and composition.

If we wish to construct semantics for integer nets under the individual token philosophy, we
need our semantics categories to have braidings which are not given by identities. This can accom-
plished using a similar construction as the previous subsection. Indeed we have a diagram of
categories as follows:

Z-Net

GRP-Net Mod(GRP, Cat) SCCC

e-Net
FGRP W

The features of this diagram are as follows.

• e-Net : GRP-Net→Z-Net is abelianization. It sends a GRP-net to the integer net which for-
gets about the ordering on the input and output of each transition. e-Net sends morphisms
of GRP-Net-nets to themselves.

• The functor FGRP : GRP-Net→Mod(Q, Cat) is constructed using Theorem 5.1. This functor
freely closes the transitions of a GRP-net under the group operation, composition, and freely
adds inverses and identites. These semantics categories are required to satisfy the axioms of
a group and a category. The structure maps of these are categories are required to be group
homomorphisms. This functor will not be explicitly described in this paper, but it can be
constructed using Theorem 5.1.

• SCCC is the category where
– An object C is a strictly monoidal strictly compact closed category. This means that for
every object x in C and f in Mor C there are inverses with

x⊗ x−1 = 1 and f ⊗ f−1 = 1
In addition, every pair of objects is equipped with a symmetry γx,y : x⊗ y→ y⊗ x
satisfying the axioms of a symmetric monoidal category.

– Morphisms in SCCC are strict symmetric monoidal functors. Preservation of inverses
follows from being a strict monoidal functor.
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• W : GRP-Cat→ SCCC is a left adjoint of an adjunction which freely adds a symmetric braid-
ing for every pair of objects. This adjunction is described as follows. The proof of this
proposition follows the same argument as Proposition 6.4.

Proposition 6.6. Let X : SCCC→Mod(GRP, Cat) be the forgetful functor which sends objects and
morphisms of SCCC to their underlying GRP-categories and GRP-functors. Then X has a left adjoint

W : Mod(Q, Cat)→ SCCC

which is specified by the following:

• for a GRP-category C, WC is a symmetric monoidal category such that for every pair of objects
x, y in C there is an isomorphism γx,y : x⊗ y→ y⊗ x satisfiying the axioms of a symmetry in
a symmetric monoidal category.

• for a GRP-functor F : C→D, WF is a the unique extension of F which sends symmetries to
symmetries.

In order to get individual token semantics for an integer net P, we can start with a GRP-net K
which abelianizes to P. This is also called a linearization of P. The individual token semantics of P
can be defined asW ◦ FGRP(K). To get a systematic mapping from integer nets to their individual
token semantics we can combine all the linearizations of a given integer net. Let {(si, ti : Ti→
MGRP(S))}ni=1 be the set of linearizations of P, that is the set e-Net−1(P). Let N be the GRP-net
given by

n
�
i=1Ti MGRP(S)

�si

�ti

where �si and �ti denote the copairing of the functions si and ti respectively. The mapping

P �→W ◦ FGRP (N)

characterizes the category F(P) introduced in Genovese and Herold (2018). Like before, this
assignment extends to a pseudofunctor rather than a functor. Analogously to the situation for
Petri nets, Genovese andHerold prove that after performing some quotients on the target category
this turns into a functor and a left adjoint (Genovese and Herold, 2018).

6.3 Semantics for elementary net systems
Theorem 5.1 can be used to construct a functorial description of the semantics of elementary net
systems. This semantics matches the standard description which has not yet been made categori-
cal. For an elementary net system P, FSLAT(P) is a category where the objects are possible markings
of P, and the morphisms are finite sequences of firings.

Proposition 6.7. Let

Set Mod(SLAT)⊥
L

R

be the adjunction whose associated monad is 2(−) : Set→ Set. Then there is a left adjoint

FSLAT : SLAT-Net→Mod(SLAT, Cat)
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which sends an elementary net system

P= T 2S
s

t

to the SLAT-category FSLAT(P) with objects given by 2S and with morphisms generated inductively
by the rules:

• for every transition τ ∈ T, a morphism τ : s(τ )→ t(τ ) is included,
• for every pair of morphisms f : x→ y and g : x′ → y′, their sum f + g : x+ x′ → y+ y′ is
included,

• for every pair of morphisms, f : x→ y and g : y→ z, their composite g ◦ f : x→ z is included,
• these morphisms are quotiented to satisfy the axioms of an idempotent commutative monoid
and of a category

• these morphisms are quotiented to make composition and the assignment of identities to be
monoid homomorphisms.

For a morphism of SLAT-nets ( f : T→ T′, g : S→ S′),
FSLAT( f , g) : FSLAT(P)→ FSLAT(P′)

is the functor given by 2g on objects and by the unique monoidal and functorial extension of f on
morphisms.
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Appendix A. Lawvere Theories
Introduced by Lawvere in his landmark thesis (William Lawvere, 1963), Lawvere theories are a
general framework for reasoning about algebraic structures (Barr andWells, 1985; Buckley, 2008).

Definition A.1. A Lawvere theory Q is a small category with finite products such that every object is
isomorphic to the iterated finite product xn = x× . . .× x for a generic object x and natural number
n. Equivalently, Lawvere theories can be thought of as categories whose objects are given by natural
numbers n ∈N and with cartesian product given by +. The morphisms in a Lawvere theory are
called operations.

The idea is that a Lawvere theory represents the platonic embodiment of an algebraic gadget.

Example A.2. A canonical example is the Lawvere theory MON of monoids. Like all Lawvere
theories, the objects of MON are given by natural numbers. In addition, MON contains the
morphisms

m : 2→ 1 and e : 0→ 1
For a monoidM, this represents the multiplication map

· : M×M→M
and the map

e : {∗}→M
which picks out the identity element ofM. These maps are required to satisfy the associative law

3 2

2 1

id×m

m×id m

m

and the unital laws for monoids.

1 2 1

1

id×e

id
m

e×id

id
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MON also contains all composites, tensor products, andmaps necessary tomake n into the product
xn induced by the mapsm and e.

Like all good things, Lawvere theories form a category.

Definition A.3. Let Law be the category where objects are Lawvere theories and morphisms are
product preserving functors.

Note that because morphisms of Lawvere theories preserve products, they must send the
generic object of their source to the generic object of their target. Therefore, to specify a mor-
phism of Lawvere theories, it suffices to make an assignment of the morphisms which are not part
of the product structure.

Let Q be a Lawvere theory and C a category with finite products. We can impose the axioms
and operations of Q onto an object in C via a product preserving functor F : Q→ C. The image
F(1) of the generating object 1 gives the underlying object of F and for an operation o : n→ k in
Q, F(o) : F(x)n→ F(x)k gives a specific instance of the algebraic operation represented by o. There
is a natural way to make a category of these functors.

Definition A.4. Let Q be a Lawvere theory and C a category with finite products. Then there is a
category Mod(Q, C) where

• objects are product preserving functors F : Q→ C and,
• morphisms are natural transformations between these functors.

When Mod(Q) is written without the second argument, it is assumed to be Set. We will refer to
objects in Mod(Q) as Q-models and morphisms in Mod(Q) as Q-model homomorphisms. When
C= Cat, we will refer to these objects as Q-categories.
When the category of models is Set, then there is a forgetful functor

RQ : Mod(Q)→ Set

which sends a product preserving functor F : Q→ Set to image on the generating object F(1) and
a natural transformation to component on the object 1. A classical result says that RQ always has
a left adjoint

LQ : Set→Mod(Q)
which for a set X, LQX is referred to as the free model of Q on X. In fact, this construction extends
to fully faithful functor

Law→Mnd

which sends a Lawvere theory Q to the monad RQ ◦ LQ : Set→ Set and whereMnd is the category
of monads on Set (Linton, 1966). For a Lawvere theory Q, we will denote the monad it induces via
this functor byMQ : Set→ Set.

For Q=MON, Mod(MON, Set) is equivalent to the category Mon of monoids and monoid
homomorphisms. In this case the functor RMON : Mon→ Set turns monoids and monoid homo-
morphisms into their underlying sets and functions. RMON has a left adjoint

LMON : Set→Mon

which sends a set X to the free monoid LMONX. For a function f : X→ Y , LMONf is the unique
multiplication preserving extension of f to LMONX.

Cite this article: Master J (2020). Petri nets based on Lawvere theories. Mathematical Structures in Computer Science 30,
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